Spaces:
Running
Running
File size: 13,365 Bytes
88f8e2a c24b83f 28c5195 c24b83f 88f8e2a 28c5195 c24b83f 009d64e c24b83f 976d6b2 a9371e2 009d64e 88f8e2a c24b83f 88f8e2a c24b83f 88f8e2a c24b83f 88f8e2a 009d64e 88f8e2a c24b83f 009d64e 28c5195 976d6b2 28c5195 c24b83f 28c5195 c24b83f 28c5195 976d6b2 28c5195 009d64e 28c5195 a9371e2 976d6b2 28c5195 009d64e 28c5195 976d6b2 28c5195 009d64e 28c5195 976d6b2 28c5195 976d6b2 28c5195 a9371e2 28c5195 88f8e2a c24b83f 88f8e2a c24b83f 88f8e2a c24b83f 88f8e2a f676dc4 976d6b2 c24b83f 28c5195 976d6b2 a9371e2 976d6b2 a9371e2 28c5195 a9371e2 009d64e 5ef72cb 5dbe0d0 009d64e 976d6b2 c24b83f a9371e2 976d6b2 28c5195 976d6b2 28c5195 976d6b2 28c5195 976d6b2 28c5195 976d6b2 28c5195 976d6b2 28c5195 976d6b2 28c5195 976d6b2 009d64e 976d6b2 28c5195 976d6b2 c24b83f 976d6b2 009d64e 976d6b2 009d64e 976d6b2 009d64e 976d6b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# -*- coding: utf-8 -*-
# file: app.py
# time: 17:08 2023/3/6
# author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
# github: https://github.com/yangheng95
# huggingface: https://huggingface.co/yangheng
# google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
# Copyright (C) 2023. All Rights Reserved.
import random
import autocuda
import gradio as gr
import pandas as pd
from pyabsa import (
download_all_available_datasets,
TaskCodeOption,
available_checkpoints,
)
from pyabsa import ABSAInstruction
from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
import requests
download_all_available_datasets()
def get_atepc_example(dataset):
task = TaskCodeOption.Aspect_Polarity_Classification
dataset_file = detect_infer_dataset(atepc_dataset_items[dataset], task)
for fname in dataset_file:
lines = []
if isinstance(fname, str):
fname = [fname]
for f in fname:
print("loading: {}".format(f))
fin = open(f, "r", encoding="utf-8")
lines.extend(fin.readlines())
fin.close()
for i in range(len(lines)):
lines[i] = (
lines[i][: lines[i].find("$LABEL$")]
.replace("[B-ASP]", "")
.replace("[E-ASP]", "")
.strip()
)
return sorted(set(lines), key=lines.index)
def get_aste_example(dataset):
task = TaskCodeOption.Aspect_Sentiment_Triplet_Extraction
dataset_file = detect_infer_dataset(aste_dataset_items[dataset], task)
for fname in dataset_file:
lines = []
if isinstance(fname, str):
fname = [fname]
for f in fname:
print("loading: {}".format(f))
fin = open(f, "r", encoding="utf-8")
lines.extend(fin.readlines())
fin.close()
return sorted(set(lines), key=lines.index)
def get_acos_example(dataset):
task = "ACOS"
dataset_file = detect_infer_dataset(acos_dataset_items[dataset], task)
for fname in dataset_file:
lines = []
if isinstance(fname, str):
fname = [fname]
for f in fname:
print("loading: {}".format(f))
fin = open(f, "r", encoding="utf-8")
lines.extend(fin.readlines())
fin.close()
lines = [line.split("####")[0] for line in lines]
return sorted(set(lines), key=lines.index)
try:
from pyabsa import AspectTermExtraction as ATEPC
atepc_dataset_items = {
dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()
}
atepc_dataset_dict = {
dataset.name: get_atepc_example(dataset.name)
for dataset in ATEPC.ATEPCDatasetList()
}
aspect_extractor = ATEPC.AspectExtractor(checkpoint="multilingual")
except Exception as e:
print(e)
atepc_dataset_items = {}
atepc_dataset_dict = {}
aspect_extractor = None
try:
from pyabsa import AspectSentimentTripletExtraction as ASTE
aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}
aste_dataset_dict = {
dataset.name: get_aste_example(dataset.name)
for dataset in ASTE.ASTEDatasetList()[:-1]
}
triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual")
except Exception as e:
print(e)
aste_dataset_items = {}
aste_dataset_dict = {}
triplet_extractor = None
try:
from pyabsa import ABSAInstruction
acos_dataset_items = {
dataset.name: dataset for dataset in ABSAInstruction.ACOSDatasetList()
}
acos_dataset_dict = {
dataset.name: get_acos_example(dataset.name)
for dataset in ABSAInstruction.ACOSDatasetList()
}
quadruple_extractor = ABSAInstruction.ABSAGenerator("multilingual")
except Exception as e:
print(e)
acos_dataset_items = {}
acos_dataset_dict = {}
quadruple_extractor = None
def perform_atepc_inference(text, dataset):
if not text:
text = atepc_dataset_dict[dataset][
random.randint(0, len(atepc_dataset_dict[dataset]) - 1)
]
result = aspect_extractor.predict(text, pred_sentiment=True)
result = pd.DataFrame(
{
"aspect": result["aspect"],
"sentiment": result["sentiment"],
# 'probability': result[0]['probs'],
"confidence": [round(x, 4) for x in result["confidence"]],
"position": result["position"],
}
)
return result, "{}".format(text)
def perform_aste_inference(text, dataset):
if not text:
text = aste_dataset_dict[dataset][
random.randint(0, len(aste_dataset_dict[dataset]) - 1)
]
result = triplet_extractor.predict(text)
pred_triplets = pd.DataFrame(result["Triplets"])
true_triplets = pd.DataFrame(result["True Triplets"]) if result["True Triplets"] else None
return pred_triplets, true_triplets, "{}".format(text.split("####")[0])
def perform_acos_inference(text, dataset):
if not text:
text = acos_dataset_dict[dataset][
random.randint(0, len(acos_dataset_dict[dataset]) - 1)
]
raw_output = quadruple_extractor.predict(text.split("####")[0], max_length=128)
result = raw_output["Quadruples"]
result = pd.DataFrame(result)
return result, text
def run_demo(text, dataset, task):
if len(text) > 3000:
raise RuntimeError('Text is too long!')
try:
data = {
"text": text,
"dataset": dataset,
"task": task,
}
response = requests.post("https://pyabsa.pagekite.me/api/inference", json=data)
result = response.json()
print(response.json())
if task == "ATEPC":
return (
pd.DataFrame(
{
"aspect": result["aspect"],
"sentiment": result["sentiment"],
# 'probability': result[0]['probs'],
"confidence": [round(x, 4) for x in result["confidence"]],
"position": result["position"],
}
),
result["text"],
)
elif task == "ASTE":
return (
pd.DataFrame(result["pred_triplets"]),
pd.DataFrame(result["true_triplets"]),
result["text"],
)
elif task == "ACOS":
return pd.DataFrame(result["Quadruples"]), result["text"]
except Exception as e:
print(e)
print("Failed to connect to the server, running locally...")
return inference(text, dataset, task)
def inference(text, dataset, task):
if task == "ATEPC":
return perform_atepc_inference(text, dataset)
elif task == "ASTE":
return perform_aste_inference(text, dataset)
elif task == "ACOS":
return perform_acos_inference(text, dataset)
else:
raise Exception("No such task: {}".format(task))
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
with gr.Row():
if quadruple_extractor:
with gr.Row():
with gr.Column():
gr.Markdown(
"# <p align='center'> ABSA Quadruple Extraction (Experimental) </p>"
)
acos_input_sentence = gr.Textbox(
placeholder="Leave this box blank and choose a dataset will give you a random example...",
label="Example:",
)
acos_dataset_ids = gr.Radio(
choices=[
dataset.name
for dataset in ABSAInstruction.ACOSDatasetList()
],
value="Laptop14",
label="Datasets",
)
acos_inference_button = gr.Button("Let's go!")
acos_output_text = gr.TextArea(label="Example:")
acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
acos_inference_button.click(
fn=run_demo,
inputs=[
acos_input_sentence,
acos_dataset_ids,
gr.Text("ACOS", visible=False),
],
outputs=[acos_output_pred_df, acos_output_text],
)
with gr.Row():
if triplet_extractor:
with gr.Column():
gr.Markdown(
"# <p align='center'>Aspect Sentiment Triplet Extraction !</p>"
)
with gr.Row():
with gr.Column():
aste_input_sentence = gr.Textbox(
placeholder="Leave this box blank and choose a dataset will give you a random example...",
label="Example:",
)
gr.Markdown(
"You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)"
)
aste_dataset_ids = gr.Radio(
choices=[
dataset.name
for dataset in ASTE.ASTEDatasetList()[:-1]
],
value="Restaurant14",
label="Datasets",
)
aste_inference_button = gr.Button("Let's go!")
aste_output_text = gr.TextArea(label="Example:")
aste_output_pred_df = gr.DataFrame(
label="Predicted Triplets:"
)
aste_output_true_df = gr.DataFrame(
label="Original Triplets:"
)
aste_inference_button.click(
fn=run_demo,
inputs=[
aste_input_sentence,
aste_dataset_ids,
gr.Text("ASTE", visible=False),
],
outputs=[
aste_output_pred_df,
aste_output_true_df,
aste_output_text,
],
)
if aspect_extractor:
with gr.Column():
gr.Markdown(
"# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
)
with gr.Row():
with gr.Column():
atepc_input_sentence = gr.Textbox(
placeholder="Leave this box blank and choose a dataset will give you a random example...",
label="Example:",
)
gr.Markdown(
"You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)"
)
atepc_dataset_ids = gr.Radio(
choices=[
dataset.name
for dataset in ATEPC.ATEPCDatasetList()[:-1]
],
value="Laptop14",
label="Datasets",
)
atepc_inference_button = gr.Button("Let's go!")
atepc_output_text = gr.TextArea(label="Example:")
atepc_output_df = gr.DataFrame(label="Prediction Results:")
atepc_inference_button.click(
fn=run_demo,
inputs=[
atepc_input_sentence,
atepc_dataset_ids,
gr.Text("ATEPC", visible=False),
],
outputs=[atepc_output_df, atepc_output_text],
)
gr.Markdown(
"""### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
[![Downloads](https://pepy.tech/badge/pyabsa)](https://pepy.tech/project/pyabsa)
[![Downloads](https://pepy.tech/badge/pyabsa/month)](https://pepy.tech/project/pyabsa)
"""
)
demo.launch()
|