Spaces:
Running
Running
update_ckpt
Browse files- app.py +92 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
import requests
|
6 |
+
|
7 |
+
from pyabsa import download_all_available_datasets, AspectTermExtraction as ATEPC, TaskCodeOption
|
8 |
+
from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
|
9 |
+
|
10 |
+
download_all_available_datasets()
|
11 |
+
|
12 |
+
dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
|
13 |
+
|
14 |
+
URL = 'https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fyangheng%2Fpyabsa_inference&label=Inference%20Count&labelColor=%2337d67a&countColor=%23f47373&style=flat&labelStyle=none'
|
15 |
+
|
16 |
+
|
17 |
+
def get_example(dataset):
|
18 |
+
task = TaskCodeOption.Aspect_Polarity_Classification
|
19 |
+
dataset_file = detect_infer_dataset(dataset_items[dataset], task)
|
20 |
+
|
21 |
+
for fname in dataset_file:
|
22 |
+
lines = []
|
23 |
+
if isinstance(fname, str):
|
24 |
+
fname = [fname]
|
25 |
+
|
26 |
+
for f in fname:
|
27 |
+
print('loading: {}'.format(f))
|
28 |
+
fin = open(f, 'r', encoding='utf-8')
|
29 |
+
lines.extend(fin.readlines())
|
30 |
+
fin.close()
|
31 |
+
for i in range(len(lines)):
|
32 |
+
lines[i] = lines[i][:lines[i].find('$LABEL$')].replace('[B-ASP]', '').replace('[E-ASP]', '').strip()
|
33 |
+
return sorted(set(lines), key=lines.index)
|
34 |
+
|
35 |
+
|
36 |
+
dataset_dict = {dataset.name: get_example(dataset.name) for dataset in ATEPC.ATEPCDatasetList()}
|
37 |
+
aspect_extractor = ATEPC.AspectExtractor(checkpoint='multilingual')
|
38 |
+
|
39 |
+
|
40 |
+
def perform_inference(text, dataset):
|
41 |
+
if not text:
|
42 |
+
text = dataset_dict[dataset][random.randint(0, len(dataset_dict[dataset]) - 1)]
|
43 |
+
|
44 |
+
result = aspect_extractor.predict(example=text,
|
45 |
+
pred_sentiment=True)
|
46 |
+
|
47 |
+
result = pd.DataFrame({
|
48 |
+
'aspect': result['aspect'],
|
49 |
+
'sentiment': result['sentiment'],
|
50 |
+
# 'probability': result[0]['probs'],
|
51 |
+
'confidence': [round(x, 4) for x in result['confidence']],
|
52 |
+
'position': result['position']
|
53 |
+
})
|
54 |
+
requests.get(URL)
|
55 |
+
return result, '{}'.format(text)
|
56 |
+
|
57 |
+
|
58 |
+
demo = gr.Blocks()
|
59 |
+
|
60 |
+
with demo:
|
61 |
+
gr.Markdown("# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>")
|
62 |
+
gr.Markdown("""### Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
|
63 |
+
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
64 |
+
[![Downloads](https://pepy.tech/badge/pyabsa)](https://pepy.tech/project/pyabsa)
|
65 |
+
[![Downloads](https://pepy.tech/badge/pyabsa/month)](https://pepy.tech/project/pyabsa)
|
66 |
+
"""
|
67 |
+
)
|
68 |
+
gr.Markdown("Your input text should be no more than 80 words, that's the longest text we used in trainer. However, you can try longer text in self-trainer ")
|
69 |
+
gr.Markdown("**You don't need to split each Chinese (Korean, etc.) token as the provided, just input the natural language text.**")
|
70 |
+
output_dfs = []
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
input_sentence = gr.Textbox(placeholder='Leave this box blank and choose a dataset will give you a random example...', label="Example:")
|
74 |
+
gr.Markdown("You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)")
|
75 |
+
dataset_ids = gr.Radio(choices=[dataset.name for dataset in ATEPC.ATEPCDatasetList()[:-1]], value='Laptop14', label="Datasets")
|
76 |
+
inference_button = gr.Button("Let's go!")
|
77 |
+
gr.Markdown("There is a [demo](https://huggingface.co/spaces/yangheng/PyABSA-ATEPC-Chinese) specialized for the Chinese langauge")
|
78 |
+
gr.Markdown("This demo support many other language as well, you can try and explore the results of other languages by yourself.")
|
79 |
+
|
80 |
+
with gr.Column():
|
81 |
+
output_text = gr.TextArea(label="Example:")
|
82 |
+
output_df = gr.DataFrame(label="Prediction Results:")
|
83 |
+
output_dfs.append(output_df)
|
84 |
+
|
85 |
+
inference_button.click(fn=perform_inference,
|
86 |
+
inputs=[input_sentence, dataset_ids],
|
87 |
+
outputs=[output_df, output_text])
|
88 |
+
|
89 |
+
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=https://huggingface.co/spaces/yangheng/Multilingual-Aspect-Based-Sentiment-Analysis)")
|
90 |
+
gr.Markdown("![Visitors]({})".format(URL))
|
91 |
+
|
92 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pyabsa>=2.0.0b0
|