Spaces:
Runtime error
Runtime error
File size: 13,984 Bytes
ef9b1d9 ca32302 ef9b1d9 a193a39 ef9b1d9 a193a39 ef9b1d9 a193a39 ef9b1d9 1878446 ef9b1d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# ------------------------------------------------------------------------------
# Copyright (c) 2022-2023, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under the Nvidia Source Code License.
# To view a copy of this license, visit
# https://github.com/NVlabs/ODISE/blob/main/LICENSE
#
# Written by Jiarui Xu
# ------------------------------------------------------------------------------
import os
os.system("pip install git+https://github.com/NVlabs/ODISE.git")
os.system("pip freeze")
import itertools
import json
from contextlib import ExitStack
import gradio as gr
import numpy as np
import matplotlib.colors as mplc
import torch
from mask2former.data.datasets.register_ade20k_panoptic import ADE20K_150_CATEGORIES
from PIL import Image
from torch.cuda.amp import autocast
from detectron2.config import instantiate
from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from detectron2.evaluation import inference_context
from detectron2.utils.env import seed_all_rng
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import ColorMode, Visualizer as _Visualizer, random_color
from odise import model_zoo
from odise.checkpoint import ODISECheckpointer
from odise.config import instantiate_odise
from odise.data import get_openseg_labels
from odise.modeling.wrapper import OpenPanopticInference
setup_logger()
logger = setup_logger(name="odise")
COCO_THING_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("coco_panoptic", True))
if COCO_CATEGORIES[idx]["isthing"] == 1
]
COCO_THING_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 1]
COCO_STUFF_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("coco_panoptic", True))
if COCO_CATEGORIES[idx]["isthing"] == 0
]
COCO_STUFF_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 0]
ADE_THING_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("ade20k_150", True))
if ADE20K_150_CATEGORIES[idx]["isthing"] == 1
]
ADE_THING_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 1]
ADE_STUFF_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("ade20k_150", True))
if ADE20K_150_CATEGORIES[idx]["isthing"] == 0
]
ADE_STUFF_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 0]
LVIS_CLASSES = get_openseg_labels("lvis_1203", True)
# use beautiful coco colors
LVIS_COLORS = list(
itertools.islice(itertools.cycle([c["color"] for c in COCO_CATEGORIES]), len(LVIS_CLASSES))
)
class Visualizer(_Visualizer):
def draw_text(
self,
text,
position,
*,
font_size=None,
color="g",
horizontal_alignment="center",
rotation=0,
):
"""
Args:
text (str): class label
position (tuple): a tuple of the x and y coordinates to place text on image.
font_size (int, optional): font of the text. If not provided, a font size
proportional to the image width is calculated and used.
color: color of the text. Refer to `matplotlib.colors` for full list
of formats that are accepted.
horizontal_alignment (str): see `matplotlib.text.Text`
rotation: rotation angle in degrees CCW
Returns:
output (VisImage): image object with text drawn.
"""
if not font_size:
font_size = self._default_font_size
# since the text background is dark, we don't want the text to be dark
color = np.clip(color, 0, 1).tolist()
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
color[np.argmax(color)] = max(0.8, np.max(color))
x, y = position
self.output.ax.text(
x,
y,
text,
size=font_size * self.output.scale,
family="sans-serif",
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
verticalalignment="top",
horizontalalignment=horizontal_alignment,
color=color,
zorder=10,
rotation=rotation,
)
return self.output
class VisualizationDemo(object):
def __init__(self, model, metadata, aug, instance_mode=ColorMode.IMAGE):
"""
Args:
model (nn.Module):
metadata (MetadataCatalog): image metadata.
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.model = model
self.metadata = metadata
self.aug = aug
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
def predict(self, original_image):
"""
Args:
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
Returns:
predictions (dict):
the output of the model for one image only.
See :doc:`/tutorials/models` for details about the format.
"""
height, width = original_image.shape[:2]
aug_input = T.AugInput(original_image, sem_seg=None)
self.aug(aug_input)
image = aug_input.image
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
logger.info("forwarding")
with autocast():
predictions = self.model([inputs])[0]
logger.info("done")
return predictions
def run_on_image(self, image):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
vis_output = None
predictions = self.predict(image)
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output = visualizer.draw_panoptic_seg(
panoptic_seg.to(self.cpu_device), segments_info
)
else:
if "sem_seg" in predictions:
vis_output = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
if "instances" in predictions:
instances = predictions["instances"].to(self.cpu_device)
vis_output = visualizer.draw_instance_predictions(predictions=instances)
return predictions, vis_output
cfg = model_zoo.get_config("Panoptic/odise_label_coco_50e.py", trained=True)
cfg.model.overlap_threshold = 0
cfg.train.device = "cuda" if torch.cuda.is_available() else "cpu"
seed_all_rng(42)
dataset_cfg = cfg.dataloader.test
wrapper_cfg = cfg.dataloader.wrapper
aug = instantiate(dataset_cfg.mapper).augmentations
model = instantiate_odise(cfg.model)
model.to(torch.float16)
model.to(cfg.train.device)
ODISECheckpointer(model).load(cfg.train.init_checkpoint)
title = "ODISE"
description = """
<p style='text-align: center'> <a href='https://jerryxu.net/ODISE' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2303.04803' target='_blank'>Paper</a> | <a href='https://github.com/NVlabs/ODISE' target='_blank'>Code</a> | <a href='https://youtu.be/Su7p5KYmcII' target='_blank'>Video</a></p>
Gradio demo for ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models. \n
You may click on of the examples or upload your own image. \n
ODISE could perform open vocabulary segmentation, you may input more classes (separate by comma).
The expected format is 'a1,a2;b1,b2', where a1,a2 are synonyms vocabularies for the first class.
The first word will be displayed as the class name.
""" # noqa
article = """
<p style='text-align: center'><a href='https://arxiv.org/abs/2303.04803' target='_blank'>Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models</a> | <a href='https://github.com/NVlab/ODISE' target='_blank'>Github Repo</a></p>
""" # noqa
examples = [
[
"demo/examples/coco.jpg",
"black pickup truck, pickup truck; blue sky, sky",
["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
],
[
"demo/examples/ade.jpg",
"luggage, suitcase, baggage;handbag",
["ADE (150 categories)"],
],
[
"demo/examples/ego4d.jpg",
"faucet, tap; kitchen paper, paper towels",
["COCO (133 categories)"],
],
]
def build_demo_classes_and_metadata(vocab, label_list):
extra_classes = []
if vocab:
for words in vocab.split(";"):
extra_classes.append([word.strip() for word in words.split(",")])
extra_colors = [random_color(rgb=True, maximum=1) for _ in range(len(extra_classes))]
demo_thing_classes = extra_classes
demo_stuff_classes = []
demo_thing_colors = extra_colors
demo_stuff_colors = []
if any("COCO" in label for label in label_list):
demo_thing_classes += COCO_THING_CLASSES
demo_stuff_classes += COCO_STUFF_CLASSES
demo_thing_colors += COCO_THING_COLORS
demo_stuff_colors += COCO_STUFF_COLORS
if any("ADE" in label for label in label_list):
demo_thing_classes += ADE_THING_CLASSES
demo_stuff_classes += ADE_STUFF_CLASSES
demo_thing_colors += ADE_THING_COLORS
demo_stuff_colors += ADE_STUFF_COLORS
if any("LVIS" in label for label in label_list):
demo_thing_classes += LVIS_CLASSES
demo_thing_colors += LVIS_COLORS
MetadataCatalog.pop("odise_demo_metadata", None)
demo_metadata = MetadataCatalog.get("odise_demo_metadata")
demo_metadata.thing_classes = [c[0] for c in demo_thing_classes]
demo_metadata.stuff_classes = [
*demo_metadata.thing_classes,
*[c[0] for c in demo_stuff_classes],
]
demo_metadata.thing_colors = demo_thing_colors
demo_metadata.stuff_colors = demo_thing_colors + demo_stuff_colors
demo_metadata.stuff_dataset_id_to_contiguous_id = {
idx: idx for idx in range(len(demo_metadata.stuff_classes))
}
demo_metadata.thing_dataset_id_to_contiguous_id = {
idx: idx for idx in range(len(demo_metadata.thing_classes))
}
demo_classes = demo_thing_classes + demo_stuff_classes
return demo_classes, demo_metadata
def inference(image_path, vocab, label_list):
logger.info("building class names")
demo_classes, demo_metadata = build_demo_classes_and_metadata(vocab, label_list)
with ExitStack() as stack:
inference_model = OpenPanopticInference(
model=model,
labels=demo_classes,
metadata=demo_metadata,
semantic_on=False,
instance_on=False,
panoptic_on=True,
)
stack.enter_context(inference_context(inference_model))
stack.enter_context(torch.no_grad())
demo = VisualizationDemo(inference_model, demo_metadata, aug)
img = utils.read_image(image_path, format="RGB")
_, visualized_output = demo.run_on_image(img)
return Image.fromarray(visualized_output.get_image())
with gr.Blocks(title=title) as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
input_components = []
output_components = []
with gr.Row():
output_image_gr = gr.outputs.Image(label="Panoptic Segmentation", type="pil")
output_components.append(output_image_gr)
with gr.Row().style(equal_height=True, mobile_collapse=True):
with gr.Column(scale=3, variant="panel") as input_component_column:
input_image_gr = gr.inputs.Image(type="filepath")
extra_vocab_gr = gr.inputs.Textbox(default="", label="Extra Vocabulary")
category_list_gr = gr.inputs.CheckboxGroup(
choices=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
default=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
label="Category to use",
)
input_components.extend([input_image_gr, extra_vocab_gr, category_list_gr])
with gr.Column(scale=2):
examples_handler = gr.Examples(
examples=examples,
inputs=[c for c in input_components if not isinstance(c, gr.State)],
outputs=[c for c in output_components if not isinstance(c, gr.State)],
fn=inference,
cache_examples=torch.cuda.is_available(),
examples_per_page=5,
)
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
gr.Markdown(article)
submit_btn.click(
inference,
input_components,
output_components,
api_name="predict",
scroll_to_output=True,
)
clear_btn.click(
None,
[],
(input_components + output_components + [input_component_column]),
_js=f"""() => {json.dumps(
[component.cleared_value if hasattr(component, "cleared_value") else None
for component in input_components + output_components] + (
[gr.Column.update(visible=True)]
)
+ ([gr.Column.update(visible=False)])
)}
""",
)
demo.launch()
|