File size: 12,860 Bytes
ef9b1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878446
 
ef9b1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# ------------------------------------------------------------------------------
# Copyright (c) 2022-2023, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under the Nvidia Source Code License.
# To view a copy of this license, visit
# https://github.com/NVlabs/ODISE/blob/main/LICENSE
#
# Written by Jiarui Xu
# ------------------------------------------------------------------------------

import os
token = os.environ["GITHUB_TOKEN"]
os.system(f"pip install git+https://xvjiarui:{token}@github.com/xvjiarui/ODISE_NV.git")

import itertools
import json
from contextlib import ExitStack
import gradio as gr
import torch
from mask2former.data.datasets.register_ade20k_panoptic import ADE20K_150_CATEGORIES
from PIL import Image
from torch.cuda.amp import autocast

from detectron2.config import instantiate
from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from detectron2.evaluation import inference_context
from detectron2.utils.env import seed_all_rng
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import ColorMode, Visualizer, random_color

from odise import model_zoo
from odise.checkpoint import ODISECheckpointer
from odise.config import instantiate_odise
from odise.data import get_openseg_labels
from odise.modeling.wrapper import OpenPanopticInference
from odise.utils.file_io import ODISEHandler, PathManager
from odise.model_zoo.model_zoo import _ModelZooUrls

for k in ODISEHandler.URLS:
    ODISEHandler.URLS[k] = ODISEHandler.URLS[k].replace("https://github.com/NVlabs/ODISE/releases/download/v1.0.0/", "https://huggingface.co/xvjiarui/download_cache/resolve/main/torch/odise/")
PathManager.register_handler(ODISEHandler())
_ModelZooUrls.PREFIX = _ModelZooUrls.PREFIX.replace("https://github.com/NVlabs/ODISE/releases/download/v1.0.0/", "https://huggingface.co/xvjiarui/download_cache/resolve/main/torch/odise/")

setup_logger()
logger = setup_logger(name="odise")

COCO_THING_CLASSES = [
    label
    for idx, label in enumerate(get_openseg_labels("coco_panoptic", True))
    if COCO_CATEGORIES[idx]["isthing"] == 1
]
COCO_THING_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 1]
COCO_STUFF_CLASSES = [
    label
    for idx, label in enumerate(get_openseg_labels("coco_panoptic", True))
    if COCO_CATEGORIES[idx]["isthing"] == 0
]
COCO_STUFF_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 0]

ADE_THING_CLASSES = [
    label
    for idx, label in enumerate(get_openseg_labels("ade20k_150", True))
    if ADE20K_150_CATEGORIES[idx]["isthing"] == 1
]
ADE_THING_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 1]
ADE_STUFF_CLASSES = [
    label
    for idx, label in enumerate(get_openseg_labels("ade20k_150", True))
    if ADE20K_150_CATEGORIES[idx]["isthing"] == 0
]
ADE_STUFF_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 0]

LVIS_CLASSES = get_openseg_labels("lvis_1203", True)
# use beautiful coco colors
LVIS_COLORS = list(
    itertools.islice(itertools.cycle([c["color"] for c in COCO_CATEGORIES]), len(LVIS_CLASSES))
)


class VisualizationDemo(object):
    def __init__(self, model, metadata, aug, instance_mode=ColorMode.IMAGE):
        """
        Args:
            model (nn.Module):
            metadata (MetadataCatalog): image metadata.
            instance_mode (ColorMode):
            parallel (bool): whether to run the model in different processes from visualization.
                Useful since the visualization logic can be slow.
        """
        self.model = model
        self.metadata = metadata
        self.aug = aug
        self.cpu_device = torch.device("cpu")
        self.instance_mode = instance_mode

    def predict(self, original_image):
        """
        Args:
            original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).

        Returns:
            predictions (dict):
                the output of the model for one image only.
                See :doc:`/tutorials/models` for details about the format.
        """
        height, width = original_image.shape[:2]
        aug_input = T.AugInput(original_image, sem_seg=None)
        self.aug(aug_input)
        image = aug_input.image
        image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))

        inputs = {"image": image, "height": height, "width": width}
        logger.info("forwarding")
        with autocast():
            predictions = self.model([inputs])[0]
        logger.info("done")
        return predictions

    def run_on_image(self, image):
        """
        Args:
            image (np.ndarray): an image of shape (H, W, C) (in BGR order).
                This is the format used by OpenCV.
        Returns:
            predictions (dict): the output of the model.
            vis_output (VisImage): the visualized image output.
        """
        vis_output = None
        predictions = self.predict(image)
        visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
        if "panoptic_seg" in predictions:
            panoptic_seg, segments_info = predictions["panoptic_seg"]
            vis_output = visualizer.draw_panoptic_seg(
                panoptic_seg.to(self.cpu_device), segments_info
            )
        else:
            if "sem_seg" in predictions:
                vis_output = visualizer.draw_sem_seg(
                    predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
                )
            if "instances" in predictions:
                instances = predictions["instances"].to(self.cpu_device)
                vis_output = visualizer.draw_instance_predictions(predictions=instances)

        return predictions, vis_output


cfg = model_zoo.get_config("Panoptic/odise_label_coco_50e.py", trained=True)

cfg.model.overlap_threshold = 0
cfg.train.device = "cuda" if torch.cuda.is_available() else "cpu"
seed_all_rng(42)

dataset_cfg = cfg.dataloader.test
wrapper_cfg = cfg.dataloader.wrapper

aug = instantiate(dataset_cfg.mapper).augmentations

model = instantiate_odise(cfg.model)
model.to(torch.float16)
model.to(cfg.train.device)
ODISECheckpointer(model).load(cfg.train.init_checkpoint)


title = "ODISE"
description = """
<p style='text-align: center'> <a href='https://jerryxu.net/ODISE' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2303.04803' target='_blank'>Paper</a> | <a href='https://github.com/NVlabs/ODISE' target='_blank'>Code</a> | <a href='https://youtu.be/Su7p5KYmcII' target='_blank'>Video</a></p>

Gradio demo for ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models. \n
You may click on of the examples or upload your own image. \n

ODISE could perform open vocabulary segmentation, you may input more classes (separate by comma).
The expected format is 'a1,a2;b1,b2', where a1,a2 are synonyms vocabularies for the first class. 
The first word will be displayed as the class name.
"""  # noqa

article = """
<p style='text-align: center'><a href='https://arxiv.org/abs/2303.04803' target='_blank'>Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models</a> | <a href='https://github.com/NVlab/ODISE' target='_blank'>Github Repo</a></p>
"""  # noqa

examples = [
    [
        "demo/examples/coco.jpg",
        "black pickup truck, pickup truck; blue sky, sky",
        ["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
    ],
    [
        "demo/examples/ade.jpg",
        "luggage, suitcase, baggage;handbag",
        ["ADE (150 categories)"],
    ],
    [
        "demo/examples/ego4d.jpg",
        "faucet, tap; kitchen paper, paper towels",
        ["COCO (133 categories)"],
    ],
]


def build_demo_classes_and_metadata(vocab, label_list):
    extra_classes = []

    if vocab:
        for words in vocab.split(";"):
            extra_classes.append([word.strip() for word in words.split(",")])
    extra_colors = [random_color(rgb=True, maximum=1) for _ in range(len(extra_classes))]

    demo_thing_classes = extra_classes
    demo_stuff_classes = []
    demo_thing_colors = extra_colors
    demo_stuff_colors = []

    if any("COCO" in label for label in label_list):
        demo_thing_classes += COCO_THING_CLASSES
        demo_stuff_classes += COCO_STUFF_CLASSES
        demo_thing_colors += COCO_THING_COLORS
        demo_stuff_colors += COCO_STUFF_COLORS
    if any("ADE" in label for label in label_list):
        demo_thing_classes += ADE_THING_CLASSES
        demo_stuff_classes += ADE_STUFF_CLASSES
        demo_thing_colors += ADE_THING_COLORS
        demo_stuff_colors += ADE_STUFF_COLORS
    if any("LVIS" in label for label in label_list):
        demo_thing_classes += LVIS_CLASSES
        demo_thing_colors += LVIS_COLORS

    MetadataCatalog.pop("odise_demo_metadata", None)
    demo_metadata = MetadataCatalog.get("odise_demo_metadata")
    demo_metadata.thing_classes = [c[0] for c in demo_thing_classes]
    demo_metadata.stuff_classes = [
        *demo_metadata.thing_classes,
        *[c[0] for c in demo_stuff_classes],
    ]
    demo_metadata.thing_colors = demo_thing_colors
    demo_metadata.stuff_colors = demo_thing_colors + demo_stuff_colors
    demo_metadata.stuff_dataset_id_to_contiguous_id = {
        idx: idx for idx in range(len(demo_metadata.stuff_classes))
    }
    demo_metadata.thing_dataset_id_to_contiguous_id = {
        idx: idx for idx in range(len(demo_metadata.thing_classes))
    }

    demo_classes = demo_thing_classes + demo_stuff_classes

    return demo_classes, demo_metadata


def inference(image_path, vocab, label_list):

    logger.info("building class names")
    demo_classes, demo_metadata = build_demo_classes_and_metadata(vocab, label_list)
    with ExitStack() as stack:
        inference_model = OpenPanopticInference(
            model=model,
            labels=demo_classes,
            metadata=demo_metadata,
            semantic_on=False,
            instance_on=False,
            panoptic_on=True,
        )
        stack.enter_context(inference_context(inference_model))
        stack.enter_context(torch.no_grad())

        demo = VisualizationDemo(inference_model, demo_metadata, aug)
        img = utils.read_image(image_path, format="RGB")
        _, visualized_output = demo.run_on_image(img)
        return Image.fromarray(visualized_output.get_image())


with gr.Blocks(title=title) as demo:
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
    gr.Markdown(description)
    input_components = []
    output_components = []

    with gr.Row():
        output_image_gr = gr.outputs.Image(label="Panoptic Segmentation", type="pil")
        output_components.append(output_image_gr)

    with gr.Row().style(equal_height=True, mobile_collapse=True):
        with gr.Column(scale=3, variant="panel") as input_component_column:
            input_image_gr = gr.inputs.Image(type="filepath")
            extra_vocab_gr = gr.inputs.Textbox(default="", label="Extra Vocabulary")
            category_list_gr = gr.inputs.CheckboxGroup(
                choices=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
                default=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
                label="Category to use",
            )
            input_components.extend([input_image_gr, extra_vocab_gr, category_list_gr])

        with gr.Column(scale=2):
            examples_handler = gr.Examples(
                examples=examples,
                inputs=[c for c in input_components if not isinstance(c, gr.State)],
                outputs=[c for c in output_components if not isinstance(c, gr.State)],
                fn=inference,
                cache_examples=torch.cuda.is_available(),
                examples_per_page=5,
            )
            with gr.Row():
                clear_btn = gr.Button("Clear")
                submit_btn = gr.Button("Submit", variant="primary")

    gr.Markdown(article)

    submit_btn.click(
        inference,
        input_components,
        output_components,
        api_name="predict",
        scroll_to_output=True,
    )

    clear_btn.click(
        None,
        [],
        (input_components + output_components + [input_component_column]),
        _js=f"""() => {json.dumps(
                    [component.cleared_value if hasattr(component, "cleared_value") else None
                     for component in input_components + output_components] + (
                        [gr.Column.update(visible=True)]
                    )
                    + ([gr.Column.update(visible=False)])
                )}
                """,
    )

demo.launch()