Spaces:
Running
Running
File size: 2,353 Bytes
2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd 8b973ee 2673dcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import torch
import torch.nn as nn
import kornia
from types import SimpleNamespace
from .utils import ImagePreprocessor
class DISK(nn.Module):
default_conf = {
"weights": "depth",
"max_num_keypoints": None,
"desc_dim": 128,
"nms_window_size": 5,
"detection_threshold": 0.0,
"pad_if_not_divisible": True,
}
preprocess_conf = {
**ImagePreprocessor.default_conf,
"resize": 1024,
"grayscale": False,
}
required_data_keys = ["image"]
def __init__(self, **conf) -> None:
super().__init__()
self.conf = {**self.default_conf, **conf}
self.conf = SimpleNamespace(**self.conf)
self.model = kornia.feature.DISK.from_pretrained(self.conf.weights)
def forward(self, data: dict) -> dict:
"""Compute keypoints, scores, descriptors for image"""
for key in self.required_data_keys:
assert key in data, f"Missing key {key} in data"
image = data["image"]
features = self.model(
image,
n=self.conf.max_num_keypoints,
window_size=self.conf.nms_window_size,
score_threshold=self.conf.detection_threshold,
pad_if_not_divisible=self.conf.pad_if_not_divisible,
)
keypoints = [f.keypoints for f in features]
scores = [f.detection_scores for f in features]
descriptors = [f.descriptors for f in features]
del features
keypoints = torch.stack(keypoints, 0)
scores = torch.stack(scores, 0)
descriptors = torch.stack(descriptors, 0)
return {
"keypoints": keypoints.to(image),
"keypoint_scores": scores.to(image),
"descriptors": descriptors.to(image),
}
def extract(self, img: torch.Tensor, **conf) -> dict:
"""Perform extraction with online resizing"""
if img.dim() == 3:
img = img[None] # add batch dim
assert img.dim() == 4 and img.shape[0] == 1
shape = img.shape[-2:][::-1]
img, scales = ImagePreprocessor(**{**self.preprocess_conf, **conf})(img)
feats = self.forward({"image": img})
feats["image_size"] = torch.tensor(shape)[None].to(img).float()
feats["keypoints"] = (feats["keypoints"] + 0.5) / scales[None] - 0.5
return feats
|