File size: 25,831 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from parameterized import parameterized
from transformers.testing_utils import require_flax, require_tf, require_torch, require_vision
from transformers.utils.import_utils import is_flax_available, is_tf_available, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
if is_flax_available():
import jax
if is_vision_available():
import PIL.Image
from transformers.image_transforms import (
center_crop,
center_to_corners_format,
convert_to_rgb,
corners_to_center_format,
flip_channel_order,
get_resize_output_image_size,
id_to_rgb,
normalize,
pad,
resize,
rgb_to_id,
to_channel_dimension_format,
to_pil_image,
)
def get_random_image(height, width, num_channels=3, channels_first=True):
shape = (num_channels, height, width) if channels_first else (height, width, num_channels)
random_array = np.random.randint(0, 256, shape, dtype=np.uint8)
return random_array
@require_vision
class ImageTransformsTester(unittest.TestCase):
@parameterized.expand(
[
("numpy_float_channels_first", (3, 4, 5), np.float32),
("numpy_float_channels_last", (4, 5, 3), np.float32),
("numpy_float_channels_first", (3, 4, 5), np.float64),
("numpy_float_channels_last", (4, 5, 3), np.float64),
("numpy_int_channels_first", (3, 4, 5), np.int32),
("numpy_uint_channels_first", (3, 4, 5), np.uint8),
]
)
@require_vision
def test_to_pil_image(self, name, image_shape, dtype):
image = np.random.randint(0, 256, image_shape).astype(dtype)
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
# make sure image is correctly rescaled
self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0)
@parameterized.expand(
[
("numpy_float_channels_first", (3, 4, 5), np.float32),
("numpy_float_channels_first", (3, 4, 5), np.float64),
("numpy_float_channels_last", (4, 5, 3), np.float32),
("numpy_float_channels_last", (4, 5, 3), np.float64),
]
)
@require_vision
def test_to_pil_image_from_float(self, name, image_shape, dtype):
image = np.random.rand(*image_shape).astype(dtype)
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
# make sure image is correctly rescaled
self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0)
# Make sure that an exception is raised if image is not in [0, 1]
image = np.random.randn(*image_shape).astype(dtype)
with self.assertRaises(ValueError):
to_pil_image(image)
@require_vision
def test_to_pil_image_from_mask(self):
# Make sure binary mask remains a binary mask
image = np.random.randint(0, 2, (3, 4, 5)).astype(np.uint8)
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
np_img = np.asarray(pil_image)
self.assertTrue(np_img.min() == 0)
self.assertTrue(np_img.max() == 1)
image = np.random.randint(0, 2, (3, 4, 5)).astype(np.float32)
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
np_img = np.asarray(pil_image)
self.assertTrue(np_img.min() == 0)
self.assertTrue(np_img.max() == 1)
@require_tf
def test_to_pil_image_from_tensorflow(self):
# channels_first
image = tf.random.uniform((3, 4, 5))
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
# channels_last
image = tf.random.uniform((4, 5, 3))
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
@require_torch
def test_to_pil_image_from_torch(self):
# channels first
image = torch.rand((3, 4, 5))
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
# channels last
image = torch.rand((4, 5, 3))
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
@require_flax
def test_to_pil_image_from_jax(self):
key = jax.random.PRNGKey(0)
# channel first
image = jax.random.uniform(key, (3, 4, 5))
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
# channel last
image = jax.random.uniform(key, (4, 5, 3))
pil_image = to_pil_image(image)
self.assertIsInstance(pil_image, PIL.Image.Image)
self.assertEqual(pil_image.size, (5, 4))
def test_to_channel_dimension_format(self):
# Test that function doesn't reorder if channel dim matches the input.
image = np.random.rand(3, 4, 5)
image = to_channel_dimension_format(image, "channels_first")
self.assertEqual(image.shape, (3, 4, 5))
image = np.random.rand(4, 5, 3)
image = to_channel_dimension_format(image, "channels_last")
self.assertEqual(image.shape, (4, 5, 3))
# Test that function reorders if channel dim doesn't match the input.
image = np.random.rand(3, 4, 5)
image = to_channel_dimension_format(image, "channels_last")
self.assertEqual(image.shape, (4, 5, 3))
image = np.random.rand(4, 5, 3)
image = to_channel_dimension_format(image, "channels_first")
self.assertEqual(image.shape, (3, 4, 5))
# Can pass in input_data_format and works if data format is ambiguous or unknown.
image = np.random.rand(4, 5, 6)
image = to_channel_dimension_format(image, "channels_first", input_channel_dim="channels_last")
self.assertEqual(image.shape, (6, 4, 5))
def test_get_resize_output_image_size(self):
image = np.random.randint(0, 256, (3, 224, 224))
# Test the output size defaults to (x, x) if an int is given.
self.assertEqual(get_resize_output_image_size(image, 10), (10, 10))
self.assertEqual(get_resize_output_image_size(image, [10]), (10, 10))
self.assertEqual(get_resize_output_image_size(image, (10,)), (10, 10))
# Test the output size is the same as the input if a two element tuple/list is given.
self.assertEqual(get_resize_output_image_size(image, (10, 20)), (10, 20))
self.assertEqual(get_resize_output_image_size(image, [10, 20]), (10, 20))
self.assertEqual(get_resize_output_image_size(image, (10, 20), default_to_square=True), (10, 20))
# To match pytorch behaviour, max_size is only relevant if size is an int
self.assertEqual(get_resize_output_image_size(image, (10, 20), max_size=5), (10, 20))
# Test output size = (int(size * height / width), size) if size is an int and height > width
image = np.random.randint(0, 256, (3, 50, 40))
self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (25, 20))
# Test output size = (size, int(size * width / height)) if size is an int and width <= height
image = np.random.randint(0, 256, (3, 40, 50))
self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (20, 25))
# Test size is resized if longer size > max_size
image = np.random.randint(0, 256, (3, 50, 40))
self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False, max_size=22), (22, 17))
# Test output size = (int(size * height / width), size) if size is an int and height > width and
# input has 4 channels
image = np.random.randint(0, 256, (4, 50, 40))
self.assertEqual(
get_resize_output_image_size(image, 20, default_to_square=False, input_data_format="channels_first"),
(25, 20),
)
# Test correct channel dimension is returned if output size if height == 3
# Defaults to input format - channels first
image = np.random.randint(0, 256, (3, 18, 97))
resized_image = resize(image, (3, 20))
self.assertEqual(resized_image.shape, (3, 3, 20))
# Defaults to input format - channels last
image = np.random.randint(0, 256, (18, 97, 3))
resized_image = resize(image, (3, 20))
self.assertEqual(resized_image.shape, (3, 20, 3))
image = np.random.randint(0, 256, (3, 18, 97))
resized_image = resize(image, (3, 20), data_format="channels_last")
self.assertEqual(resized_image.shape, (3, 20, 3))
image = np.random.randint(0, 256, (18, 97, 3))
resized_image = resize(image, (3, 20), data_format="channels_first")
self.assertEqual(resized_image.shape, (3, 3, 20))
def test_resize(self):
image = np.random.randint(0, 256, (3, 224, 224))
# Check the channel order is the same by default
resized_image = resize(image, (30, 40))
self.assertIsInstance(resized_image, np.ndarray)
self.assertEqual(resized_image.shape, (3, 30, 40))
# Check channel order is changed if specified
resized_image = resize(image, (30, 40), data_format="channels_last")
self.assertIsInstance(resized_image, np.ndarray)
self.assertEqual(resized_image.shape, (30, 40, 3))
# Check PIL.Image.Image is returned if return_numpy=False
resized_image = resize(image, (30, 40), return_numpy=False)
self.assertIsInstance(resized_image, PIL.Image.Image)
# PIL size is in (width, height) order
self.assertEqual(resized_image.size, (40, 30))
# Check an image with float values between 0-1 is returned with values in this range
image = np.random.rand(3, 224, 224)
resized_image = resize(image, (30, 40))
self.assertIsInstance(resized_image, np.ndarray)
self.assertEqual(resized_image.shape, (3, 30, 40))
self.assertTrue(np.all(resized_image >= 0))
self.assertTrue(np.all(resized_image <= 1))
# Check that an image with 4 channels is resized correctly
image = np.random.randint(0, 256, (4, 224, 224))
resized_image = resize(image, (30, 40), input_data_format="channels_first")
self.assertIsInstance(resized_image, np.ndarray)
self.assertEqual(resized_image.shape, (4, 30, 40))
def test_normalize(self):
image = np.random.randint(0, 256, (224, 224, 3)) / 255
# Test that exception is raised if inputs are incorrect
# Not a numpy array image
with self.assertRaises(ValueError):
normalize(5, 5, 5)
# Number of mean values != number of channels
with self.assertRaises(ValueError):
normalize(image, mean=(0.5, 0.6), std=1)
# Number of std values != number of channels
with self.assertRaises(ValueError):
normalize(image, mean=1, std=(0.5, 0.6))
# Test result is correct - output data format is channels_first and normalization
# correctly computed
mean = (0.5, 0.6, 0.7)
std = (0.1, 0.2, 0.3)
expected_image = ((image - mean) / std).transpose((2, 0, 1))
normalized_image = normalize(image, mean=mean, std=std, data_format="channels_first")
self.assertIsInstance(normalized_image, np.ndarray)
self.assertEqual(normalized_image.shape, (3, 224, 224))
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6))
# Test image with 4 channels is normalized correctly
image = np.random.randint(0, 256, (224, 224, 4)) / 255
mean = (0.5, 0.6, 0.7, 0.8)
std = (0.1, 0.2, 0.3, 0.4)
expected_image = (image - mean) / std
self.assertTrue(
np.allclose(
normalize(image, mean=mean, std=std, input_data_format="channels_last"), expected_image, atol=1e-6
)
)
# Test float32 image input keeps float32 dtype
image = np.random.randint(0, 256, (224, 224, 3)).astype(np.float32) / 255
mean = (0.5, 0.6, 0.7)
std = (0.1, 0.2, 0.3)
expected_image = ((image - mean) / std).astype(np.float32)
normalized_image = normalize(image, mean=mean, std=std)
self.assertEqual(normalized_image.dtype, np.float32)
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6))
# Test float16 image input keeps float16 dtype
image = np.random.randint(0, 256, (224, 224, 3)).astype(np.float16) / 255
mean = (0.5, 0.6, 0.7)
std = (0.1, 0.2, 0.3)
# The mean and std are cast to match the dtype of the input image
cast_mean = np.array(mean, dtype=np.float16)
cast_std = np.array(std, dtype=np.float16)
expected_image = (image - cast_mean) / cast_std
normalized_image = normalize(image, mean=mean, std=std)
self.assertEqual(normalized_image.dtype, np.float16)
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6))
# Test int image input is converted to float32
image = np.random.randint(0, 2, (224, 224, 3), dtype=np.uint8)
mean = (0.5, 0.6, 0.7)
std = (0.1, 0.2, 0.3)
expected_image = (image.astype(np.float32) - mean) / std
normalized_image = normalize(image, mean=mean, std=std)
self.assertEqual(normalized_image.dtype, np.float32)
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6))
def test_center_crop(self):
image = np.random.randint(0, 256, (3, 224, 224))
# Test that exception is raised if inputs are incorrect
with self.assertRaises(ValueError):
center_crop(image, 10)
# Test result is correct - output data format is channels_first and center crop
# correctly computed
expected_image = image[:, 52:172, 82:142].transpose(1, 2, 0)
cropped_image = center_crop(image, (120, 60), data_format="channels_last")
self.assertIsInstance(cropped_image, np.ndarray)
self.assertEqual(cropped_image.shape, (120, 60, 3))
self.assertTrue(np.allclose(cropped_image, expected_image))
# Test that image is padded with zeros if crop size is larger than image size
expected_image = np.zeros((300, 260, 3))
expected_image[38:262, 18:242, :] = image.transpose((1, 2, 0))
cropped_image = center_crop(image, (300, 260), data_format="channels_last")
self.assertIsInstance(cropped_image, np.ndarray)
self.assertEqual(cropped_image.shape, (300, 260, 3))
self.assertTrue(np.allclose(cropped_image, expected_image))
# Test image with 4 channels is cropped correctly
image = np.random.randint(0, 256, (224, 224, 4))
expected_image = image[52:172, 82:142, :]
self.assertTrue(np.allclose(center_crop(image, (120, 60), input_data_format="channels_last"), expected_image))
def test_center_to_corners_format(self):
bbox_center = np.array([[10, 20, 4, 8], [15, 16, 3, 4]])
expected = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]])
self.assertTrue(np.allclose(center_to_corners_format(bbox_center), expected))
# Check that the function and inverse function are inverse of each other
self.assertTrue(np.allclose(corners_to_center_format(center_to_corners_format(bbox_center)), bbox_center))
def test_corners_to_center_format(self):
bbox_corners = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]])
expected = np.array([[10, 20, 4, 8], [15, 16, 3, 4]])
self.assertTrue(np.allclose(corners_to_center_format(bbox_corners), expected))
# Check that the function and inverse function are inverse of each other
self.assertTrue(np.allclose(center_to_corners_format(corners_to_center_format(bbox_corners)), bbox_corners))
def test_rgb_to_id(self):
# test list input
rgb = [125, 4, 255]
self.assertEqual(rgb_to_id(rgb), 16712829)
# test numpy array input
color = np.array(
[
[
[213, 54, 165],
[88, 207, 39],
[156, 108, 128],
],
[
[183, 194, 46],
[137, 58, 88],
[114, 131, 233],
],
]
)
expected = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]])
self.assertTrue(np.allclose(rgb_to_id(color), expected))
def test_id_to_rgb(self):
# test int input
self.assertEqual(id_to_rgb(16712829), [125, 4, 255])
# test array input
id_array = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]])
color = np.array(
[
[
[213, 54, 165],
[88, 207, 39],
[156, 108, 128],
],
[
[183, 194, 46],
[137, 58, 88],
[114, 131, 233],
],
]
)
self.assertTrue(np.allclose(id_to_rgb(id_array), color))
def test_pad(self):
# fmt: off
image = np.array([[
[0, 1],
[2, 3],
]])
# fmt: on
# Test that exception is raised if unknown padding mode is specified
with self.assertRaises(ValueError):
pad(image, 10, mode="unknown")
# Test that exception is raised if invalid padding is specified
with self.assertRaises(ValueError):
# Cannot pad on channel dimension
pad(image, (5, 10, 10))
# Test image is padded equally on all sides is padding is an int
# fmt: off
expected_image = np.array([
[[0, 0, 0, 0],
[0, 0, 1, 0],
[0, 2, 3, 0],
[0, 0, 0, 0]],
])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, 1)))
# Test the left and right of each axis is padded (pad_left, pad_right)
# fmt: off
expected_image = np.array(
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 2, 3, 0],
[0, 0, 0, 0, 0]])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, (2, 1))))
# Test only one axis is padded (pad_left, pad_right)
# fmt: off
expected_image = np.array([[
[9, 9],
[9, 9],
[0, 1],
[2, 3],
[9, 9]
]])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, ((2, 1), (0, 0)), constant_values=9)))
# Test padding with a constant value
# fmt: off
expected_image = np.array([[
[8, 8, 0, 1, 9],
[8, 8, 2, 3, 9],
[8, 8, 7, 7, 9],
[8, 8, 7, 7, 9]
]])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), constant_values=((6, 7), (8, 9)))))
# fmt: off
image = np.array([[
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
]])
# fmt: on
# Test padding with PaddingMode.REFLECT
# fmt: off
expected_image = np.array([[
[2, 1, 0, 1, 2, 1],
[5, 4, 3, 4, 5, 4],
[8, 7, 6, 7, 8, 7],
[5, 4, 3, 4, 5, 4],
[2, 1, 0, 1, 2, 1],
]])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect")))
# Test padding with PaddingMode.REPLICATE
# fmt: off
expected_image = np.array([[
[0, 0, 0, 1, 2, 2],
[3, 3, 3, 4, 5, 5],
[6, 6, 6, 7, 8, 8],
[6, 6, 6, 7, 8, 8],
[6, 6, 6, 7, 8, 8],
]])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="replicate")))
# Test padding with PaddingMode.SYMMETRIC
# fmt: off
expected_image = np.array([[
[1, 0, 0, 1, 2, 2],
[4, 3, 3, 4, 5, 5],
[7, 6, 6, 7, 8, 8],
[7, 6, 6, 7, 8, 8],
[4, 3, 3, 4, 5, 5],
]])
# fmt: on
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="symmetric")))
# Test we can specify the output data format
# Test padding with PaddingMode.REFLECT
# fmt: off
image = np.array([[
[0, 1],
[2, 3],
]])
expected_image = np.array([
[[0], [1], [0], [1], [0]],
[[2], [3], [2], [3], [2]],
[[0], [1], [0], [1], [0]],
[[2], [3], [2], [3], [2]]
])
# fmt: on
self.assertTrue(
np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect", data_format="channels_last"))
)
# Test we can pad on an image with 2 channels
# fmt: off
image = np.array([
[[0, 1], [2, 3]],
])
expected_image = np.array([
[[0, 0], [0, 1], [2, 3]],
[[0, 0], [0, 0], [0, 0]],
])
# fmt: on
self.assertTrue(
np.allclose(
expected_image, pad(image, ((0, 1), (1, 0)), mode="constant", input_data_format="channels_last")
)
)
@require_vision
def test_convert_to_rgb(self):
# Test that an RGBA image is converted to RGB
image = np.array([[[1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.uint8)
pil_image = PIL.Image.fromarray(image)
self.assertEqual(pil_image.mode, "RGBA")
self.assertEqual(pil_image.size, (2, 1))
# For the moment, numpy images are returned as is
rgb_image = convert_to_rgb(image)
self.assertEqual(rgb_image.shape, (1, 2, 4))
self.assertTrue(np.allclose(rgb_image, image))
# And PIL images are converted
rgb_image = convert_to_rgb(pil_image)
self.assertEqual(rgb_image.mode, "RGB")
self.assertEqual(rgb_image.size, (2, 1))
self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[1, 2, 3], [5, 6, 7]]], dtype=np.uint8)))
# Test that a grayscale image is converted to RGB
image = np.array([[0, 255]], dtype=np.uint8)
pil_image = PIL.Image.fromarray(image)
self.assertEqual(pil_image.mode, "L")
self.assertEqual(pil_image.size, (2, 1))
rgb_image = convert_to_rgb(pil_image)
self.assertEqual(rgb_image.mode, "RGB")
self.assertEqual(rgb_image.size, (2, 1))
self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[0, 0, 0], [255, 255, 255]]], dtype=np.uint8)))
def test_flip_channel_order(self):
# fmt: off
img_channels_first = np.array([
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]],
[[16, 17, 18, 19],
[20, 21, 22, 23]],
])
# fmt: on
img_channels_last = np.moveaxis(img_channels_first, 0, -1)
# fmt: off
flipped_img_channels_first = np.array([
[[16, 17, 18, 19],
[20, 21, 22, 23]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]],
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
])
# fmt: on
flipped_img_channels_last = np.moveaxis(flipped_img_channels_first, 0, -1)
self.assertTrue(np.allclose(flip_channel_order(img_channels_first), flipped_img_channels_first))
self.assertTrue(
np.allclose(flip_channel_order(img_channels_first, "channels_last"), flipped_img_channels_last)
)
self.assertTrue(np.allclose(flip_channel_order(img_channels_last), flipped_img_channels_last))
self.assertTrue(
np.allclose(flip_channel_order(img_channels_last, "channels_first"), flipped_img_channels_first)
)
# Can flip when the image has 2 channels
# fmt: off
img_channels_first = np.array([
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]],
])
# fmt: on
flipped_img_channels_first = img_channels_first[::-1, :, :]
self.assertTrue(
np.allclose(
flip_channel_order(img_channels_first, input_data_format="channels_first"), flipped_img_channels_first
)
)
|