File size: 1,032 Bytes
1dcb774 7b2b521 c3a93d7 3e5e444 3e8c89d b24a576 3a822a2 3551b07 97b6b14 c4862fc fa8f1fb 3e5e444 7433d38 1e84a23 c3a93d7 e5b0200 ca290dc c3a93d7 97b6b14 2993c3f 7b2b521 c3a93d7 95c7bc2 7b2b521 c3a93d7 980aace 2993c3f ef0b5c9 2993c3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
# YOLOv5 requirements # Usage: pip install -r requirements.txt # Base ---------------------------------------- matplotlib>=3.2.2 numpy>=1.18.5 opencv-python>=4.1.1 Pillow>=7.1.2 PyYAML>=5.3.1 requests>=2.23.0 scipy>=1.4.1 # Google Colab version torch>=1.7.0 torchvision>=0.8.1 tqdm>=4.41.0 protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012 # Logging ------------------------------------- tensorboard>=2.4.1 # wandb # Plotting ------------------------------------ pandas>=1.1.4 seaborn>=0.11.0 # Export -------------------------------------- # coremltools>=4.1 # CoreML export # onnx>=1.9.0 # ONNX export # onnx-simplifier>=0.3.6 # ONNX simplifier # scikit-learn==0.19.2 # CoreML quantization # tensorflow>=2.4.1 # TFLite export # tensorflowjs>=3.9.0 # TF.js export # openvino-dev # OpenVINO export # Extras -------------------------------------- ipython # interactive notebook psutil # system utilization thop # FLOPs computation # albumentations>=1.0.3 # pycocotools>=2.0 # COCO mAP # roboflow |