Add TensorFlow formats to `export.py` (#4479)
Browse files* Initial commit
* Remove unused export_torchscript return
* ROOT variable
* Add prefix to fcn arg
* fix ROOT
* check_yaml into run()
* interim fixes
* imgsz=(320, 320)
* Hardcode tf_raw_resize False
* Finish opt elimination
* Update representative_dataset_gen()
* Update export.py with TF methods
* SiLU and GraphDef fixes
* file_size() directory handling feature
* export fixes
* add lambda: to representative_dataset
* Detect training False default
* Fuse false for TF models
* Embed agnostic NMS arguments
* Remove lambda
* TensorFlow.js export success
* Add pb to Usage
* Add *_tfjs_model/ to ignore files
* prepend YOLOv5 to function headers
* Remove end --- comments
* parameterize tfjs export pb file
* update run() data default /ROOT
* update --include help
* update imports
* return ct_model
* Consolidate TFLite export
* pb prerequisite to tfjs
* TF modules CamelCase
* Remove exports from tf.py and cleanup
* pass agnostic NMS arguments
* CI
* CI
* ignore *_web_model/
* Add tensorflow to CI dependencies
* CI tensorflow-cpu
* Update requirements.txt
* Remove tensorflow check_requirement
* CI coreml tfjs
* export only onnx torchscript
* reorder exports torchscript first
- .dockerignore +1 -0
- .github/workflows/ci-testing.yml +4 -3
- .gitignore +1 -0
- detect.py +1 -1
- export.py +178 -41
- models/tf.py +161 -272
- requirements.txt +11 -9
- utils/general.py +9 -3
@@ -22,6 +22,7 @@ data/samples/*
|
|
22 |
**/*.h5
|
23 |
**/*.pb
|
24 |
*_saved_model/
|
|
|
25 |
|
26 |
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
27 |
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
|
|
22 |
**/*.h5
|
23 |
**/*.pb
|
24 |
*_saved_model/
|
25 |
+
*_web_model/
|
26 |
|
27 |
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
28 |
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
@@ -48,7 +48,7 @@ jobs:
|
|
48 |
run: |
|
49 |
python -m pip install --upgrade pip
|
50 |
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
51 |
-
pip install -q onnx
|
52 |
python --version
|
53 |
pip --version
|
54 |
pip list
|
@@ -75,6 +75,7 @@ jobs:
|
|
75 |
python val.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di
|
76 |
|
77 |
python hubconf.py # hub
|
78 |
-
python models/yolo.py --cfg ${{ matrix.model }}.yaml #
|
79 |
-
python
|
|
|
80 |
shell: bash
|
|
|
48 |
run: |
|
49 |
python -m pip install --upgrade pip
|
50 |
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
51 |
+
pip install -q onnx tensorflow-cpu # for export
|
52 |
python --version
|
53 |
pip --version
|
54 |
pip list
|
|
|
75 |
python val.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di
|
76 |
|
77 |
python hubconf.py # hub
|
78 |
+
python models/yolo.py --cfg ${{ matrix.model }}.yaml # build PyTorch model
|
79 |
+
python models/tf.py --weights ${{ matrix.model }}.pt # build TensorFlow model
|
80 |
+
python export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt --include torchscript onnx # export
|
81 |
shell: bash
|
@@ -52,6 +52,7 @@ VOC/
|
|
52 |
*.tflite
|
53 |
*.h5
|
54 |
*_saved_model/
|
|
|
55 |
darknet53.conv.74
|
56 |
yolov3-tiny.conv.15
|
57 |
|
|
|
52 |
*.tflite
|
53 |
*.h5
|
54 |
*_saved_model/
|
55 |
+
*_web_model/
|
56 |
darknet53.conv.74
|
57 |
yolov3-tiny.conv.15
|
58 |
|
@@ -253,7 +253,7 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|
253 |
|
254 |
def parse_opt():
|
255 |
parser = argparse.ArgumentParser()
|
256 |
-
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model
|
257 |
parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
|
258 |
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
259 |
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
|
|
253 |
|
254 |
def parse_opt():
|
255 |
parser = argparse.ArgumentParser()
|
256 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model path(s)')
|
257 |
parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
|
258 |
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
259 |
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
@@ -1,12 +1,28 @@
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
"""
|
3 |
-
Export a PyTorch model to TorchScript, ONNX, CoreML formats
|
|
|
4 |
|
5 |
Usage:
|
6 |
-
$ python path/to/export.py --weights yolov5s.pt --
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"""
|
8 |
|
9 |
import argparse
|
|
|
10 |
import sys
|
11 |
import time
|
12 |
from pathlib import Path
|
@@ -16,40 +32,42 @@ import torch.nn as nn
|
|
16 |
from torch.utils.mobile_optimizer import optimize_for_mobile
|
17 |
|
18 |
FILE = Path(__file__).resolve()
|
19 |
-
|
|
|
20 |
|
21 |
from models.common import Conv
|
22 |
-
from models.yolo import Detect
|
23 |
from models.experimental import attempt_load
|
24 |
-
from
|
25 |
-
from utils.
|
|
|
|
|
26 |
from utils.torch_utils import select_device
|
27 |
|
28 |
|
29 |
-
def export_torchscript(model,
|
30 |
-
# TorchScript model export
|
31 |
-
prefix = colorstr('TorchScript:')
|
32 |
try:
|
33 |
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
34 |
f = file.with_suffix('.torchscript.pt')
|
35 |
-
|
|
|
36 |
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
|
|
37 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
38 |
-
return ts
|
39 |
except Exception as e:
|
40 |
print(f'{prefix} export failure: {e}')
|
41 |
|
42 |
|
43 |
-
def export_onnx(model,
|
44 |
-
# ONNX
|
45 |
-
prefix = colorstr('ONNX:')
|
46 |
try:
|
47 |
check_requirements(('onnx',))
|
48 |
import onnx
|
49 |
|
50 |
print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
51 |
f = file.with_suffix('.onnx')
|
52 |
-
|
|
|
53 |
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
54 |
do_constant_folding=not train,
|
55 |
input_names=['images'],
|
@@ -73,7 +91,7 @@ def export_onnx(model, img, file, opset, train, dynamic, simplify):
|
|
73 |
model_onnx, check = onnxsim.simplify(
|
74 |
model_onnx,
|
75 |
dynamic_input_shape=dynamic,
|
76 |
-
input_shapes={'images': list(
|
77 |
assert check, 'assert check failed'
|
78 |
onnx.save(model_onnx, f)
|
79 |
except Exception as e:
|
@@ -84,26 +102,131 @@ def export_onnx(model, img, file, opset, train, dynamic, simplify):
|
|
84 |
print(f'{prefix} export failure: {e}')
|
85 |
|
86 |
|
87 |
-
def export_coreml(model,
|
88 |
-
# CoreML
|
89 |
-
|
90 |
try:
|
91 |
check_requirements(('coremltools',))
|
92 |
import coremltools as ct
|
93 |
|
94 |
print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
95 |
f = file.with_suffix('.mlmodel')
|
|
|
96 |
model.train() # CoreML exports should be placed in model.train() mode
|
97 |
-
ts = torch.jit.trace(model,
|
98 |
-
|
99 |
-
|
|
|
100 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
101 |
except Exception as e:
|
102 |
print(f'\n{prefix} export failure: {e}')
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
batch_size=1, # batch size
|
108 |
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
109 |
include=('torchscript', 'onnx', 'coreml'), # include formats
|
@@ -117,29 +240,28 @@ def run(weights='./yolov5s.pt', # weights path
|
|
117 |
):
|
118 |
t = time.time()
|
119 |
include = [x.lower() for x in include]
|
120 |
-
|
|
|
121 |
file = Path(weights)
|
122 |
|
123 |
# Load PyTorch model
|
124 |
device = select_device(device)
|
125 |
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
126 |
-
model = attempt_load(weights, map_location=device) # load FP32 model
|
127 |
-
names = model.names
|
128 |
|
129 |
# Input
|
130 |
gs = int(max(model.stride)) # grid size (max stride)
|
131 |
-
|
132 |
-
|
133 |
|
134 |
# Update model
|
135 |
if half:
|
136 |
-
|
137 |
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
138 |
for k, m in model.named_modules():
|
139 |
if isinstance(m, Conv): # assign export-friendly activations
|
140 |
-
if isinstance(m.act, nn.
|
141 |
-
m.act = Hardswish()
|
142 |
-
elif isinstance(m.act, nn.SiLU):
|
143 |
m.act = SiLU()
|
144 |
elif isinstance(m, Detect):
|
145 |
m.inplace = inplace
|
@@ -147,16 +269,28 @@ def run(weights='./yolov5s.pt', # weights path
|
|
147 |
# m.forward = m.forward_export # assign forward (optional)
|
148 |
|
149 |
for _ in range(2):
|
150 |
-
y = model(
|
151 |
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
152 |
|
153 |
# Exports
|
154 |
if 'torchscript' in include:
|
155 |
-
export_torchscript(model,
|
156 |
if 'onnx' in include:
|
157 |
-
export_onnx(model,
|
158 |
if 'coreml' in include:
|
159 |
-
export_coreml(model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
# Finish
|
162 |
print(f'\nExport complete ({time.time() - t:.2f}s)'
|
@@ -166,18 +300,21 @@ def run(weights='./yolov5s.pt', # weights path
|
|
166 |
|
167 |
def parse_opt():
|
168 |
parser = argparse.ArgumentParser()
|
169 |
-
parser.add_argument('--
|
170 |
-
parser.add_argument('--
|
|
|
171 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
172 |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
173 |
-
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
|
174 |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
175 |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
176 |
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
177 |
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
178 |
-
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
|
179 |
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
180 |
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
|
|
|
|
|
|
|
181 |
opt = parser.parse_args()
|
182 |
return opt
|
183 |
|
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
"""
|
3 |
+
Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
|
4 |
+
TensorFlow exports authored by https://github.com/zldrobit
|
5 |
|
6 |
Usage:
|
7 |
+
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs
|
8 |
+
|
9 |
+
Inference:
|
10 |
+
$ python path/to/detect.py --weights yolov5s.pt
|
11 |
+
yolov5s.onnx (must export with --dynamic)
|
12 |
+
yolov5s_saved_model
|
13 |
+
yolov5s.pb
|
14 |
+
yolov5s.tflite
|
15 |
+
|
16 |
+
TensorFlow.js:
|
17 |
+
$ # Edit yolov5s_web_model/model.json to sort Identity* in ascending order
|
18 |
+
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
19 |
+
$ npm install
|
20 |
+
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
21 |
+
$ npm start
|
22 |
"""
|
23 |
|
24 |
import argparse
|
25 |
+
import subprocess
|
26 |
import sys
|
27 |
import time
|
28 |
from pathlib import Path
|
|
|
32 |
from torch.utils.mobile_optimizer import optimize_for_mobile
|
33 |
|
34 |
FILE = Path(__file__).resolve()
|
35 |
+
ROOT = FILE.parents[0] # yolov5/ dir
|
36 |
+
sys.path.append(ROOT.as_posix()) # add yolov5/ to path
|
37 |
|
38 |
from models.common import Conv
|
|
|
39 |
from models.experimental import attempt_load
|
40 |
+
from models.yolo import Detect
|
41 |
+
from utils.activations import SiLU
|
42 |
+
from utils.datasets import LoadImages
|
43 |
+
from utils.general import colorstr, check_dataset, check_img_size, check_requirements, file_size, set_logging
|
44 |
from utils.torch_utils import select_device
|
45 |
|
46 |
|
47 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
48 |
+
# YOLOv5 TorchScript model export
|
|
|
49 |
try:
|
50 |
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
51 |
f = file.with_suffix('.torchscript.pt')
|
52 |
+
|
53 |
+
ts = torch.jit.trace(model, im, strict=False)
|
54 |
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
55 |
+
|
56 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
|
57 |
except Exception as e:
|
58 |
print(f'{prefix} export failure: {e}')
|
59 |
|
60 |
|
61 |
+
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
62 |
+
# YOLOv5 ONNX export
|
|
|
63 |
try:
|
64 |
check_requirements(('onnx',))
|
65 |
import onnx
|
66 |
|
67 |
print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
68 |
f = file.with_suffix('.onnx')
|
69 |
+
|
70 |
+
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
|
71 |
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
72 |
do_constant_folding=not train,
|
73 |
input_names=['images'],
|
|
|
91 |
model_onnx, check = onnxsim.simplify(
|
92 |
model_onnx,
|
93 |
dynamic_input_shape=dynamic,
|
94 |
+
input_shapes={'images': list(im.shape)} if dynamic else None)
|
95 |
assert check, 'assert check failed'
|
96 |
onnx.save(model_onnx, f)
|
97 |
except Exception as e:
|
|
|
102 |
print(f'{prefix} export failure: {e}')
|
103 |
|
104 |
|
105 |
+
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
106 |
+
# YOLOv5 CoreML export
|
107 |
+
ct_model = None
|
108 |
try:
|
109 |
check_requirements(('coremltools',))
|
110 |
import coremltools as ct
|
111 |
|
112 |
print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
113 |
f = file.with_suffix('.mlmodel')
|
114 |
+
|
115 |
model.train() # CoreML exports should be placed in model.train() mode
|
116 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
117 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
118 |
+
ct_model.save(f)
|
119 |
+
|
120 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
121 |
except Exception as e:
|
122 |
print(f'\n{prefix} export failure: {e}')
|
123 |
|
124 |
+
return ct_model
|
125 |
+
|
126 |
+
|
127 |
+
def export_saved_model(model, im, file, dynamic,
|
128 |
+
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
129 |
+
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
|
130 |
+
# YOLOv5 TensorFlow saved_model export
|
131 |
+
keras_model = None
|
132 |
+
try:
|
133 |
+
import tensorflow as tf
|
134 |
+
from tensorflow import keras
|
135 |
+
from models.tf import TFModel, TFDetect
|
136 |
+
|
137 |
+
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
138 |
+
f = str(file).replace('.pt', '_saved_model')
|
139 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
140 |
|
141 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
142 |
+
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
|
143 |
+
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
144 |
+
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
145 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
146 |
+
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
147 |
+
keras_model.summary()
|
148 |
+
keras_model.save(f, save_format='tf')
|
149 |
+
|
150 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
151 |
+
except Exception as e:
|
152 |
+
print(f'\n{prefix} export failure: {e}')
|
153 |
+
|
154 |
+
return keras_model
|
155 |
+
|
156 |
+
|
157 |
+
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
158 |
+
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
159 |
+
try:
|
160 |
+
import tensorflow as tf
|
161 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
162 |
+
|
163 |
+
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
164 |
+
f = file.with_suffix('.pb')
|
165 |
+
|
166 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
167 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
168 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
169 |
+
frozen_func.graph.as_graph_def()
|
170 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
171 |
+
|
172 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
173 |
+
except Exception as e:
|
174 |
+
print(f'\n{prefix} export failure: {e}')
|
175 |
+
|
176 |
+
|
177 |
+
def export_tflite(keras_model, im, file, tfl_int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
|
178 |
+
# YOLOv5 TensorFlow Lite export
|
179 |
+
try:
|
180 |
+
import tensorflow as tf
|
181 |
+
from models.tf import representative_dataset_gen
|
182 |
+
|
183 |
+
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
184 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
185 |
+
f = file.with_suffix('.tflite')
|
186 |
+
|
187 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
188 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
189 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
190 |
+
if tfl_int8:
|
191 |
+
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
192 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
193 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
194 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
195 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
196 |
+
converter.experimental_new_quantizer = False
|
197 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
198 |
+
|
199 |
+
tflite_model = converter.convert()
|
200 |
+
open(f, "wb").write(tflite_model)
|
201 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
print(f'\n{prefix} export failure: {e}')
|
205 |
+
|
206 |
+
|
207 |
+
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
208 |
+
# YOLOv5 TensorFlow.js export
|
209 |
+
try:
|
210 |
+
check_requirements(('tensorflowjs',))
|
211 |
+
import tensorflowjs as tfjs
|
212 |
+
|
213 |
+
print(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
214 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
215 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
216 |
+
|
217 |
+
cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
|
218 |
+
f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
|
219 |
+
subprocess.run(cmd, shell=True)
|
220 |
+
|
221 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
222 |
+
except Exception as e:
|
223 |
+
print(f'\n{prefix} export failure: {e}')
|
224 |
+
|
225 |
+
|
226 |
+
@torch.no_grad()
|
227 |
+
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
228 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
229 |
+
imgsz=(640, 640), # image (height, width)
|
230 |
batch_size=1, # batch size
|
231 |
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
232 |
include=('torchscript', 'onnx', 'coreml'), # include formats
|
|
|
240 |
):
|
241 |
t = time.time()
|
242 |
include = [x.lower() for x in include]
|
243 |
+
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
|
244 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
245 |
file = Path(weights)
|
246 |
|
247 |
# Load PyTorch model
|
248 |
device = select_device(device)
|
249 |
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
250 |
+
model = attempt_load(weights, map_location=device, inplace=True, fuse=not any(tf_exports)) # load FP32 model
|
251 |
+
nc, names = model.nc, model.names # number of classes, class names
|
252 |
|
253 |
# Input
|
254 |
gs = int(max(model.stride)) # grid size (max stride)
|
255 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
256 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
257 |
|
258 |
# Update model
|
259 |
if half:
|
260 |
+
im, model = im.half(), model.half() # to FP16
|
261 |
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
262 |
for k, m in model.named_modules():
|
263 |
if isinstance(m, Conv): # assign export-friendly activations
|
264 |
+
if isinstance(m.act, nn.SiLU):
|
|
|
|
|
265 |
m.act = SiLU()
|
266 |
elif isinstance(m, Detect):
|
267 |
m.inplace = inplace
|
|
|
269 |
# m.forward = m.forward_export # assign forward (optional)
|
270 |
|
271 |
for _ in range(2):
|
272 |
+
y = model(im) # dry runs
|
273 |
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
274 |
|
275 |
# Exports
|
276 |
if 'torchscript' in include:
|
277 |
+
export_torchscript(model, im, file, optimize)
|
278 |
if 'onnx' in include:
|
279 |
+
export_onnx(model, im, file, opset, train, dynamic, simplify)
|
280 |
if 'coreml' in include:
|
281 |
+
export_coreml(model, im, file)
|
282 |
+
|
283 |
+
# TensorFlow Exports
|
284 |
+
if any(tf_exports):
|
285 |
+
pb, tflite, tfjs = tf_exports[1:]
|
286 |
+
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
287 |
+
model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs) # keras model
|
288 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
289 |
+
export_pb(model, im, file)
|
290 |
+
if tflite:
|
291 |
+
export_tflite(model, im, file, tfl_int8=False, data=data, ncalib=100)
|
292 |
+
if tfjs:
|
293 |
+
export_tfjs(model, im, file)
|
294 |
|
295 |
# Finish
|
296 |
print(f'\nExport complete ({time.time() - t:.2f}s)'
|
|
|
300 |
|
301 |
def parse_opt():
|
302 |
parser = argparse.ArgumentParser()
|
303 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
304 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
305 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
306 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
307 |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
|
308 |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
309 |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
310 |
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
311 |
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
312 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
313 |
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
314 |
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
|
315 |
+
parser.add_argument('--include', nargs='+',
|
316 |
+
default=['torchscript', 'onnx'],
|
317 |
+
help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
|
318 |
opt = parser.parse_args()
|
319 |
return opt
|
320 |
|
@@ -1,67 +1,44 @@
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
"""
|
3 |
-
TensorFlow
|
4 |
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
5 |
|
6 |
Usage:
|
7 |
-
$ python models/tf.py --weights yolov5s.pt
|
8 |
-
|
9 |
-
Export
|
10 |
-
$ python
|
11 |
-
--source path/to/images/ --ncalib 100
|
12 |
-
|
13 |
-
Detection:
|
14 |
-
$ python detect.py --weights yolov5s.pb --img 320
|
15 |
-
$ python detect.py --weights yolov5s_saved_model --img 320
|
16 |
-
$ python detect.py --weights yolov5s-fp16.tflite --img 320
|
17 |
-
$ python detect.py --weights yolov5s-int8.tflite --img 320 --tfl-int8
|
18 |
-
|
19 |
-
For TensorFlow.js:
|
20 |
-
$ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --img 320 --tf-nms --agnostic-nms
|
21 |
-
$ pip install tensorflowjs
|
22 |
-
$ tensorflowjs_converter \
|
23 |
-
--input_format=tf_frozen_model \
|
24 |
-
--output_node_names='Identity,Identity_1,Identity_2,Identity_3' \
|
25 |
-
yolov5s.pb \
|
26 |
-
web_model
|
27 |
-
$ # Edit web_model/model.json to sort Identity* in ascending order
|
28 |
-
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
29 |
-
$ npm install
|
30 |
-
$ ln -s ../../yolov5/web_model public/web_model
|
31 |
-
$ npm start
|
32 |
"""
|
33 |
|
34 |
import argparse
|
35 |
import logging
|
36 |
-
import os
|
37 |
import sys
|
38 |
-
import traceback
|
39 |
from copy import deepcopy
|
40 |
from pathlib import Path
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
import numpy as np
|
45 |
import tensorflow as tf
|
46 |
import torch
|
47 |
import torch.nn as nn
|
48 |
-
import yaml
|
49 |
from tensorflow import keras
|
50 |
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
51 |
|
52 |
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
|
53 |
from models.experimental import MixConv2d, CrossConv, attempt_load
|
54 |
from models.yolo import Detect
|
55 |
-
from utils.
|
56 |
-
from utils.
|
57 |
|
58 |
-
|
59 |
|
60 |
|
61 |
-
class
|
62 |
# TensorFlow BatchNormalization wrapper
|
63 |
def __init__(self, w=None):
|
64 |
-
super(
|
65 |
self.bn = keras.layers.BatchNormalization(
|
66 |
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
67 |
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
@@ -73,20 +50,20 @@ class tf_BN(keras.layers.Layer):
|
|
73 |
return self.bn(inputs)
|
74 |
|
75 |
|
76 |
-
class
|
77 |
def __init__(self, pad):
|
78 |
-
super(
|
79 |
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
80 |
|
81 |
def call(self, inputs):
|
82 |
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
83 |
|
84 |
|
85 |
-
class
|
86 |
# Standard convolution
|
87 |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
88 |
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
89 |
-
super(
|
90 |
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
91 |
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
|
92 |
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
@@ -95,27 +72,29 @@ class tf_Conv(keras.layers.Layer):
|
|
95 |
conv = keras.layers.Conv2D(
|
96 |
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
|
97 |
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
|
98 |
-
self.conv = conv if s == 1 else keras.Sequential([
|
99 |
-
self.bn =
|
100 |
|
101 |
# YOLOv5 activations
|
102 |
if isinstance(w.act, nn.LeakyReLU):
|
103 |
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
|
104 |
elif isinstance(w.act, nn.Hardswish):
|
105 |
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
|
106 |
-
elif isinstance(w.act, nn.SiLU):
|
107 |
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
|
|
|
|
|
108 |
|
109 |
def call(self, inputs):
|
110 |
return self.act(self.bn(self.conv(inputs)))
|
111 |
|
112 |
|
113 |
-
class
|
114 |
# Focus wh information into c-space
|
115 |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
116 |
# ch_in, ch_out, kernel, stride, padding, groups
|
117 |
-
super(
|
118 |
-
self.conv =
|
119 |
|
120 |
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
121 |
# inputs = inputs / 255. # normalize 0-255 to 0-1
|
@@ -125,23 +104,23 @@ class tf_Focus(keras.layers.Layer):
|
|
125 |
inputs[:, 1::2, 1::2, :]], 3))
|
126 |
|
127 |
|
128 |
-
class
|
129 |
# Standard bottleneck
|
130 |
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
131 |
-
super(
|
132 |
c_ = int(c2 * e) # hidden channels
|
133 |
-
self.cv1 =
|
134 |
-
self.cv2 =
|
135 |
self.add = shortcut and c1 == c2
|
136 |
|
137 |
def call(self, inputs):
|
138 |
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
139 |
|
140 |
|
141 |
-
class
|
142 |
# Substitution for PyTorch nn.Conv2D
|
143 |
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
144 |
-
super(
|
145 |
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
146 |
self.conv = keras.layers.Conv2D(
|
147 |
c2, k, s, 'VALID', use_bias=bias,
|
@@ -152,19 +131,19 @@ class tf_Conv2d(keras.layers.Layer):
|
|
152 |
return self.conv(inputs)
|
153 |
|
154 |
|
155 |
-
class
|
156 |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
157 |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
158 |
# ch_in, ch_out, number, shortcut, groups, expansion
|
159 |
-
super(
|
160 |
c_ = int(c2 * e) # hidden channels
|
161 |
-
self.cv1 =
|
162 |
-
self.cv2 =
|
163 |
-
self.cv3 =
|
164 |
-
self.cv4 =
|
165 |
-
self.bn =
|
166 |
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
|
167 |
-
self.m = keras.Sequential([
|
168 |
|
169 |
def call(self, inputs):
|
170 |
y1 = self.cv3(self.m(self.cv1(inputs)))
|
@@ -172,28 +151,28 @@ class tf_BottleneckCSP(keras.layers.Layer):
|
|
172 |
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
173 |
|
174 |
|
175 |
-
class
|
176 |
# CSP Bottleneck with 3 convolutions
|
177 |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
178 |
# ch_in, ch_out, number, shortcut, groups, expansion
|
179 |
-
super(
|
180 |
c_ = int(c2 * e) # hidden channels
|
181 |
-
self.cv1 =
|
182 |
-
self.cv2 =
|
183 |
-
self.cv3 =
|
184 |
-
self.m = keras.Sequential([
|
185 |
|
186 |
def call(self, inputs):
|
187 |
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
188 |
|
189 |
|
190 |
-
class
|
191 |
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
192 |
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
193 |
-
super(
|
194 |
c_ = c1 // 2 # hidden channels
|
195 |
-
self.cv1 =
|
196 |
-
self.cv2 =
|
197 |
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
198 |
|
199 |
def call(self, inputs):
|
@@ -201,9 +180,9 @@ class tf_SPP(keras.layers.Layer):
|
|
201 |
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
202 |
|
203 |
|
204 |
-
class
|
205 |
-
def __init__(self, nc=80, anchors=(), ch=(), w=None): # detection layer
|
206 |
-
super(
|
207 |
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
208 |
self.nc = nc # number of classes
|
209 |
self.no = nc + 5 # number of outputs per anchor
|
@@ -213,22 +192,20 @@ class tf_Detect(keras.layers.Layer):
|
|
213 |
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
214 |
self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32),
|
215 |
[self.nl, 1, -1, 1, 2])
|
216 |
-
self.m = [
|
217 |
-
self.
|
218 |
-
self.
|
219 |
for i in range(self.nl):
|
220 |
-
ny, nx =
|
221 |
self.grid[i] = self._make_grid(nx, ny)
|
222 |
|
223 |
def call(self, inputs):
|
224 |
-
# x = x.copy() # for profiling
|
225 |
z = [] # inference output
|
226 |
-
self.training |= self.export
|
227 |
x = []
|
228 |
for i in range(self.nl):
|
229 |
x.append(self.m[i](inputs[i]))
|
230 |
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
231 |
-
ny, nx =
|
232 |
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
|
233 |
|
234 |
if not self.training: # inference
|
@@ -236,8 +213,8 @@ class tf_Detect(keras.layers.Layer):
|
|
236 |
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
237 |
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
238 |
# Normalize xywh to 0-1 to reduce calibration error
|
239 |
-
xy /= tf.constant([[
|
240 |
-
wh /= tf.constant([[
|
241 |
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
242 |
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
|
243 |
|
@@ -251,25 +228,23 @@ class tf_Detect(keras.layers.Layer):
|
|
251 |
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
252 |
|
253 |
|
254 |
-
class
|
255 |
-
def __init__(self, size, scale_factor, mode, w=None):
|
256 |
-
super(
|
257 |
assert scale_factor == 2, "scale_factor must be 2"
|
|
|
258 |
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
size=(x.shape[1] * 2, x.shape[2] * 2))
|
263 |
-
else:
|
264 |
-
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
265 |
|
266 |
def call(self, inputs):
|
267 |
return self.upsample(inputs)
|
268 |
|
269 |
|
270 |
-
class
|
271 |
def __init__(self, dimension=1, w=None):
|
272 |
-
super(
|
273 |
assert dimension == 1, "convert only NCHW to NHWC concat"
|
274 |
self.d = 3
|
275 |
|
@@ -277,8 +252,8 @@ class tf_Concat(keras.layers.Layer):
|
|
277 |
return tf.concat(inputs, self.d)
|
278 |
|
279 |
|
280 |
-
def parse_model(d, ch, model): # model_dict, input_channels(3)
|
281 |
-
|
282 |
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
283 |
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
284 |
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
@@ -310,10 +285,11 @@ def parse_model(d, ch, model): # model_dict, input_channels(3)
|
|
310 |
args.append([ch[x + 1] for x in f])
|
311 |
if isinstance(args[1], int): # number of anchors
|
312 |
args[1] = [list(range(args[1] * 2))] * len(f)
|
|
|
313 |
else:
|
314 |
c2 = ch[f]
|
315 |
|
316 |
-
tf_m = eval('
|
317 |
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
318 |
else tf_m(*args, w=model.model[i]) # module
|
319 |
|
@@ -321,16 +297,16 @@ def parse_model(d, ch, model): # model_dict, input_channels(3)
|
|
321 |
t = str(m)[8:-2].replace('__main__.', '') # module type
|
322 |
np = sum([x.numel() for x in torch_m_.parameters()]) # number params
|
323 |
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
324 |
-
|
325 |
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
326 |
layers.append(m_)
|
327 |
ch.append(c2)
|
328 |
return keras.Sequential(layers), sorted(save)
|
329 |
|
330 |
|
331 |
-
class
|
332 |
-
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None): # model,
|
333 |
-
super(
|
334 |
if isinstance(cfg, dict):
|
335 |
self.yaml = cfg # model dict
|
336 |
else: # is *.yaml
|
@@ -343,9 +319,10 @@ class tf_Model():
|
|
343 |
if nc and nc != self.yaml['nc']:
|
344 |
print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
|
345 |
self.yaml['nc'] = nc # override yaml value
|
346 |
-
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model
|
347 |
|
348 |
-
def predict(self, inputs,
|
|
|
349 |
y = [] # outputs
|
350 |
x = inputs
|
351 |
for i, m in enumerate(self.model.layers):
|
@@ -356,18 +333,18 @@ class tf_Model():
|
|
356 |
y.append(x if m.i in self.savelist else None) # save output
|
357 |
|
358 |
# Add TensorFlow NMS
|
359 |
-
if
|
360 |
-
boxes =
|
361 |
probs = x[0][:, :, 4:5]
|
362 |
classes = x[0][:, :, 5:]
|
363 |
scores = probs * classes
|
364 |
-
if
|
365 |
-
nms =
|
366 |
return nms, x[1]
|
367 |
else:
|
368 |
boxes = tf.expand_dims(boxes, 2)
|
369 |
nms = tf.image.combined_non_max_suppression(
|
370 |
-
boxes, scores,
|
371 |
return nms, x[1]
|
372 |
|
373 |
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
@@ -377,182 +354,94 @@ class tf_Model():
|
|
377 |
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
378 |
# return tf.concat([conf, cls, xywh], 1)
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
-
class
|
382 |
-
#
|
383 |
-
def call(self, input):
|
384 |
-
|
|
|
385 |
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
386 |
name='agnostic_nms')
|
387 |
|
388 |
-
|
389 |
-
def
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
def
|
412 |
-
#
|
413 |
-
|
414 |
-
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
415 |
-
|
416 |
-
|
417 |
-
def representative_dataset_gen():
|
418 |
-
# Representative dataset for use with converter.representative_dataset
|
419 |
-
n = 0
|
420 |
-
for path, img, im0s, vid_cap in dataset:
|
421 |
-
# Get sample input data as a numpy array in a method of your choosing.
|
422 |
-
n += 1
|
423 |
input = np.transpose(img, [1, 2, 0])
|
424 |
input = np.expand_dims(input, axis=0).astype(np.float32)
|
425 |
input /= 255.0
|
426 |
yield [input]
|
427 |
-
if n >=
|
428 |
break
|
429 |
|
430 |
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
parser = argparse.ArgumentParser()
|
433 |
-
parser.add_argument('--
|
434 |
-
parser.add_argument('--
|
435 |
-
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
|
436 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
437 |
-
parser.add_argument('--dynamic
|
438 |
-
parser.add_argument('--source', type=str, default='../data/coco128.yaml', help='dir of images or data.yaml file')
|
439 |
-
parser.add_argument('--ncalib', type=int, default=100, help='number of calibration images')
|
440 |
-
parser.add_argument('--tfl-int8', action='store_true', dest='tfl_int8', help='export TFLite int8 model')
|
441 |
-
parser.add_argument('--tf-nms', action='store_true', dest='tf_nms', help='TF NMS (without TFLite export)')
|
442 |
-
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
443 |
-
parser.add_argument('--tf-raw-resize', action='store_true', dest='tf_raw_resize',
|
444 |
-
help='use tf.raw_ops.ResizeNearestNeighbor for resize')
|
445 |
-
parser.add_argument('--topk-per-class', type=int, default=100, help='topk per class to keep in NMS')
|
446 |
-
parser.add_argument('--topk-all', type=int, default=100, help='topk for all classes to keep in NMS')
|
447 |
-
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
|
448 |
-
parser.add_argument('--score-thres', type=float, default=0.4, help='score threshold for NMS')
|
449 |
opt = parser.parse_args()
|
450 |
-
opt.
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
# TensorFlow saved_model export
|
464 |
-
try:
|
465 |
-
print('\nStarting TensorFlow saved_model export with TensorFlow %s...' % tf.__version__)
|
466 |
-
tf_model = tf_Model(opt.cfg, model=model, nc=nc)
|
467 |
-
img = tf.zeros((opt.batch_size, *opt.img_size, 3)) # NHWC Input for TensorFlow
|
468 |
-
|
469 |
-
m = tf_model.model.layers[-1]
|
470 |
-
assert isinstance(m, tf_Detect), "the last layer must be Detect"
|
471 |
-
m.training = False
|
472 |
-
y = tf_model.predict(img)
|
473 |
-
|
474 |
-
inputs = keras.Input(shape=(*opt.img_size, 3), batch_size=None if opt.dynamic_batch_size else opt.batch_size)
|
475 |
-
keras_model = keras.Model(inputs=inputs, outputs=tf_model.predict(inputs))
|
476 |
-
keras_model.summary()
|
477 |
-
path = opt.weights.replace('.pt', '_saved_model') # filename
|
478 |
-
keras_model.save(path, save_format='tf')
|
479 |
-
print('TensorFlow saved_model export success, saved as %s' % path)
|
480 |
-
except Exception as e:
|
481 |
-
print('TensorFlow saved_model export failure: %s' % e)
|
482 |
-
traceback.print_exc(file=sys.stdout)
|
483 |
-
|
484 |
-
# TensorFlow GraphDef export
|
485 |
-
try:
|
486 |
-
print('\nStarting TensorFlow GraphDef export with TensorFlow %s...' % tf.__version__)
|
487 |
-
|
488 |
-
# https://github.com/leimao/Frozen_Graph_TensorFlow
|
489 |
-
full_model = tf.function(lambda x: keras_model(x))
|
490 |
-
full_model = full_model.get_concrete_function(
|
491 |
-
tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
492 |
-
|
493 |
-
frozen_func = convert_variables_to_constants_v2(full_model)
|
494 |
-
frozen_func.graph.as_graph_def()
|
495 |
-
f = opt.weights.replace('.pt', '.pb') # filename
|
496 |
-
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
|
497 |
-
logdir=os.path.dirname(f),
|
498 |
-
name=os.path.basename(f),
|
499 |
-
as_text=False)
|
500 |
-
|
501 |
-
print('TensorFlow GraphDef export success, saved as %s' % f)
|
502 |
-
except Exception as e:
|
503 |
-
print('TensorFlow GraphDef export failure: %s' % e)
|
504 |
-
traceback.print_exc(file=sys.stdout)
|
505 |
-
|
506 |
-
# TFLite model export
|
507 |
-
if not opt.tf_nms:
|
508 |
-
try:
|
509 |
-
print('\nStarting TFLite export with TensorFlow %s...' % tf.__version__)
|
510 |
-
|
511 |
-
# fp32 TFLite model export ---------------------------------------------------------------------------------
|
512 |
-
# converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
513 |
-
# converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
514 |
-
# converter.allow_custom_ops = False
|
515 |
-
# converter.experimental_new_converter = True
|
516 |
-
# tflite_model = converter.convert()
|
517 |
-
# f = opt.weights.replace('.pt', '.tflite') # filename
|
518 |
-
# open(f, "wb").write(tflite_model)
|
519 |
-
|
520 |
-
# fp16 TFLite model export ---------------------------------------------------------------------------------
|
521 |
-
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
522 |
-
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
523 |
-
# converter.representative_dataset = representative_dataset_gen
|
524 |
-
# converter.target_spec.supported_types = [tf.float16]
|
525 |
-
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
526 |
-
converter.allow_custom_ops = False
|
527 |
-
converter.experimental_new_converter = True
|
528 |
-
tflite_model = converter.convert()
|
529 |
-
f = opt.weights.replace('.pt', '-fp16.tflite') # filename
|
530 |
-
open(f, "wb").write(tflite_model)
|
531 |
-
print('\nTFLite export success, saved as %s' % f)
|
532 |
-
|
533 |
-
# int8 TFLite model export ---------------------------------------------------------------------------------
|
534 |
-
if opt.tfl_int8:
|
535 |
-
# Representative Dataset
|
536 |
-
if opt.source.endswith('.yaml'):
|
537 |
-
with open(check_yaml(opt.source)) as f:
|
538 |
-
data = yaml.load(f, Loader=yaml.FullLoader) # data dict
|
539 |
-
check_dataset(data) # check
|
540 |
-
opt.source = data['train']
|
541 |
-
dataset = LoadImages(opt.source, img_size=opt.img_size, auto=False)
|
542 |
-
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
543 |
-
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
544 |
-
converter.representative_dataset = representative_dataset_gen
|
545 |
-
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
546 |
-
converter.inference_input_type = tf.uint8 # or tf.int8
|
547 |
-
converter.inference_output_type = tf.uint8 # or tf.int8
|
548 |
-
converter.allow_custom_ops = False
|
549 |
-
converter.experimental_new_converter = True
|
550 |
-
converter.experimental_new_quantizer = False
|
551 |
-
tflite_model = converter.convert()
|
552 |
-
f = opt.weights.replace('.pt', '-int8.tflite') # filename
|
553 |
-
open(f, "wb").write(tflite_model)
|
554 |
-
print('\nTFLite (int8) export success, saved as %s' % f)
|
555 |
-
|
556 |
-
except Exception as e:
|
557 |
-
print('\nTFLite export failure: %s' % e)
|
558 |
-
traceback.print_exc(file=sys.stdout)
|
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
"""
|
3 |
+
TensorFlow, Keras and TFLite versions of YOLOv5
|
4 |
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
5 |
|
6 |
Usage:
|
7 |
+
$ python models/tf.py --weights yolov5s.pt
|
8 |
+
|
9 |
+
Export:
|
10 |
+
$ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"""
|
12 |
|
13 |
import argparse
|
14 |
import logging
|
|
|
15 |
import sys
|
|
|
16 |
from copy import deepcopy
|
17 |
from pathlib import Path
|
18 |
|
19 |
+
FILE = Path(__file__).resolve()
|
20 |
+
ROOT = FILE.parents[1] # yolov5/ dir
|
21 |
+
sys.path.append(ROOT.as_posix()) # add yolov5/ to path
|
22 |
|
23 |
import numpy as np
|
24 |
import tensorflow as tf
|
25 |
import torch
|
26 |
import torch.nn as nn
|
|
|
27 |
from tensorflow import keras
|
|
|
28 |
|
29 |
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
|
30 |
from models.experimental import MixConv2d, CrossConv, attempt_load
|
31 |
from models.yolo import Detect
|
32 |
+
from utils.general import colorstr, make_divisible, set_logging
|
33 |
+
from utils.activations import SiLU
|
34 |
|
35 |
+
LOGGER = logging.getLogger(__name__)
|
36 |
|
37 |
|
38 |
+
class TFBN(keras.layers.Layer):
|
39 |
# TensorFlow BatchNormalization wrapper
|
40 |
def __init__(self, w=None):
|
41 |
+
super(TFBN, self).__init__()
|
42 |
self.bn = keras.layers.BatchNormalization(
|
43 |
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
44 |
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
|
|
50 |
return self.bn(inputs)
|
51 |
|
52 |
|
53 |
+
class TFPad(keras.layers.Layer):
|
54 |
def __init__(self, pad):
|
55 |
+
super(TFPad, self).__init__()
|
56 |
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
57 |
|
58 |
def call(self, inputs):
|
59 |
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
60 |
|
61 |
|
62 |
+
class TFConv(keras.layers.Layer):
|
63 |
# Standard convolution
|
64 |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
65 |
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
66 |
+
super(TFConv, self).__init__()
|
67 |
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
68 |
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
|
69 |
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
|
|
72 |
conv = keras.layers.Conv2D(
|
73 |
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
|
74 |
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
|
75 |
+
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
76 |
+
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
77 |
|
78 |
# YOLOv5 activations
|
79 |
if isinstance(w.act, nn.LeakyReLU):
|
80 |
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
|
81 |
elif isinstance(w.act, nn.Hardswish):
|
82 |
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
|
83 |
+
elif isinstance(w.act, (nn.SiLU, SiLU)):
|
84 |
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
|
85 |
+
else:
|
86 |
+
raise Exception(f'no matching TensorFlow activation found for {w.act}')
|
87 |
|
88 |
def call(self, inputs):
|
89 |
return self.act(self.bn(self.conv(inputs)))
|
90 |
|
91 |
|
92 |
+
class TFFocus(keras.layers.Layer):
|
93 |
# Focus wh information into c-space
|
94 |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
95 |
# ch_in, ch_out, kernel, stride, padding, groups
|
96 |
+
super(TFFocus, self).__init__()
|
97 |
+
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
98 |
|
99 |
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
100 |
# inputs = inputs / 255. # normalize 0-255 to 0-1
|
|
|
104 |
inputs[:, 1::2, 1::2, :]], 3))
|
105 |
|
106 |
|
107 |
+
class TFBottleneck(keras.layers.Layer):
|
108 |
# Standard bottleneck
|
109 |
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
110 |
+
super(TFBottleneck, self).__init__()
|
111 |
c_ = int(c2 * e) # hidden channels
|
112 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
113 |
+
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
114 |
self.add = shortcut and c1 == c2
|
115 |
|
116 |
def call(self, inputs):
|
117 |
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
118 |
|
119 |
|
120 |
+
class TFConv2d(keras.layers.Layer):
|
121 |
# Substitution for PyTorch nn.Conv2D
|
122 |
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
123 |
+
super(TFConv2d, self).__init__()
|
124 |
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
125 |
self.conv = keras.layers.Conv2D(
|
126 |
c2, k, s, 'VALID', use_bias=bias,
|
|
|
131 |
return self.conv(inputs)
|
132 |
|
133 |
|
134 |
+
class TFBottleneckCSP(keras.layers.Layer):
|
135 |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
136 |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
137 |
# ch_in, ch_out, number, shortcut, groups, expansion
|
138 |
+
super(TFBottleneckCSP, self).__init__()
|
139 |
c_ = int(c2 * e) # hidden channels
|
140 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
141 |
+
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
142 |
+
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
143 |
+
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
144 |
+
self.bn = TFBN(w.bn)
|
145 |
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
|
146 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
147 |
|
148 |
def call(self, inputs):
|
149 |
y1 = self.cv3(self.m(self.cv1(inputs)))
|
|
|
151 |
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
152 |
|
153 |
|
154 |
+
class TFC3(keras.layers.Layer):
|
155 |
# CSP Bottleneck with 3 convolutions
|
156 |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
157 |
# ch_in, ch_out, number, shortcut, groups, expansion
|
158 |
+
super(TFC3, self).__init__()
|
159 |
c_ = int(c2 * e) # hidden channels
|
160 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
161 |
+
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
162 |
+
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
163 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
164 |
|
165 |
def call(self, inputs):
|
166 |
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
167 |
|
168 |
|
169 |
+
class TFSPP(keras.layers.Layer):
|
170 |
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
171 |
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
172 |
+
super(TFSPP, self).__init__()
|
173 |
c_ = c1 // 2 # hidden channels
|
174 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
175 |
+
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
176 |
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
177 |
|
178 |
def call(self, inputs):
|
|
|
180 |
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
181 |
|
182 |
|
183 |
+
class TFDetect(keras.layers.Layer):
|
184 |
+
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
185 |
+
super(TFDetect, self).__init__()
|
186 |
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
187 |
self.nc = nc # number of classes
|
188 |
self.no = nc + 5 # number of outputs per anchor
|
|
|
192 |
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
193 |
self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32),
|
194 |
[self.nl, 1, -1, 1, 2])
|
195 |
+
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
196 |
+
self.training = False # set to False after building model
|
197 |
+
self.imgsz = imgsz
|
198 |
for i in range(self.nl):
|
199 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
200 |
self.grid[i] = self._make_grid(nx, ny)
|
201 |
|
202 |
def call(self, inputs):
|
|
|
203 |
z = [] # inference output
|
|
|
204 |
x = []
|
205 |
for i in range(self.nl):
|
206 |
x.append(self.m[i](inputs[i]))
|
207 |
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
208 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
209 |
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
|
210 |
|
211 |
if not self.training: # inference
|
|
|
213 |
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
214 |
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
215 |
# Normalize xywh to 0-1 to reduce calibration error
|
216 |
+
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
217 |
+
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
218 |
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
219 |
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
|
220 |
|
|
|
228 |
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
229 |
|
230 |
|
231 |
+
class TFUpsample(keras.layers.Layer):
|
232 |
+
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
233 |
+
super(TFUpsample, self).__init__()
|
234 |
assert scale_factor == 2, "scale_factor must be 2"
|
235 |
+
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
236 |
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
237 |
+
# with default arguments: align_corners=False, half_pixel_centers=False
|
238 |
+
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
239 |
+
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
|
|
|
|
|
|
240 |
|
241 |
def call(self, inputs):
|
242 |
return self.upsample(inputs)
|
243 |
|
244 |
|
245 |
+
class TFConcat(keras.layers.Layer):
|
246 |
def __init__(self, dimension=1, w=None):
|
247 |
+
super(TFConcat, self).__init__()
|
248 |
assert dimension == 1, "convert only NCHW to NHWC concat"
|
249 |
self.d = 3
|
250 |
|
|
|
252 |
return tf.concat(inputs, self.d)
|
253 |
|
254 |
|
255 |
+
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
256 |
+
LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
257 |
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
258 |
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
259 |
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
|
|
285 |
args.append([ch[x + 1] for x in f])
|
286 |
if isinstance(args[1], int): # number of anchors
|
287 |
args[1] = [list(range(args[1] * 2))] * len(f)
|
288 |
+
args.append(imgsz)
|
289 |
else:
|
290 |
c2 = ch[f]
|
291 |
|
292 |
+
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
293 |
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
294 |
else tf_m(*args, w=model.model[i]) # module
|
295 |
|
|
|
297 |
t = str(m)[8:-2].replace('__main__.', '') # module type
|
298 |
np = sum([x.numel() for x in torch_m_.parameters()]) # number params
|
299 |
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
300 |
+
LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
301 |
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
302 |
layers.append(m_)
|
303 |
ch.append(c2)
|
304 |
return keras.Sequential(layers), sorted(save)
|
305 |
|
306 |
|
307 |
+
class TFModel:
|
308 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
309 |
+
super(TFModel, self).__init__()
|
310 |
if isinstance(cfg, dict):
|
311 |
self.yaml = cfg # model dict
|
312 |
else: # is *.yaml
|
|
|
319 |
if nc and nc != self.yaml['nc']:
|
320 |
print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
|
321 |
self.yaml['nc'] = nc # override yaml value
|
322 |
+
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
323 |
|
324 |
+
def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
325 |
+
conf_thres=0.25):
|
326 |
y = [] # outputs
|
327 |
x = inputs
|
328 |
for i, m in enumerate(self.model.layers):
|
|
|
333 |
y.append(x if m.i in self.savelist else None) # save output
|
334 |
|
335 |
# Add TensorFlow NMS
|
336 |
+
if tf_nms:
|
337 |
+
boxes = self._xywh2xyxy(x[0][..., :4])
|
338 |
probs = x[0][:, :, 4:5]
|
339 |
classes = x[0][:, :, 5:]
|
340 |
scores = probs * classes
|
341 |
+
if agnostic_nms:
|
342 |
+
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
343 |
return nms, x[1]
|
344 |
else:
|
345 |
boxes = tf.expand_dims(boxes, 2)
|
346 |
nms = tf.image.combined_non_max_suppression(
|
347 |
+
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
|
348 |
return nms, x[1]
|
349 |
|
350 |
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
|
|
354 |
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
355 |
# return tf.concat([conf, cls, xywh], 1)
|
356 |
|
357 |
+
@staticmethod
|
358 |
+
def _xywh2xyxy(xywh):
|
359 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
360 |
+
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
361 |
+
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
362 |
+
|
363 |
|
364 |
+
class AgnosticNMS(keras.layers.Layer):
|
365 |
+
# TF Agnostic NMS
|
366 |
+
def call(self, input, topk_all, iou_thres, conf_thres):
|
367 |
+
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
368 |
+
return tf.map_fn(self._nms, input,
|
369 |
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
370 |
name='agnostic_nms')
|
371 |
|
372 |
+
@staticmethod
|
373 |
+
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
374 |
+
boxes, classes, scores = x
|
375 |
+
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
376 |
+
scores_inp = tf.reduce_max(scores, -1)
|
377 |
+
selected_inds = tf.image.non_max_suppression(
|
378 |
+
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
|
379 |
+
selected_boxes = tf.gather(boxes, selected_inds)
|
380 |
+
padded_boxes = tf.pad(selected_boxes,
|
381 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
382 |
+
mode="CONSTANT", constant_values=0.0)
|
383 |
+
selected_scores = tf.gather(scores_inp, selected_inds)
|
384 |
+
padded_scores = tf.pad(selected_scores,
|
385 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
386 |
+
mode="CONSTANT", constant_values=-1.0)
|
387 |
+
selected_classes = tf.gather(class_inds, selected_inds)
|
388 |
+
padded_classes = tf.pad(selected_classes,
|
389 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
390 |
+
mode="CONSTANT", constant_values=-1.0)
|
391 |
+
valid_detections = tf.shape(selected_inds)[0]
|
392 |
+
return padded_boxes, padded_scores, padded_classes, valid_detections
|
393 |
+
|
394 |
+
|
395 |
+
def representative_dataset_gen(dataset, ncalib=100):
|
396 |
+
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
397 |
+
for n, (path, img, im0s, vid_cap) in enumerate(dataset):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
input = np.transpose(img, [1, 2, 0])
|
399 |
input = np.expand_dims(input, axis=0).astype(np.float32)
|
400 |
input /= 255.0
|
401 |
yield [input]
|
402 |
+
if n >= ncalib:
|
403 |
break
|
404 |
|
405 |
|
406 |
+
def run(weights=ROOT / 'yolov5s.pt', # weights path
|
407 |
+
imgsz=(640, 640), # inference size h,w
|
408 |
+
batch_size=1, # batch size
|
409 |
+
dynamic=False, # dynamic batch size
|
410 |
+
):
|
411 |
+
# PyTorch model
|
412 |
+
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
413 |
+
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
|
414 |
+
y = model(im) # inference
|
415 |
+
model.info()
|
416 |
+
|
417 |
+
# TensorFlow model
|
418 |
+
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
419 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
420 |
+
y = tf_model.predict(im) # inference
|
421 |
+
|
422 |
+
# Keras model
|
423 |
+
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
424 |
+
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
425 |
+
keras_model.summary()
|
426 |
+
|
427 |
+
|
428 |
+
def parse_opt():
|
429 |
parser = argparse.ArgumentParser()
|
430 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
431 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
|
|
432 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
433 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
opt = parser.parse_args()
|
435 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
436 |
+
return opt
|
437 |
+
|
438 |
+
|
439 |
+
def main(opt):
|
440 |
+
set_logging()
|
441 |
+
print(colorstr('tf.py: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
442 |
+
run(**vars(opt))
|
443 |
+
|
444 |
+
|
445 |
+
if __name__ == "__main__":
|
446 |
+
opt = parse_opt()
|
447 |
+
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,6 +1,6 @@
|
|
1 |
# pip install -r requirements.txt
|
2 |
|
3 |
-
#
|
4 |
matplotlib>=3.2.2
|
5 |
numpy>=1.18.5
|
6 |
opencv-python>=4.1.2
|
@@ -11,21 +11,23 @@ torch>=1.7.0
|
|
11 |
torchvision>=0.8.1
|
12 |
tqdm>=4.41.0
|
13 |
|
14 |
-
#
|
15 |
tensorboard>=2.4.1
|
16 |
# wandb
|
17 |
|
18 |
-
#
|
19 |
seaborn>=0.11.0
|
20 |
pandas
|
21 |
|
22 |
-
#
|
23 |
-
# coremltools>=4.1
|
24 |
-
# onnx>=1.9.0
|
25 |
-
#
|
26 |
-
#
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
30 |
# pycocotools>=2.0 # COCO mAP
|
31 |
# albumentations>=1.0.3
|
|
|
1 |
# pip install -r requirements.txt
|
2 |
|
3 |
+
# Base ----------------------------------------
|
4 |
matplotlib>=3.2.2
|
5 |
numpy>=1.18.5
|
6 |
opencv-python>=4.1.2
|
|
|
11 |
torchvision>=0.8.1
|
12 |
tqdm>=4.41.0
|
13 |
|
14 |
+
# Logging -------------------------------------
|
15 |
tensorboard>=2.4.1
|
16 |
# wandb
|
17 |
|
18 |
+
# Plotting ------------------------------------
|
19 |
seaborn>=0.11.0
|
20 |
pandas
|
21 |
|
22 |
+
# Export --------------------------------------
|
23 |
+
# coremltools>=4.1 # CoreML export
|
24 |
+
# onnx>=1.9.0 # ONNX export
|
25 |
+
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
26 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
27 |
+
# tensorflow>=2.4.1 # TFLite export
|
28 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
29 |
|
30 |
+
# Extras --------------------------------------
|
31 |
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
32 |
# pycocotools>=2.0 # COCO mAP
|
33 |
# albumentations>=1.0.3
|
@@ -161,9 +161,15 @@ def emojis(str=''):
|
|
161 |
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
162 |
|
163 |
|
164 |
-
def file_size(
|
165 |
-
# Return file size
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
|
169 |
def check_online():
|
|
|
161 |
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
162 |
|
163 |
|
164 |
+
def file_size(path):
|
165 |
+
# Return file/dir size (MB)
|
166 |
+
path = Path(path)
|
167 |
+
if path.is_file():
|
168 |
+
return path.stat().st_size / 1E6
|
169 |
+
elif path.is_dir():
|
170 |
+
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
|
171 |
+
else:
|
172 |
+
return 0.0
|
173 |
|
174 |
|
175 |
def check_online():
|