File size: 14,354 Bytes
354a97e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
import glob
import json
import os
import shutil
from pathlib import Path

import numpy as np
import torch
import yaml
from tqdm import tqdm

from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import (
    coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
    xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
from utils.torch_utils import select_device, time_synchronized


from sotabencheval.object_detection import COCOEvaluator
from sotabencheval.utils import is_server

DATA_ROOT = './.data/vision/coco' if is_server() else '../coco'  # sotabench data dir


def test(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         save_dir='',
         merge=False,
         save_txt=False):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)
        merge, save_txt = opt.merge, opt.save_txt  # use Merge NMS, save *.txt labels
        if save_txt:
            out = Path('inference/output')
            if os.path.exists(out):
                shutil.rmtree(out)  # delete output folder
            os.makedirs(out)  # make new output folder

        # Remove previous
        for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
            os.remove(f)

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for mAP@0.5:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
                                       hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0]

    seen = 0
    names = model.names if hasattr(model, 'names') else model.module.names
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', ''))
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]]  # normalization gain whwh
                x = pred.clone()
                x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1])  # to original
                for *xyxy, conf, cls in x:
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
                        f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = Path(paths[si]).stem
                box = pred[:, :4].clone()  # xyxy
                scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    result = {'image_id': int(image_id) if image_id.isnumeric() else image_id,
                                  'category_id': coco91class[int(p[5])],
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)}
                    jdict.append(result)

                    #evaluator.add([result])
                    #if evaluator.cache_exists:
                    #    break

            # # Assign all predictions as incorrect
            # correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            # if nl:
            #     detected = []  # target indices
            #     tcls_tensor = labels[:, 0]
            #
            #     # target boxes
            #     tbox = xywh2xyxy(labels[:, 1:5]) * whwh
            #
            #     # Per target class
            #     for cls in torch.unique(tcls_tensor):
            #         ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1)  # prediction indices
            #         pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1)  # target indices
            #
            #         # Search for detections
            #         if pi.shape[0]:
            #             # Prediction to target ious
            #             ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1)  # best ious, indices
            #
            #             # Append detections
            #             detected_set = set()
            #             for j in (ious > iouv[0]).nonzero(as_tuple=False):
            #                 d = ti[i[j]]  # detected target
            #                 if d.item() not in detected_set:
            #                     detected_set.add(d.item())
            #                     detected.append(d)
            #                     correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
            #                     if len(detected) == nl:  # all targets already located in image
            #                         break
            #
            # # Append statistics (correct, conf, pcls, tcls)
            # stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # # Plot images
        # if batch_i < 1:
        #     f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i)  # filename
        #     plot_images(img, targets, paths, str(f), names)  # ground truth
        #     f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
        #     plot_images(img, output_to_target(output, width, height), paths, str(f), names)  # predictions

    evaluator.add(jdict)
    evaluator.save()

    # # Compute statistics
    # stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    # if len(stats) and stats[0].any():
    #     p, r, ap, f1, ap_class = ap_per_class(*stats)
    #     p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, AP@0.5, AP@0.5:0.95]
    #     mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
    #     nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    # else:
    #     nt = torch.zeros(1)
    #
    # # Print results
    # pf = '%20s' + '%12.3g' * 6  # print format
    # print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
    #
    # # Print results per class
    # if verbose and nc > 1 and len(stats):
    #     for i, c in enumerate(ap_class):
    #         print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
    #
    # # Print speeds
    # t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    # if not training:
    #     print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
    #
    # # Save JSON
    # if save_json and len(jdict):
    #     f = 'detections_val2017_%s_results.json' % \
    #         (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '')  # filename
    #     print('\nCOCO mAP with pycocotools... saving %s...' % f)
    #     with open(f, 'w') as file:
    #         json.dump(jdict, file)
    #
    #     try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
    #         from pycocotools.coco import COCO
    #         from pycocotools.cocoeval import COCOeval
    #
    #         imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
    #         cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0])  # initialize COCO ground truth api
    #         cocoDt = cocoGt.loadRes(f)  # initialize COCO pred api
    #         cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
    #         cocoEval.params.imgIds = imgIds  # image IDs to evaluate
    #         cocoEval.evaluate()
    #         cocoEval.accumulate()
    #         cocoEval.summarize()
    #         map, map50 = cocoEval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
    #     except Exception as e:
    #         print('ERROR: pycocotools unable to run: %s' % e)
    #
    # # Return results
    # model.float()  # for training
    # maps = np.zeros(nc) + map
    # for i, c in enumerate(ap_class):
    #     maps[c] = ap[i]
    # return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t


if __name__ == '__main__':
    parser = argparse.ArgumentParser(prog='test.py')
    parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
    parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
    parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
    parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
    parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--merge', action='store_true', help='use Merge NMS')
    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    opt = parser.parse_args()
    opt.save_json |= opt.data.endswith('coco.yaml')
    opt.data = check_file(opt.data)  # check file
    print(opt)

    if opt.task in ['val', 'test']:  # run normally
        test(opt.data,
             opt.weights,
             opt.batch_size,
             opt.img_size,
             opt.conf_thres,
             opt.iou_thres,
             opt.save_json,
             opt.single_cls,
             opt.augment,
             opt.verbose)

    elif opt.task == 'study':  # run over a range of settings and save/plot
        for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
            f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem)  # filename to save to
            x = list(range(320, 800, 64))  # x axis
            y = []  # y axis
            for i in x:  # img-size
                print('\nRunning %s point %s...' % (f, i))
                r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
                y.append(r + t)  # results and times
            np.savetxt(f, y, fmt='%10.4g')  # save
        os.system('zip -r study.zip study_*.txt')
        # utils.general.plot_study_txt(f, x)  # plot