glenn-jocher commited on
Commit
354a97e
1 Parent(s): d681799

Create sotabench.py

Browse files
Files changed (1) hide show
  1. sotabench.py +310 -0
sotabench.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import json
4
+ import os
5
+ import shutil
6
+ from pathlib import Path
7
+
8
+ import numpy as np
9
+ import torch
10
+ import yaml
11
+ from tqdm import tqdm
12
+
13
+ from models.experimental import attempt_load
14
+ from utils.datasets import create_dataloader
15
+ from utils.general import (
16
+ coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
17
+ xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
18
+ from utils.torch_utils import select_device, time_synchronized
19
+
20
+
21
+ from sotabencheval.object_detection import COCOEvaluator
22
+ from sotabencheval.utils import is_server
23
+
24
+ DATA_ROOT = './.data/vision/coco' if is_server() else '../coco' # sotabench data dir
25
+
26
+
27
+ def test(data,
28
+ weights=None,
29
+ batch_size=16,
30
+ imgsz=640,
31
+ conf_thres=0.001,
32
+ iou_thres=0.6, # for NMS
33
+ save_json=False,
34
+ single_cls=False,
35
+ augment=False,
36
+ verbose=False,
37
+ model=None,
38
+ dataloader=None,
39
+ save_dir='',
40
+ merge=False,
41
+ save_txt=False):
42
+ # Initialize/load model and set device
43
+ training = model is not None
44
+ if training: # called by train.py
45
+ device = next(model.parameters()).device # get model device
46
+
47
+ else: # called directly
48
+ set_logging()
49
+ device = select_device(opt.device, batch_size=batch_size)
50
+ merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels
51
+ if save_txt:
52
+ out = Path('inference/output')
53
+ if os.path.exists(out):
54
+ shutil.rmtree(out) # delete output folder
55
+ os.makedirs(out) # make new output folder
56
+
57
+ # Remove previous
58
+ for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
59
+ os.remove(f)
60
+
61
+ # Load model
62
+ model = attempt_load(weights, map_location=device) # load FP32 model
63
+ imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
64
+
65
+ # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
66
+ # if device.type != 'cpu' and torch.cuda.device_count() > 1:
67
+ # model = nn.DataParallel(model)
68
+
69
+ # Half
70
+ half = device.type != 'cpu' # half precision only supported on CUDA
71
+ if half:
72
+ model.half()
73
+
74
+ # Configure
75
+ model.eval()
76
+ with open(data) as f:
77
+ data = yaml.load(f, Loader=yaml.FullLoader) # model dict
78
+ check_dataset(data) # check
79
+ nc = 1 if single_cls else int(data['nc']) # number of classes
80
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
81
+ niou = iouv.numel()
82
+
83
+ # Dataloader
84
+ if not training:
85
+ img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
86
+ _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
87
+ path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
88
+ dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
89
+ hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0]
90
+
91
+ seen = 0
92
+ names = model.names if hasattr(model, 'names') else model.module.names
93
+ coco91class = coco80_to_coco91_class()
94
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
95
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
96
+ loss = torch.zeros(3, device=device)
97
+ jdict, stats, ap, ap_class = [], [], [], []
98
+ evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', ''))
99
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
100
+ img = img.to(device, non_blocking=True)
101
+ img = img.half() if half else img.float() # uint8 to fp16/32
102
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
103
+ targets = targets.to(device)
104
+ nb, _, height, width = img.shape # batch size, channels, height, width
105
+ whwh = torch.Tensor([width, height, width, height]).to(device)
106
+
107
+ # Disable gradients
108
+ with torch.no_grad():
109
+ # Run model
110
+ t = time_synchronized()
111
+ inf_out, train_out = model(img, augment=augment) # inference and training outputs
112
+ t0 += time_synchronized() - t
113
+
114
+ # Compute loss
115
+ if training: # if model has loss hyperparameters
116
+ loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls
117
+
118
+ # Run NMS
119
+ t = time_synchronized()
120
+ output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
121
+ t1 += time_synchronized() - t
122
+
123
+ # Statistics per image
124
+ for si, pred in enumerate(output):
125
+ labels = targets[targets[:, 0] == si, 1:]
126
+ nl = len(labels)
127
+ tcls = labels[:, 0].tolist() if nl else [] # target class
128
+ seen += 1
129
+
130
+ if pred is None:
131
+ if nl:
132
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
133
+ continue
134
+
135
+ # Append to text file
136
+ if save_txt:
137
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
138
+ x = pred.clone()
139
+ x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
140
+ for *xyxy, conf, cls in x:
141
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
142
+ with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
143
+ f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
144
+
145
+ # Clip boxes to image bounds
146
+ clip_coords(pred, (height, width))
147
+
148
+ # Append to pycocotools JSON dictionary
149
+ if save_json:
150
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
151
+ image_id = Path(paths[si]).stem
152
+ box = pred[:, :4].clone() # xyxy
153
+ scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
154
+ box = xyxy2xywh(box) # xywh
155
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
156
+ for p, b in zip(pred.tolist(), box.tolist()):
157
+ result = {'image_id': int(image_id) if image_id.isnumeric() else image_id,
158
+ 'category_id': coco91class[int(p[5])],
159
+ 'bbox': [round(x, 3) for x in b],
160
+ 'score': round(p[4], 5)}
161
+ jdict.append(result)
162
+
163
+ #evaluator.add([result])
164
+ #if evaluator.cache_exists:
165
+ # break
166
+
167
+ # # Assign all predictions as incorrect
168
+ # correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
169
+ # if nl:
170
+ # detected = [] # target indices
171
+ # tcls_tensor = labels[:, 0]
172
+ #
173
+ # # target boxes
174
+ # tbox = xywh2xyxy(labels[:, 1:5]) * whwh
175
+ #
176
+ # # Per target class
177
+ # for cls in torch.unique(tcls_tensor):
178
+ # ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
179
+ # pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
180
+ #
181
+ # # Search for detections
182
+ # if pi.shape[0]:
183
+ # # Prediction to target ious
184
+ # ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
185
+ #
186
+ # # Append detections
187
+ # detected_set = set()
188
+ # for j in (ious > iouv[0]).nonzero(as_tuple=False):
189
+ # d = ti[i[j]] # detected target
190
+ # if d.item() not in detected_set:
191
+ # detected_set.add(d.item())
192
+ # detected.append(d)
193
+ # correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
194
+ # if len(detected) == nl: # all targets already located in image
195
+ # break
196
+ #
197
+ # # Append statistics (correct, conf, pcls, tcls)
198
+ # stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
199
+
200
+ # # Plot images
201
+ # if batch_i < 1:
202
+ # f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename
203
+ # plot_images(img, targets, paths, str(f), names) # ground truth
204
+ # f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
205
+ # plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions
206
+
207
+ evaluator.add(jdict)
208
+ evaluator.save()
209
+
210
+ # # Compute statistics
211
+ # stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
212
+ # if len(stats) and stats[0].any():
213
+ # p, r, ap, f1, ap_class = ap_per_class(*stats)
214
+ # p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
215
+ # mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
216
+ # nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
217
+ # else:
218
+ # nt = torch.zeros(1)
219
+ #
220
+ # # Print results
221
+ # pf = '%20s' + '%12.3g' * 6 # print format
222
+ # print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
223
+ #
224
+ # # Print results per class
225
+ # if verbose and nc > 1 and len(stats):
226
+ # for i, c in enumerate(ap_class):
227
+ # print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
228
+ #
229
+ # # Print speeds
230
+ # t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
231
+ # if not training:
232
+ # print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
233
+ #
234
+ # # Save JSON
235
+ # if save_json and len(jdict):
236
+ # f = 'detections_val2017_%s_results.json' % \
237
+ # (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
238
+ # print('\nCOCO mAP with pycocotools... saving %s...' % f)
239
+ # with open(f, 'w') as file:
240
+ # json.dump(jdict, file)
241
+ #
242
+ # try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
243
+ # from pycocotools.coco import COCO
244
+ # from pycocotools.cocoeval import COCOeval
245
+ #
246
+ # imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
247
+ # cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
248
+ # cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
249
+ # cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
250
+ # cocoEval.params.imgIds = imgIds # image IDs to evaluate
251
+ # cocoEval.evaluate()
252
+ # cocoEval.accumulate()
253
+ # cocoEval.summarize()
254
+ # map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
255
+ # except Exception as e:
256
+ # print('ERROR: pycocotools unable to run: %s' % e)
257
+ #
258
+ # # Return results
259
+ # model.float() # for training
260
+ # maps = np.zeros(nc) + map
261
+ # for i, c in enumerate(ap_class):
262
+ # maps[c] = ap[i]
263
+ # return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
264
+
265
+
266
+ if __name__ == '__main__':
267
+ parser = argparse.ArgumentParser(prog='test.py')
268
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
269
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
270
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
271
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
272
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
273
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
274
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
275
+ parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
276
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
277
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
278
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
279
+ parser.add_argument('--merge', action='store_true', help='use Merge NMS')
280
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
281
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
282
+ opt = parser.parse_args()
283
+ opt.save_json |= opt.data.endswith('coco.yaml')
284
+ opt.data = check_file(opt.data) # check file
285
+ print(opt)
286
+
287
+ if opt.task in ['val', 'test']: # run normally
288
+ test(opt.data,
289
+ opt.weights,
290
+ opt.batch_size,
291
+ opt.img_size,
292
+ opt.conf_thres,
293
+ opt.iou_thres,
294
+ opt.save_json,
295
+ opt.single_cls,
296
+ opt.augment,
297
+ opt.verbose)
298
+
299
+ elif opt.task == 'study': # run over a range of settings and save/plot
300
+ for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
301
+ f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
302
+ x = list(range(320, 800, 64)) # x axis
303
+ y = [] # y axis
304
+ for i in x: # img-size
305
+ print('\nRunning %s point %s...' % (f, i))
306
+ r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
307
+ y.append(r + t) # results and times
308
+ np.savetxt(f, y, fmt='%10.4g') # save
309
+ os.system('zip -r study.zip study_*.txt')
310
+ # utils.general.plot_study_txt(f, x) # plot