File size: 1,778 Bytes
1e84a23
 
 
 
11b462e
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97d31e
1e84a23
 
 
 
 
 
 
 
 
 
893a905
17e4926
 
1e84a23
893a905
 
1e84a23
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:20.03-py3

# Install dependencies (pip or conda)
RUN pip install -U gsutil
# RUN pip install -U -r requirements.txt

# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

# Copy contents
COPY . /usr/src/app

# Copy weights
#RUN python3 -c "from models import *; \
#attempt_download('weights/yolov5s.pt'); \
#attempt_download('weights/yolov5m.pt'); \
#attempt_download('weights/yolov5l.pt')"


# ---------------------------------------------------  Extras Below  ---------------------------------------------------

# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t

# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash

# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t bash

# Kill all
# sudo docker kill "$(sudo docker ps -q)"

# Kill all image-based
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)

# Run bash for loop
# sudo docker run --gpus all --ipc=host ultralytics/yolov5:latest while true; do python3 train.py --evolve; done

# Bash into running container
# sudo docker container exec -it ba65811811ab bash
# python -c "from utils.utils import *; create_backbone('weights/last.pt')" && gsutil cp weights/backbone.pt gs://*

# Bash into stopped container
# sudo docker commit 6d525e299258 user/test_image && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh user/test_image

# Clean up
# docker system prune -a --volumes