glenn-jocher commited on
Commit
d97d31e
·
1 Parent(s): 391492e
Files changed (2) hide show
  1. Dockerfile +1 -1
  2. README.md +9 -9
Dockerfile CHANGED
@@ -28,7 +28,7 @@ COPY . /usr/src/app
28
  # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
29
 
30
  # Pull and Run with local directory access
31
- # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash
32
 
33
  # Kill all
34
  # sudo docker kill "$(sudo docker ps -q)"
 
28
  # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
29
 
30
  # Pull and Run with local directory access
31
+ # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t bash
32
 
33
  # Kill all
34
  # sudo docker kill "$(sudo docker ps -q)"
README.md CHANGED
@@ -23,17 +23,17 @@ For business inquiries and professional support requests please visit us at http
23
 
24
  ## Pretrained Checkpoints
25
 
26
- | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Latency<sub>GPU</sub> | FPS<sub>GPU</sub> | | params | FLOPs |
27
- |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
28
- | YOLOv5-s ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 33.1 | 33.0 | 53.3 | **3.3ms** | **303** | | 7.0M | 14.0B
29
- | YOLOv5-m ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 41.5 | 41.5 | 61.5 | 5.5ms | 182 | | 25.2M | 50.2B
30
- | YOLOv5-l ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 44.2 | 44.5 | 64.3 | 9.7ms | 103 | | 61.8M | 123.1B
31
- | YOLOv5-x ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | **47.1** | **47.2** | **66.7** | 15.8ms | 63 | | 123.1M | 245.7B
32
- | YOLOv3-SPP ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.5 | 45.4 | 65.2 | 8.9ms | 112 | | 63.0M | 118.0B
33
 
34
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
35
- ** All accuracy numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img-size 736 --conf_thres 0.001`
36
- ** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 16, and includes image preprocessing, FP32 inference, postprocessing and NMS. Average NMS time included in this chart is 1.6ms/image. Reproduce by `python test.py --img-size 640 --conf_thres 0.1 --batch-size 16`
37
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
38
 
39
 
 
23
 
24
  ## Pretrained Checkpoints
25
 
26
+ | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Latency<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPs |
27
+ |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
28
+ | YOLOv5-s ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 33.1 | 33.0 | 53.3 | **3.3ms** | **303** || 7.0M | 14.0B
29
+ | YOLOv5-m ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 41.5 | 41.5 | 61.5 | 5.5ms | 182 || 25.2M | 50.2B
30
+ | YOLOv5-l ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 44.2 | 44.5 | 64.3 | 9.7ms | 103 || 61.8M | 123.1B
31
+ | YOLOv5-x ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | **47.1** | **47.2** | **66.7** | 15.8ms | 63 || 123.1M | 245.7B
32
+ | YOLOv3-SPP ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.5 | 45.4 | 65.2 | 8.9ms | 112 || 63.0M | 118.0B
33
 
34
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
35
+ ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img-size 736 --conf_thres 0.001`
36
+ ** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 16, and includes image preprocessing, FP32 inference, postprocessing and NMS. Average NMS time included in this chart is 1.6ms. Reproduce by `python test.py --img-size 640 --conf_thres 0.1`
37
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
38
 
39