glenn-jocher
commited on
Commit
·
d97d31e
1
Parent(s):
391492e
updates
Browse files- Dockerfile +1 -1
- README.md +9 -9
Dockerfile
CHANGED
@@ -28,7 +28,7 @@ COPY . /usr/src/app
|
|
28 |
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
|
29 |
|
30 |
# Pull and Run with local directory access
|
31 |
-
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash
|
32 |
|
33 |
# Kill all
|
34 |
# sudo docker kill "$(sudo docker ps -q)"
|
|
|
28 |
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
|
29 |
|
30 |
# Pull and Run with local directory access
|
31 |
+
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t bash
|
32 |
|
33 |
# Kill all
|
34 |
# sudo docker kill "$(sudo docker ps -q)"
|
README.md
CHANGED
@@ -23,17 +23,17 @@ For business inquiries and professional support requests please visit us at http
|
|
23 |
|
24 |
## Pretrained Checkpoints
|
25 |
|
26 |
-
|
|
27 |
-
|----------
|
28 |
-
|
|
29 |
-
|
|
30 |
-
|
|
31 |
-
|
|
32 |
-
|
|
33 |
|
34 |
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
35 |
-
** All
|
36 |
-
** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 16, and includes image preprocessing, FP32 inference, postprocessing and NMS. Average NMS time included in this chart is 1.6ms
|
37 |
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
38 |
|
39 |
|
|
|
23 |
|
24 |
## Pretrained Checkpoints
|
25 |
|
26 |
+
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Latency<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPs |
|
27 |
+
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
|
28 |
+
| YOLOv5-s ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 33.1 | 33.0 | 53.3 | **3.3ms** | **303** || 7.0M | 14.0B
|
29 |
+
| YOLOv5-m ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 41.5 | 41.5 | 61.5 | 5.5ms | 182 || 25.2M | 50.2B
|
30 |
+
| YOLOv5-l ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 44.2 | 44.5 | 64.3 | 9.7ms | 103 || 61.8M | 123.1B
|
31 |
+
| YOLOv5-x ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | **47.1** | **47.2** | **66.7** | 15.8ms | 63 || 123.1M | 245.7B
|
32 |
+
| YOLOv3-SPP ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.5 | 45.4 | 65.2 | 8.9ms | 112 || 63.0M | 118.0B
|
33 |
|
34 |
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
35 |
+
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img-size 736 --conf_thres 0.001`
|
36 |
+
** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 16, and includes image preprocessing, FP32 inference, postprocessing and NMS. Average NMS time included in this chart is 1.6ms. Reproduce by `python test.py --img-size 640 --conf_thres 0.1`
|
37 |
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
38 |
|
39 |
|