File size: 13,589 Bytes
1e84a23
d5b6416
1e84a23
d5b6416
 
 
1e84a23
d5b6416
 
 
 
 
 
 
 
f5da528
0892c44
d5b6416
1e84a23
 
 
 
 
 
 
157aff2
1e84a23
 
 
7c6fd4d
1e84a23
 
5fac5ad
 
 
1e84a23
e8cf24b
 
 
 
 
0892c44
d5b6416
5fac5ad
37acbdc
 
 
 
 
1e84a23
 
5fac5ad
1e84a23
 
 
e8cf24b
a62333e
1e84a23
e670a33
72d0614
 
1e84a23
e670a33
0afbb8d
e670a33
0afbb8d
1e84a23
1119949
 
1e84a23
 
41523e2
1e84a23
 
 
 
 
e8cf24b
1119949
 
1e84a23
e8cf24b
22fb2b0
1e84a23
 
dbdee3a
1e84a23
 
 
 
 
260b172
a1c8406
260b172
 
1e84a23
260b172
1e84a23
 
 
 
 
d5b6416
260b172
d5b6416
1e84a23
 
 
0b514da
1e84a23
 
d5b6416
5fac5ad
d5b6416
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c2da4
 
da35727
 
 
b8c2da4
da35727
b8c2da4
1e84a23
 
 
 
 
 
 
b40852d
1e84a23
260b172
1e84a23
 
 
b40852d
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a616a
 
1e84a23
 
 
 
 
 
 
c171e45
43a616a
1e84a23
c171e45
 
1e84a23
 
 
 
 
 
 
 
 
5fac5ad
 
c3d3e6b
5fac5ad
c3d3e6b
1e84a23
 
 
aa08b2b
5fac5ad
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
ba9ab66
1e84a23
 
 
 
 
 
 
b40852d
1e84a23
e8cf24b
1e84a23
 
 
 
6bd9218
1e84a23
 
 
b40852d
1e84a23
 
 
1119949
1e84a23
 
 
1119949
07a82f4
 
1e84a23
 
e670a33
1e84a23
 
 
 
 
 
 
 
e8cf24b
227aa73
d187459
1e84a23
 
 
 
 
 
 
 
 
b8c2da4
1e84a23
1ce686e
c5966ab
1e84a23
 
6bd9218
1e84a23
 
 
 
 
 
 
 
7c6fd4d
 
1e84a23
 
916d4aa
1e84a23
916d4aa
1e84a23
 
 
 
 
 
d187459
916d4aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
import glob
import json
import os
import shutil
from pathlib import Path

import numpy as np
import torch
import yaml
from tqdm import tqdm

from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import (
    coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
    xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
from utils.torch_utils import select_device, time_synchronized


def test(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         save_dir=Path(''),  # for saving images
         save_txt=False,  # for auto-labelling
         plots=True):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)
        save_txt = opt.save_txt  # save *.txt labels
        if save_txt:
            out = Path('inference/output')
            if os.path.exists(out):
                shutil.rmtree(out)  # delete output folder
            os.makedirs(out)  # make new output folder

        # Remove previous
        for f in glob.glob(str(save_dir / 'test_batch*.jpg')):
            os.remove(f)

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for mAP@0.5:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
                                       hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

    seen = 0
    names = model.names if hasattr(model, 'names') else model.module.names
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]]  # normalization gain whwh
                x = pred.clone()
                x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1])  # to original
                for *xyxy, conf, cls in x:
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
                        f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = Path(paths[si]).stem
                box = pred[:, :4].clone()  # xyxy
                scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id,
                                  'category_id': coco91class[int(p[5])],
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 1:
            f = save_dir / ('test_batch%g_gt.jpg' % batch_i)  # filename
            plot_images(img, targets, paths, str(f), names)  # ground truth
            f = save_dir / ('test_batch%g_pred.jpg' % batch_i)
            plot_images(img, output_to_target(output, width, height), paths, str(f), names)  # predictions

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=save_dir / 'precision-recall_curve.png')
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, AP@0.5, AP@0.5:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Save JSON
    if save_json and len(jdict):
        f = 'detections_val2017_%s_results.json' % \
            (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '')  # filename
        print('\nCOCO mAP with pycocotools... saving %s...' % f)
        with open(f, 'w') as file:
            json.dump(jdict, file)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
            cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0])  # initialize COCO ground truth api
            cocoDt = cocoGt.loadRes(f)  # initialize COCO pred api
            cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
            cocoEval.params.imgIds = imgIds  # image IDs to evaluate
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            map, map50 = cocoEval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
        except Exception as e:
            print('ERROR: pycocotools unable to run: %s' % e)

    # Return results
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t


if __name__ == '__main__':
    parser = argparse.ArgumentParser(prog='test.py')
    parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
    parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
    parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
    parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    opt = parser.parse_args()
    opt.save_json |= opt.data.endswith('coco.yaml')
    opt.data = check_file(opt.data)  # check file
    print(opt)

    if opt.task in ['val', 'test']:  # run normally
        test(opt.data,
             opt.weights,
             opt.batch_size,
             opt.img_size,
             opt.conf_thres,
             opt.iou_thres,
             opt.save_json,
             opt.single_cls,
             opt.augment,
             opt.verbose)

    elif opt.task == 'study':  # run over a range of settings and save/plot
        for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
            f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem)  # filename to save to
            x = list(range(320, 800, 64))  # x axis
            y = []  # y axis
            for i in x:  # img-size
                print('\nRunning %s point %s...' % (f, i))
                r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
                y.append(r + t)  # results and times
            np.savetxt(f, y, fmt='%10.4g')  # save
        os.system('zip -r study.zip study_*.txt')
        # utils.general.plot_study_txt(f, x)  # plot