File size: 8,889 Bytes
72895aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import defaultdict
from typing import Callable, Dict, Union
import paddle
import paddle.nn as nn
from .modeling_utils import _get_model_file, load_dict
from .models.cross_attention import LoRACrossAttnProcessor
from .utils import HF_CACHE, PPDIFFUSERS_CACHE, logging
logger = logging.get_logger(__name__)
LORA_WEIGHT_NAME = "paddle_lora_weights.pdparams"
class AttnProcsLayers(nn.Layer):
def __init__(self, state_dict: Dict[str, paddle.Tensor]):
super().__init__()
self.layers = nn.LayerList(state_dict.values())
self.mapping = {k: v for k, v in enumerate(state_dict.keys())}
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
# we add a hook to state_dict() and load_state_dict() so that the
# naming fits with `unet.attn_processors`
def map_to(state_dict, *args, **kwargs):
new_state_dict = {}
for key, value in state_dict.items():
num = int(key.split(".")[1]) # 0 is always "layers"
new_key = key.replace(f"layers.{num}", self.mapping[num])
new_state_dict[new_key] = value
return new_state_dict
def map_from(module, state_dict, *args, **kwargs):
all_keys = list(state_dict.keys())
for key in all_keys:
replace_key = key.split(".processor")[0] + ".processor"
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
state_dict[new_key] = state_dict[key]
del state_dict[key]
self.register_state_dict_hook(map_to)
self.register_load_state_dict_pre_hook(map_from, with_module=True)
class UNet2DConditionLoadersMixin:
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, paddle.Tensor]], **kwargs):
r"""
Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be
defined in
[cross_attention.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
and be a `paddle.nn.Layer` class.
<Tip warning={true}>
This function is experimental and might change in the future
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
`./my_model_directory/`.
- A [paddle state
dict].
from_hf_hub (bool, optional): whether to load from Huggingface Hub.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
subfolder (`str`, *optional*, defaults to `None`):
In case the relevant files are located inside a subfolder of the model repo (either remote in
huggingface.co or downloaded locally), you can specify the folder name here.
"""
from_hf_hub = kwargs.pop("from_hf_hub", False)
if from_hf_hub:
cache_dir = kwargs.pop("cache_dir", HF_CACHE)
else:
cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", LORA_WEIGHT_NAME)
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
subfolder=subfolder,
from_hf_hub=from_hf_hub,
)
state_dict = load_dict(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path_or_dict
# fill attn processors
attn_processors = {}
is_lora = all("lora" in k for k in state_dict.keys())
if is_lora:
lora_grouped_dict = defaultdict(dict)
for key, value in state_dict.items():
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
lora_grouped_dict[attn_processor_key][sub_key] = value
for key, value_dict in lora_grouped_dict.items():
rank = value_dict["to_k_lora.down.weight"].shape[1] # 0 -> 1, torch vs paddle nn.Linear
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[0] # 1 -> 0, torch vs paddle nn.Linear
hidden_size = value_dict["to_k_lora.up.weight"].shape[1] # 0 -> 1, torch vs paddle nn.Linear
attn_processors[key] = LoRACrossAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank
)
attn_processors[key].load_dict(value_dict)
else:
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")
# set correct dtype & device
attn_processors = {k: v.to(dtype=self.dtype) for k, v in attn_processors.items()}
# set layers
self.set_attn_processor(attn_processors)
def save_attn_procs(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
weights_name: str = LORA_WEIGHT_NAME,
save_function: Callable = None,
):
r"""
Save an attention procesor to a directory, so that it can be re-loaded using the
`[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`]` method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful when in distributed training like
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
the main process to avoid race conditions.
weights_name (`str`, *optional*, defaults to `LORA_WEIGHT_NAME`):
The name of weights.
save_function (`Callable`):
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
need to replace `torch.save` by another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
"""
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
if save_function is None:
save_function = paddle.save
os.makedirs(save_directory, exist_ok=True)
model_to_save = AttnProcsLayers(self.attn_processors)
# Save the model
state_dict = model_to_save.state_dict()
# Clean the folder from a previous save
for filename in os.listdir(save_directory):
full_filename = os.path.join(save_directory, filename)
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
# in distributed settings to avoid race conditions.
weights_no_suffix = weights_name.replace(".pdparams", "")
if filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and is_main_process:
os.remove(full_filename)
# Save the model
save_function(state_dict, os.path.join(save_directory, weights_name))
logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
|