File size: 11,141 Bytes
a4fd82c
 
 
 
 
 
 
 
aec9ec9
a4fd82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import re
import os
os.system('huggingface-cli login --token os.getenv("HF_TOKEN")')
from argparse import ArgumentParser
from threading import Thread
import spaces

import gradio as gr
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, TextIteratorStreamer

DEFAULT_CKPT_PATH = 'Qwen/Qwen2-VL-7B-Instruct'


def _get_args():
    parser = ArgumentParser()

    parser.add_argument('-c',
                        '--checkpoint-path',
                        type=str,
                        default=DEFAULT_CKPT_PATH,
                        help='Checkpoint name or path, default to %(default)r')
    parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')

    parser.add_argument('--share',
                        action='store_true',
                        default=False,
                        help='Create a publicly shareable link for the interface.')
    parser.add_argument('--inbrowser',
                        action='store_true',
                        default=False,
                        help='Automatically launch the interface in a new tab on the default browser.')
    parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
    parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')

    args = parser.parse_args()
    return args


def _load_model_processor(args):
    if args.cpu_only:
        device_map = 'cpu'
    else:
        device_map = 'auto'

    # default: Load the model on the available device(s)
    # model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map)

    # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
    model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path,
                                                            torch_dtype='auto',
                                                            attn_implementation='flash_attention_2',
                                                            device_map=device_map)

    processor = AutoProcessor.from_pretrained(args.checkpoint_path)
    return model, processor


def _parse_text(text):
    lines = text.split('\n')
    lines = [line for line in lines if line != '']
    count = 0
    for i, line in enumerate(lines):
        if '```' in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = '<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace('`', r'\`')
                    line = line.replace('<', '&lt;')
                    line = line.replace('>', '&gt;')
                    line = line.replace(' ', '&nbsp;')
                    line = line.replace('*', '&ast;')
                    line = line.replace('_', '&lowbar;')
                    line = line.replace('-', '&#45;')
                    line = line.replace('.', '&#46;')
                    line = line.replace('!', '&#33;')
                    line = line.replace('(', '&#40;')
                    line = line.replace(')', '&#41;')
                    line = line.replace('$', '&#36;')
                lines[i] = '<br>' + line
    text = ''.join(lines)
    return text


def _remove_image_special(text):
    text = text.replace('<ref>', '').replace('</ref>', '')
    return re.sub(r'<box>.*?(</box>|$)', '', text)


def is_video_file(filename):
    video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg']
    return any(filename.lower().endswith(ext) for ext in video_extensions)


def transform_messages(original_messages):
    transformed_messages = []
    for message in original_messages:
        new_content = []
        for item in message['content']:
            if 'image' in item:
                new_item = {'type': 'image', 'image': item['image']}
            elif 'text' in item:
                new_item = {'type': 'text', 'text': item['text']}
            elif 'video' in item:
                new_item = {'type': 'video', 'video': item['video']}
            else:
                continue
            new_content.append(new_item)

        new_message = {'role': message['role'], 'content': new_content}
        transformed_messages.append(new_message)

    return transformed_messages


def _launch_demo(args, model, processor):

    @spaces.GPU
    def call_local_model(model, processor, messages):

        messages = transform_messages(messages)

        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt').to("cuda")

        tokenizer = processor.tokenizer
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)

        gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs}

        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()

        generated_text = ''
        for new_text in streamer:
            generated_text += new_text
            yield generated_text

    def create_predict_fn():

        def predict(_chatbot, task_history):
            nonlocal model, processor
            chat_query = _chatbot[-1][0]
            query = task_history[-1][0]
            if len(chat_query) == 0:
                _chatbot.pop()
                task_history.pop()
                return _chatbot
            print('User: ' + _parse_text(query))
            history_cp = copy.deepcopy(task_history)
            full_response = ''
            messages = []
            content = []
            for q, a in history_cp:
                if isinstance(q, (tuple, list)):
                    if is_video_file(q[0]):
                        content.append({'video': f'file://{q[0]}'})
                    else:
                        content.append({'image': f'file://{q[0]}'})
                else:
                    content.append({'text': q})
                    messages.append({'role': 'user', 'content': content})
                    messages.append({'role': 'assistant', 'content': [{'text': a}]})
                    content = []
            messages.pop()

            for response in call_local_model(model, processor, messages):
                _chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))

                yield _chatbot
                full_response = _parse_text(response)

            task_history[-1] = (query, full_response)
            print('Qwen-VL-Chat: ' + _parse_text(full_response))
            yield _chatbot

        return predict

    def create_regenerate_fn():

        def regenerate(_chatbot, task_history):
            nonlocal model, processor
            if not task_history:
                return _chatbot
            item = task_history[-1]
            if item[1] is None:
                return _chatbot
            task_history[-1] = (item[0], None)
            chatbot_item = _chatbot.pop(-1)
            if chatbot_item[0] is None:
                _chatbot[-1] = (_chatbot[-1][0], None)
            else:
                _chatbot.append((chatbot_item[0], None))
            _chatbot_gen = predict(_chatbot, task_history)
            for _chatbot in _chatbot_gen:
                yield _chatbot

        return regenerate

    predict = create_predict_fn()
    regenerate = create_regenerate_fn()

    def add_text(history, task_history, text):
        task_text = text
        history = history if history is not None else []
        task_history = task_history if task_history is not None else []
        history = history + [(_parse_text(text), None)]
        task_history = task_history + [(task_text, None)]
        return history, task_history, ''

    def add_file(history, task_history, file):
        history = history if history is not None else []
        task_history = task_history if task_history is not None else []
        history = history + [((file.name,), None)]
        task_history = task_history + [((file.name,), None)]
        return history, task_history

    def reset_user_input():
        return gr.update(value='')

    def reset_state(task_history):
        task_history.clear()
        return []

    with gr.Blocks() as demo:
        gr.Markdown("""\
<p align="center"><img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/qwen2VL_logo.png" style="height: 80px"/><p>"""
                   )
        gr.Markdown("""<center><font size=8>Qwen2-VL</center>""")
        gr.Markdown("""\
<center><font size=3>This WebUI is based on Qwen2-VL, developed by Alibaba Cloud.</center>""")
        gr.Markdown("""<center><font size=3>本WebUI基于Qwen2-VL。</center>""")

        chatbot = gr.Chatbot(label='Qwen2-VL', elem_classes='control-height', height=500)
        query = gr.Textbox(lines=2, label='Input')
        task_history = gr.State([])

        with gr.Row():
            addfile_btn = gr.UploadButton('📁 Upload (上传文件)', file_types=['image', 'video'])
            submit_btn = gr.Button('🚀 Submit (发送)')
            regen_btn = gr.Button('🤔️ Regenerate (重试)')
            empty_bin = gr.Button('🧹 Clear History (清除历史)')

        submit_btn.click(add_text, [chatbot, task_history, query],
                         [chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True)
        submit_btn.click(reset_user_input, [], [query])
        empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
        regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
        addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)

        gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen2-VL. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen2-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")

    demo.queue().launch(
        share=args.share,
        inbrowser=args.inbrowser,
        server_port=args.server_port,
        server_name=args.server_name,
    )


def main():
    args = _get_args()
    model, processor = _load_model_processor(args)
    _launch_demo(args, model, processor)


if __name__ == '__main__':
    main()