Let's follow the advice of the error message: add low_cpu_mem_usage=False and device_map=None

#32
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -23,6 +23,11 @@ fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
23
  )
24
  fps14Pipe.to("cuda")
25
 
 
 
 
 
 
26
  max_64_bit_int = 2**63 - 1
27
 
28
  def animate(
@@ -101,7 +106,9 @@ def animate_on_gpu(
101
  ):
102
  generator = torch.manual_seed(seed)
103
 
104
- if version == "svdxt":
 
 
105
  return fps25Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
106
  else:
107
  return fps14Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
@@ -172,13 +179,13 @@ with gr.Blocks() as demo:
172
  with gr.Column():
173
  image = gr.Image(label="Upload your image", type="pil")
174
  with gr.Accordion("Advanced options", open=False):
175
- fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
176
  motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
177
  noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
178
  decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
179
  video_format = gr.Radio([["*.mp4", "mp4"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
180
  frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
181
- version = gr.Radio([["Auto", "auto"], ["πŸƒπŸ»β€β™€οΈ SVD (trained on 14 f/s)", "svd"], ["πŸƒπŸ»β€β™€οΈπŸ’¨ SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True)
182
  seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
183
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
184
 
 
23
  )
24
  fps14Pipe.to("cuda")
25
 
26
+ dragnuwaPipe = StableVideoDiffusionPipeline.from_pretrained(
27
+ "a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None
28
+ )
29
+ dragnuwaPipe.to("cuda")
30
+
31
  max_64_bit_int = 2**63 - 1
32
 
33
  def animate(
 
106
  ):
107
  generator = torch.manual_seed(seed)
108
 
109
+ if version == "dragnuwa":
110
+ return dragnuwaPipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
111
+ elif version == "svdxt":
112
  return fps25Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
113
  else:
114
  return fps14Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
 
179
  with gr.Column():
180
  image = gr.Image(label="Upload your image", type="pil")
181
  with gr.Accordion("Advanced options", open=False):
182
+ fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
183
  motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
184
  noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
185
  decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
186
  video_format = gr.Radio([["*.mp4", "mp4"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
187
  frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
188
+ version = gr.Radio([["Auto", "auto"], ["πŸƒπŸ»β€β™€οΈ SVD (trained on 14 f/s)", "svd"], ["πŸƒπŸ»β€β™€οΈπŸ’¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True)
189
  seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
190
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
191