File size: 9,023 Bytes
1a2a9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import torch
import io
from PIL import Image
import numpy as np
import spaces  # Import spaces for ZeroGPU compatibility
import math
import re
from einops import rearrange
from mmengine.config import Config
from xtuner.registry import BUILDER 

import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt

from scripts.camera.cam_dataset import Cam_Generator
from scripts.camera.visualization.visualize_batch import make_perspective_figures

from huggingface_hub import snapshot_download
import os
local_path = snapshot_download(
    repo_id="KangLiao/Puffin",
    repo_type="model",       
    #filename="Puffin-Base.pth",         
    local_dir="checkpoints/",  
    local_dir_use_symlinks=False,     
    revision="main",                  
)


NUM = r"[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?"
CAM_PATTERN = re.compile(r"(?:camera parameters.*?:|roll.*?:)\s*("+NUM+r")\s*,\s*("+NUM+r")\s*,\s*("+NUM+r")", re.IGNORECASE|re.DOTALL)

def center_crop(image):
    w, h = image.size
    s = min(w, h)
    l = (w - s) // 2
    t = (h - s) // 2
    return image.crop((l, t, l + s, t + s))


##### load model
config = "configs/pipelines/stage_2_base.py"
config = Config.fromfile(config)
model = BUILDER.build(config.model).cuda().bfloat16().eval()
checkpoint_path = "checkpoints/Puffin-Base.pth"
checkpoint = torch.load(checkpoint_path)
info = model.load_state_dict(checkpoint, strict=False)

def fig_to_image(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    buf.seek(0)
    img = Image.open(buf).convert('RGB')
    buf.close()
    return img

def extract_up_lat_figs(fig_dict):
    fig_up, fig_lat = None, None
    others = {}
    for k, fig in fig_dict.items():
        if ("up_field" in k) and (fig_up is None):
            fig_up = fig
        elif ("latitude_field" in k) and (fig_lat is None):
            fig_lat = fig
        else:
            others[k] = fig
    return fig_up, fig_lat, others


@torch.inference_mode()
@spaces.GPU(duration=120) 
# Multimodal Understanding function
def camera_understanding(image_src, question, seed, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    # set seed
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # torch.cuda.manual_seed(seed)
    print(torch.cuda.is_available())

    prompt = ("Describe the image in detail. Then reason its spatial distribution and estimate its camera parameters (roll, pitch, and field-of-view).")

    image = Image.fromarray(image_src).convert('RGB')
    image = center_crop(image)
    image = image.resize((512, 512))
    x = torch.from_numpy(np.array(image)).float()
    x = x / 255.0
    x = 2 * x - 1
    x = rearrange(x, 'h w c -> c h w')

    with torch.no_grad():
        outputs = model.understand(prompt=[prompt], pixel_values=[x], progress_bar=False)

    text = outputs[0]
    
    gen = Cam_Generator(mode="base")
    cam = gen.get_cam(text)
    
    bgr = np.array(image)[:, :, ::-1].astype(np.float32) / 255.0
    rgb = bgr[:, :, ::-1].copy()
    image_tensor = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
    single_batch = {}
    single_batch["image"] = image_tensor
    single_batch["up_field"] = cam[:2].unsqueeze(0)
    single_batch["latitude_field"] = cam[2:].unsqueeze(0)

    figs = make_perspective_figures(single_batch, single_batch, n_pairs=1)
    up_img = lat_img = None
    for k, fig in figs.items():
        if "up_field" in k:
            up_img = fig_to_image(fig)
        elif "latitude_field" in k:
            lat_img = fig_to_image(fig)
        plt.close(fig)

    return text#, up_img, lat_img


@torch.inference_mode()
@spaces.GPU(duration=120)  # Specify a duration to avoid timeout
def generate_image(prompt_scene,
                   seed=42,
                   roll=0.1,
                   pitch=0.1,
                   fov=1.0,
                   progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache and avoid tracking gradients
    torch.cuda.empty_cache()
    # Set the seed for reproducible results
    # if seed is not None:
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    print(torch.cuda.is_available())
    
    generator = torch.Generator().manual_seed(seed)
    prompt_camera = (
        "The camera parameters (roll, pitch, and field-of-view) are: "
        f"{roll:.4f}, {pitch:.4f}, {fov:.4f}."
    )
    gen = Cam_Generator()
    cam_map = gen.get_cam(prompt_camera).to(model.device)
    cam_map = cam_map / (math.pi / 2)
    
    prompt = prompt_scene + " " + prompt_camera
    print("prompt:", prompt)
    
    bsz = 4
    with torch.no_grad():
        images, output_reasoning = model.generate(
            prompt=[prompt]*bsz,
            cfg_prompt=[""]*bsz,
            pixel_values_init=None,
            cfg_scale=4.5,
            num_steps=50,
            cam_values=[[cam_map]]*bsz,
            progress_bar=False,
            reasoning=False,
            prompt_reasoning=[""]*bsz,
            generator=generator,
            height=512,
            width=512
        )

        images = rearrange(images, 'b c h w -> b h w c')
        images = torch.clamp(127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
        ret_images = [Image.fromarray(image) for image in images]
        return ret_images


# Gradio interface
css = '''
.gradio-container {max-width: 960px !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# Puffin")

    with gr.Tab("Camera-controllable Image Generation"):
        gr.Markdown(value="## Camera-controllable Image Generation")

        prompt_input = gr.Textbox(label="Prompt.")

        with gr.Accordion("Camera Parameters", open=True):
            with gr.Row():
                roll = gr.Slider(minimum=-0.7854, maximum=0.7854, value=0.1000, step=0.1000, label="roll value")
                pitch = gr.Slider(minimum=-0.7854, maximum=0.7854, value=-0.1000, step=0.1000, label="pitch value")
                fov = gr.Slider(minimum=0.3491, maximum=1.8326, value=1.5000, step=0.1000, label="fov value")
            seed_input = gr.Number(label="Seed (Optional)", precision=0, value=42)
            
        generation_button = gr.Button("Generate Images")
    
        image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)
    
        examples_t2i = gr.Examples(
            label="Prompt examples.",
            examples=[
                "A sunny day casts light on two warmly colored buildings—yellow with green accents and deeper orange—framed by a lush green tree, with a blue sign and street lamp adding details in the foreground.",
                "A high-vantage-point view of lush, autumn-colored mountains blanketed in green and gold, set against a clear blue sky with scattered white clouds, offering a tranquil and breathtaking vista of a serene valley below.",
                "A grand, historic castle with pointed spires and elaborate stone structures stands against a clear blue sky, flanked by a circular fountain, vibrant red flowers, and neatly trimmed hedges in a beautifully landscaped garden.",
                "A serene aerial view of a coastal landscape at sunrise/sunset, featuring warm pink and orange skies transitioning to cool blues, with calm waters stretching to rugged, snow-capped mountains in the background, creating a tranquil and picturesque scene.",
                "A worn, light-yellow walls room with herringbone terracotta floors and three large arched windows framed in pink trim and white panes, showcasing signs of age and disrepair, overlooks a residential area through glimpses of greenery and neighboring buildings.",
            ],
            inputs=prompt_input,
        )

    with gr.Tab("Camera Understanding"):
        gr.Markdown(value="## Camera Understanding")
        image_input = gr.Image()

        understanding_button = gr.Button("Chat")
        understanding_output = gr.Textbox(label="Response")
        
        #camera1 = gr.Gallery(label="Camera Maps", columns=1, rows=1)
        #camera2 = gr.Gallery(label="Camera Maps", columns=1, rows=1)

        with gr.Accordion("Advanced options", open=False):
            und_seed_input = gr.Number(label="Seed", precision=0, value=42)

        examples_inpainting = gr.Examples(
            label="Camera Understanding examples",
            examples=[
                "assets/1.jpg",
                "assets/2.jpg",
                "assets/3.jpg",
                "assets/4.jpg",
                "assets/5.jpg",
                "assets/6.jpg",
            ],
            inputs=image_input,
        )

    generation_button.click(
        fn=generate_image,
        inputs=[prompt_input, seed_input, roll, pitch, fov],
        outputs=image_output
    )

    understanding_button.click(
        camera_understanding,
        inputs=[image_input, und_seed_input],
        outputs=[understanding_output]#, camera1, camera2]
    )

demo.launch(share=True)