Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- .idea/.gitignore +8 -0
- .idea/Puffin.iml +12 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/workspace.xml +50 -0
- LICENSE +35 -0
- README.md +4 -4
- app.py +248 -0
- assets/1.jpg +3 -0
- assets/2.jpg +3 -0
- assets/3.jpg +3 -0
- assets/4.jpg +3 -0
- assets/5.jpg +3 -0
- assets/6.jpg +3 -0
- configs/models/qwen2_5_1_5b_radio_sd3_dynamic_puffin.py +87 -0
- configs/pipelines/stage_2_base.py +10 -0
- configs/pipelines/stage_3_thinking.py +11 -0
- configs/pipelines/stage_4_instruction_tuning.py +9 -0
- configs/qwen2.5/config.json +27 -0
- configs/qwen2.5/generation_config.json +14 -0
- configs/qwen2.5/tokenizer.json +0 -0
- configs/qwen2.5/tokenizer_config.json +207 -0
- configs/qwen2.5/vocab.json +0 -0
- configs/radio3/config.json +241 -0
- configs/sd3/scheduler/scheduler_config.json +6 -0
- configs/sd3/transformer/config.json +15 -0
- configs/sd3/vae/config.json +36 -0
- requirements.txt +17 -0
- scripts/camera/cam_dataset.py +107 -0
- scripts/camera/geometry/__init__.py +0 -0
- scripts/camera/geometry/base_camera.py +518 -0
- scripts/camera/geometry/camera.py +281 -0
- scripts/camera/geometry/gravity.py +129 -0
- scripts/camera/geometry/jacobians.py +63 -0
- scripts/camera/geometry/manifolds.py +113 -0
- scripts/camera/geometry/perspective_fields.py +379 -0
- scripts/camera/utils/conversions.py +150 -0
- scripts/camera/utils/image.py +182 -0
- scripts/camera/utils/tensor.py +249 -0
- scripts/camera/utils/text.py +47 -0
- scripts/camera/visualization/visualize_batch.py +188 -0
- scripts/camera/visualization/viz2d.py +521 -0
- src/datasets/utils.py +162 -0
- src/models/connector/__init__.py +2 -0
- src/models/connector/configuration_connector.py +27 -0
- src/models/connector/modeling_connector.py +507 -0
- src/models/connector/modeling_qwen2.py +50 -0
- src/models/puffin/model.py +790 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.idea/.gitignore
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Default ignored files
|
| 2 |
+
/shelf/
|
| 3 |
+
/workspace.xml
|
| 4 |
+
# Editor-based HTTP Client requests
|
| 5 |
+
/httpRequests/
|
| 6 |
+
# Datasource local storage ignored files
|
| 7 |
+
/dataSources/
|
| 8 |
+
/dataSources.local.xml
|
.idea/Puffin.iml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<module type="PYTHON_MODULE" version="4">
|
| 3 |
+
<component name="NewModuleRootManager">
|
| 4 |
+
<content url="file://$MODULE_DIR$" />
|
| 5 |
+
<orderEntry type="jdk" jdkName="$USER_HOME$/envs/pt2.7" jdkType="Python SDK" />
|
| 6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
| 7 |
+
</component>
|
| 8 |
+
<component name="PyDocumentationSettings">
|
| 9 |
+
<option name="format" value="PLAIN" />
|
| 10 |
+
<option name="myDocStringFormat" value="Plain" />
|
| 11 |
+
</component>
|
| 12 |
+
</module>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<component name="InspectionProjectProfileManager">
|
| 2 |
+
<settings>
|
| 3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
| 4 |
+
<version value="1.0" />
|
| 5 |
+
</settings>
|
| 6 |
+
</component>
|
.idea/misc.xml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="$USER_HOME$/envs/pt2.7" project-jdk-type="Python SDK" />
|
| 4 |
+
</project>
|
.idea/modules.xml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectModuleManager">
|
| 4 |
+
<modules>
|
| 5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/Puffin.iml" filepath="$PROJECT_DIR$/.idea/Puffin.iml" />
|
| 6 |
+
</modules>
|
| 7 |
+
</component>
|
| 8 |
+
</project>
|
.idea/workspace.xml
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ChangeListManager">
|
| 4 |
+
<list default="true" id="9dd87dac-8a5e-4178-a1d7-afa664ac2f6a" name="Changes" comment="" />
|
| 5 |
+
<option name="SHOW_DIALOG" value="false" />
|
| 6 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
| 7 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
| 8 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
| 9 |
+
</component>
|
| 10 |
+
<component name="ProjectColorInfo"><![CDATA[{
|
| 11 |
+
"associatedIndex": 6
|
| 12 |
+
}]]></component>
|
| 13 |
+
<component name="ProjectId" id="33qty5NdkHzw3ffLzNseYxoODo4" />
|
| 14 |
+
<component name="ProjectViewState">
|
| 15 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
| 16 |
+
<option name="showLibraryContents" value="true" />
|
| 17 |
+
</component>
|
| 18 |
+
<component name="PropertiesComponent"><![CDATA[{
|
| 19 |
+
"keyToString": {
|
| 20 |
+
"ModuleVcsDetector.initialDetectionPerformed": "true",
|
| 21 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
| 22 |
+
"last_opened_file_path": "/Users/wusize/projects/Puffin",
|
| 23 |
+
"nodejs_package_manager_path": "npm",
|
| 24 |
+
"settings.editor.selected.configurable": "com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable",
|
| 25 |
+
"vue.rearranger.settings.migration": "true"
|
| 26 |
+
}
|
| 27 |
+
}]]></component>
|
| 28 |
+
<component name="SharedIndexes">
|
| 29 |
+
<attachedChunks>
|
| 30 |
+
<set>
|
| 31 |
+
<option value="bundled-js-predefined-d6986cc7102b-6a121458b545-JavaScript-PY-251.25410.159" />
|
| 32 |
+
<option value="bundled-python-sdk-e0ed3721d81e-36ea0e71a18c-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-251.25410.159" />
|
| 33 |
+
</set>
|
| 34 |
+
</attachedChunks>
|
| 35 |
+
</component>
|
| 36 |
+
<component name="TaskManager">
|
| 37 |
+
<task active="true" id="Default" summary="Default task">
|
| 38 |
+
<changelist id="9dd87dac-8a5e-4178-a1d7-afa664ac2f6a" name="Changes" comment="" />
|
| 39 |
+
<created>1760056680813</created>
|
| 40 |
+
<option name="number" value="Default" />
|
| 41 |
+
<option name="presentableId" value="Default" />
|
| 42 |
+
<updated>1760056680813</updated>
|
| 43 |
+
<workItem from="1760056681869" duration="11000" />
|
| 44 |
+
</task>
|
| 45 |
+
<servers />
|
| 46 |
+
</component>
|
| 47 |
+
<component name="TypeScriptGeneratedFilesManager">
|
| 48 |
+
<option name="version" value="3" />
|
| 49 |
+
</component>
|
| 50 |
+
</project>
|
LICENSE
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
S-Lab License 1.0
|
| 2 |
+
|
| 3 |
+
Copyright 2025 S-Lab
|
| 4 |
+
|
| 5 |
+
Redistribution and use for non-commercial purpose in source and
|
| 6 |
+
binary forms, with or without modification, are permitted provided
|
| 7 |
+
that the following conditions are met:
|
| 8 |
+
|
| 9 |
+
1. Redistributions of source code must retain the above copyright
|
| 10 |
+
notice, this list of conditions and the following disclaimer.
|
| 11 |
+
|
| 12 |
+
2. Redistributions in binary form must reproduce the above copyright
|
| 13 |
+
notice, this list of conditions and the following disclaimer in
|
| 14 |
+
the documentation and/or other materials provided with the
|
| 15 |
+
distribution.
|
| 16 |
+
|
| 17 |
+
3. Neither the name of the copyright holder nor the names of its
|
| 18 |
+
contributors may be used to endorse or promote products derived
|
| 19 |
+
from this software without specific prior written permission.
|
| 20 |
+
|
| 21 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| 22 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| 23 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| 24 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| 25 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| 26 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| 27 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| 28 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| 29 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| 30 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 31 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 32 |
+
|
| 33 |
+
In the event that redistribution and/or use for commercial purpose in
|
| 34 |
+
source or binary forms, with or without modification is required,
|
| 35 |
+
please contact the contributor(s) of the work.
|
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
title: Puffin
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
title: Puffin
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.23.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import io
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import spaces # Import spaces for ZeroGPU compatibility
|
| 7 |
+
import math
|
| 8 |
+
import re
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
from mmengine.config import Config
|
| 11 |
+
from xtuner.registry import BUILDER
|
| 12 |
+
|
| 13 |
+
import matplotlib
|
| 14 |
+
matplotlib.use("Agg")
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
|
| 17 |
+
from scripts.camera.cam_dataset import Cam_Generator
|
| 18 |
+
from scripts.camera.visualization.visualize_batch import make_perspective_figures
|
| 19 |
+
|
| 20 |
+
from huggingface_hub import snapshot_download
|
| 21 |
+
import os
|
| 22 |
+
local_path = snapshot_download(
|
| 23 |
+
repo_id="KangLiao/Puffin",
|
| 24 |
+
repo_type="model",
|
| 25 |
+
#filename="Puffin-Base.pth",
|
| 26 |
+
local_dir="checkpoints/",
|
| 27 |
+
local_dir_use_symlinks=False,
|
| 28 |
+
revision="main",
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
NUM = r"[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?"
|
| 33 |
+
CAM_PATTERN = re.compile(r"(?:camera parameters.*?:|roll.*?:)\s*("+NUM+r")\s*,\s*("+NUM+r")\s*,\s*("+NUM+r")", re.IGNORECASE|re.DOTALL)
|
| 34 |
+
|
| 35 |
+
def center_crop(image):
|
| 36 |
+
w, h = image.size
|
| 37 |
+
s = min(w, h)
|
| 38 |
+
l = (w - s) // 2
|
| 39 |
+
t = (h - s) // 2
|
| 40 |
+
return image.crop((l, t, l + s, t + s))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
##### load model
|
| 44 |
+
config = "configs/pipelines/stage_2_base.py"
|
| 45 |
+
config = Config.fromfile(config)
|
| 46 |
+
model = BUILDER.build(config.model).cuda().bfloat16().eval()
|
| 47 |
+
checkpoint_path = "checkpoints/Puffin-Base.pth"
|
| 48 |
+
checkpoint = torch.load(checkpoint_path)
|
| 49 |
+
info = model.load_state_dict(checkpoint, strict=False)
|
| 50 |
+
|
| 51 |
+
def fig_to_image(fig):
|
| 52 |
+
buf = io.BytesIO()
|
| 53 |
+
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
| 54 |
+
buf.seek(0)
|
| 55 |
+
img = Image.open(buf).convert('RGB')
|
| 56 |
+
buf.close()
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
+
def extract_up_lat_figs(fig_dict):
|
| 60 |
+
fig_up, fig_lat = None, None
|
| 61 |
+
others = {}
|
| 62 |
+
for k, fig in fig_dict.items():
|
| 63 |
+
if ("up_field" in k) and (fig_up is None):
|
| 64 |
+
fig_up = fig
|
| 65 |
+
elif ("latitude_field" in k) and (fig_lat is None):
|
| 66 |
+
fig_lat = fig
|
| 67 |
+
else:
|
| 68 |
+
others[k] = fig
|
| 69 |
+
return fig_up, fig_lat, others
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@torch.inference_mode()
|
| 73 |
+
@spaces.GPU(duration=120)
|
| 74 |
+
# Multimodal Understanding function
|
| 75 |
+
def camera_understanding(image_src, question, seed, progress=gr.Progress(track_tqdm=True)):
|
| 76 |
+
# Clear CUDA cache before generating
|
| 77 |
+
torch.cuda.empty_cache()
|
| 78 |
+
|
| 79 |
+
# set seed
|
| 80 |
+
# torch.manual_seed(seed)
|
| 81 |
+
# np.random.seed(seed)
|
| 82 |
+
# torch.cuda.manual_seed(seed)
|
| 83 |
+
print(torch.cuda.is_available())
|
| 84 |
+
|
| 85 |
+
prompt = ("Describe the image in detail. Then reason its spatial distribution and estimate its camera parameters (roll, pitch, and field-of-view).")
|
| 86 |
+
|
| 87 |
+
image = Image.fromarray(image_src).convert('RGB')
|
| 88 |
+
image = center_crop(image)
|
| 89 |
+
image = image.resize((512, 512))
|
| 90 |
+
x = torch.from_numpy(np.array(image)).float()
|
| 91 |
+
x = x / 255.0
|
| 92 |
+
x = 2 * x - 1
|
| 93 |
+
x = rearrange(x, 'h w c -> c h w')
|
| 94 |
+
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
outputs = model.understand(prompt=[prompt], pixel_values=[x], progress_bar=False)
|
| 97 |
+
|
| 98 |
+
text = outputs[0]
|
| 99 |
+
|
| 100 |
+
gen = Cam_Generator(mode="base")
|
| 101 |
+
cam = gen.get_cam(text)
|
| 102 |
+
|
| 103 |
+
bgr = np.array(image)[:, :, ::-1].astype(np.float32) / 255.0
|
| 104 |
+
rgb = bgr[:, :, ::-1].copy()
|
| 105 |
+
image_tensor = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
|
| 106 |
+
single_batch = {}
|
| 107 |
+
single_batch["image"] = image_tensor
|
| 108 |
+
single_batch["up_field"] = cam[:2].unsqueeze(0)
|
| 109 |
+
single_batch["latitude_field"] = cam[2:].unsqueeze(0)
|
| 110 |
+
|
| 111 |
+
figs = make_perspective_figures(single_batch, single_batch, n_pairs=1)
|
| 112 |
+
up_img = lat_img = None
|
| 113 |
+
for k, fig in figs.items():
|
| 114 |
+
if "up_field" in k:
|
| 115 |
+
up_img = fig_to_image(fig)
|
| 116 |
+
elif "latitude_field" in k:
|
| 117 |
+
lat_img = fig_to_image(fig)
|
| 118 |
+
plt.close(fig)
|
| 119 |
+
|
| 120 |
+
return text#, up_img, lat_img
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@torch.inference_mode()
|
| 124 |
+
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
|
| 125 |
+
def generate_image(prompt_scene,
|
| 126 |
+
seed=42,
|
| 127 |
+
roll=0.1,
|
| 128 |
+
pitch=0.1,
|
| 129 |
+
fov=1.0,
|
| 130 |
+
progress=gr.Progress(track_tqdm=True)):
|
| 131 |
+
# Clear CUDA cache and avoid tracking gradients
|
| 132 |
+
torch.cuda.empty_cache()
|
| 133 |
+
# Set the seed for reproducible results
|
| 134 |
+
# if seed is not None:
|
| 135 |
+
torch.manual_seed(seed)
|
| 136 |
+
torch.cuda.manual_seed(seed)
|
| 137 |
+
np.random.seed(seed)
|
| 138 |
+
print(torch.cuda.is_available())
|
| 139 |
+
|
| 140 |
+
generator = torch.Generator().manual_seed(seed)
|
| 141 |
+
prompt_camera = (
|
| 142 |
+
"The camera parameters (roll, pitch, and field-of-view) are: "
|
| 143 |
+
f"{roll:.4f}, {pitch:.4f}, {fov:.4f}."
|
| 144 |
+
)
|
| 145 |
+
gen = Cam_Generator()
|
| 146 |
+
cam_map = gen.get_cam(prompt_camera).to(model.device)
|
| 147 |
+
cam_map = cam_map / (math.pi / 2)
|
| 148 |
+
|
| 149 |
+
prompt = prompt_scene + " " + prompt_camera
|
| 150 |
+
print("prompt:", prompt)
|
| 151 |
+
|
| 152 |
+
bsz = 4
|
| 153 |
+
with torch.no_grad():
|
| 154 |
+
images, output_reasoning = model.generate(
|
| 155 |
+
prompt=[prompt]*bsz,
|
| 156 |
+
cfg_prompt=[""]*bsz,
|
| 157 |
+
pixel_values_init=None,
|
| 158 |
+
cfg_scale=4.5,
|
| 159 |
+
num_steps=50,
|
| 160 |
+
cam_values=[[cam_map]]*bsz,
|
| 161 |
+
progress_bar=False,
|
| 162 |
+
reasoning=False,
|
| 163 |
+
prompt_reasoning=[""]*bsz,
|
| 164 |
+
generator=generator,
|
| 165 |
+
height=512,
|
| 166 |
+
width=512
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
images = rearrange(images, 'b c h w -> b h w c')
|
| 170 |
+
images = torch.clamp(127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
|
| 171 |
+
ret_images = [Image.fromarray(image) for image in images]
|
| 172 |
+
return ret_images
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# Gradio interface
|
| 176 |
+
css = '''
|
| 177 |
+
.gradio-container {max-width: 960px !important}
|
| 178 |
+
'''
|
| 179 |
+
with gr.Blocks(css=css) as demo:
|
| 180 |
+
gr.Markdown("# Puffin")
|
| 181 |
+
|
| 182 |
+
with gr.Tab("Camera-controllable Image Generation"):
|
| 183 |
+
gr.Markdown(value="## Camera-controllable Image Generation")
|
| 184 |
+
|
| 185 |
+
prompt_input = gr.Textbox(label="Prompt.")
|
| 186 |
+
|
| 187 |
+
with gr.Accordion("Camera Parameters", open=True):
|
| 188 |
+
with gr.Row():
|
| 189 |
+
roll = gr.Slider(minimum=-0.7854, maximum=0.7854, value=0.1000, step=0.1000, label="roll value")
|
| 190 |
+
pitch = gr.Slider(minimum=-0.7854, maximum=0.7854, value=-0.1000, step=0.1000, label="pitch value")
|
| 191 |
+
fov = gr.Slider(minimum=0.3491, maximum=1.8326, value=1.5000, step=0.1000, label="fov value")
|
| 192 |
+
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=42)
|
| 193 |
+
|
| 194 |
+
generation_button = gr.Button("Generate Images")
|
| 195 |
+
|
| 196 |
+
image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)
|
| 197 |
+
|
| 198 |
+
examples_t2i = gr.Examples(
|
| 199 |
+
label="Prompt examples.",
|
| 200 |
+
examples=[
|
| 201 |
+
"A sunny day casts light on two warmly colored buildings—yellow with green accents and deeper orange—framed by a lush green tree, with a blue sign and street lamp adding details in the foreground.",
|
| 202 |
+
"A high-vantage-point view of lush, autumn-colored mountains blanketed in green and gold, set against a clear blue sky with scattered white clouds, offering a tranquil and breathtaking vista of a serene valley below.",
|
| 203 |
+
"A grand, historic castle with pointed spires and elaborate stone structures stands against a clear blue sky, flanked by a circular fountain, vibrant red flowers, and neatly trimmed hedges in a beautifully landscaped garden.",
|
| 204 |
+
"A serene aerial view of a coastal landscape at sunrise/sunset, featuring warm pink and orange skies transitioning to cool blues, with calm waters stretching to rugged, snow-capped mountains in the background, creating a tranquil and picturesque scene.",
|
| 205 |
+
"A worn, light-yellow walls room with herringbone terracotta floors and three large arched windows framed in pink trim and white panes, showcasing signs of age and disrepair, overlooks a residential area through glimpses of greenery and neighboring buildings.",
|
| 206 |
+
],
|
| 207 |
+
inputs=prompt_input,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
with gr.Tab("Camera Understanding"):
|
| 211 |
+
gr.Markdown(value="## Camera Understanding")
|
| 212 |
+
image_input = gr.Image()
|
| 213 |
+
|
| 214 |
+
understanding_button = gr.Button("Chat")
|
| 215 |
+
understanding_output = gr.Textbox(label="Response")
|
| 216 |
+
|
| 217 |
+
#camera1 = gr.Gallery(label="Camera Maps", columns=1, rows=1)
|
| 218 |
+
#camera2 = gr.Gallery(label="Camera Maps", columns=1, rows=1)
|
| 219 |
+
|
| 220 |
+
with gr.Accordion("Advanced options", open=False):
|
| 221 |
+
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
| 222 |
+
|
| 223 |
+
examples_inpainting = gr.Examples(
|
| 224 |
+
label="Camera Understanding examples",
|
| 225 |
+
examples=[
|
| 226 |
+
"assets/1.jpg",
|
| 227 |
+
"assets/2.jpg",
|
| 228 |
+
"assets/3.jpg",
|
| 229 |
+
"assets/4.jpg",
|
| 230 |
+
"assets/5.jpg",
|
| 231 |
+
"assets/6.jpg",
|
| 232 |
+
],
|
| 233 |
+
inputs=image_input,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
generation_button.click(
|
| 237 |
+
fn=generate_image,
|
| 238 |
+
inputs=[prompt_input, seed_input, roll, pitch, fov],
|
| 239 |
+
outputs=image_output
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
understanding_button.click(
|
| 243 |
+
camera_understanding,
|
| 244 |
+
inputs=[image_input, und_seed_input],
|
| 245 |
+
outputs=[understanding_output]#, camera1, camera2]
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
demo.launch(share=True)
|
assets/1.jpg
ADDED
|
Git LFS Details
|
assets/2.jpg
ADDED
|
Git LFS Details
|
assets/3.jpg
ADDED
|
Git LFS Details
|
assets/4.jpg
ADDED
|
Git LFS Details
|
assets/5.jpg
ADDED
|
Git LFS Details
|
assets/6.jpg
ADDED
|
Git LFS Details
|
configs/models/qwen2_5_1_5b_radio_sd3_dynamic_puffin.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
from src.models.puffin.model import Qwen2p5RadioStableDiffusion3HFDynamic
|
| 4 |
+
from src.models.stable_diffusion3.transformer_sd3_dynamic import SD3Transformer2DModel
|
| 5 |
+
from src.models.radiov3.hf_model import RADIOModel
|
| 6 |
+
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
+
|
| 9 |
+
llm_name_or_path = 'Qwen/Qwen2.5-1.5B-Instruct'
|
| 10 |
+
sd3_model_name_or_path = "configs/sd3"
|
| 11 |
+
radiov3_model_name_or_path = "configs/radiov3"
|
| 12 |
+
|
| 13 |
+
prompt_template = dict(
|
| 14 |
+
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
| 15 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
| 16 |
+
'<|im_start|>assistant\n'),
|
| 17 |
+
SUFFIX='<|im_end|>',
|
| 18 |
+
IMG_START_TOKEN='<|vision_start|>',
|
| 19 |
+
IMG_END_TOKEN='<|vision_end|>',
|
| 20 |
+
IMG_CONTEXT_TOKEN='<|image_pad|>',
|
| 21 |
+
GENERATION='Generate an image: {input}',
|
| 22 |
+
GENERATION_CROSS='Generate a target image given an initial view: {input}',
|
| 23 |
+
SUFFIX_AS_EOS=True,
|
| 24 |
+
SEP='\n',
|
| 25 |
+
STOP_WORDS=['<|im_end|>', '<|endoftext|>']
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
model = dict(type=Qwen2p5RadioStableDiffusion3HFDynamic,
|
| 29 |
+
num_queries=64,
|
| 30 |
+
connector_1=dict(
|
| 31 |
+
hidden_size=1024,
|
| 32 |
+
intermediate_size=4096,
|
| 33 |
+
num_hidden_layers=6,
|
| 34 |
+
#_attn_implementation='flash_attention_2',
|
| 35 |
+
num_attention_heads=16, ),
|
| 36 |
+
connector_2=dict(
|
| 37 |
+
hidden_size=1024,
|
| 38 |
+
intermediate_size=4096,
|
| 39 |
+
num_hidden_layers=6,
|
| 40 |
+
#_attn_implementation='flash_attention_2',
|
| 41 |
+
num_attention_heads=16,
|
| 42 |
+
),
|
| 43 |
+
transformer=dict(
|
| 44 |
+
type=SD3Transformer2DModel.from_config,
|
| 45 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 46 |
+
subfolder="transformer",
|
| 47 |
+
torch_dtype=torch.bfloat16,
|
| 48 |
+
#local_files_only=True,
|
| 49 |
+
),
|
| 50 |
+
test_scheduler=dict(
|
| 51 |
+
type=FlowMatchEulerDiscreteScheduler.from_config,
|
| 52 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 53 |
+
subfolder="scheduler",
|
| 54 |
+
#local_files_only=True,
|
| 55 |
+
),
|
| 56 |
+
train_scheduler=dict(
|
| 57 |
+
type=FlowMatchEulerDiscreteScheduler.from_config,
|
| 58 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 59 |
+
subfolder="scheduler",
|
| 60 |
+
#local_files_only=True,
|
| 61 |
+
),
|
| 62 |
+
vae=dict(
|
| 63 |
+
type=AutoencoderKL.from_config,
|
| 64 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 65 |
+
subfolder="vae",
|
| 66 |
+
torch_dtype=torch.bfloat16,
|
| 67 |
+
#local_files_only=True,
|
| 68 |
+
),
|
| 69 |
+
freeze_visual_encoder=True,
|
| 70 |
+
freeze_llm=True,
|
| 71 |
+
llm=dict(
|
| 72 |
+
type=AutoModelForCausalLM.from_pretrained,
|
| 73 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
| 74 |
+
torch_dtype=torch.bfloat16,
|
| 75 |
+
#attn_implementation='flash_attention_2',
|
| 76 |
+
),
|
| 77 |
+
tokenizer=dict(
|
| 78 |
+
type=AutoTokenizer.from_pretrained,
|
| 79 |
+
pretrained_model_name_or_path=llm_name_or_path),
|
| 80 |
+
prompt_template=prompt_template,
|
| 81 |
+
pretrained_pth=None,
|
| 82 |
+
use_activation_checkpointing=False,
|
| 83 |
+
visual_encoder=dict(
|
| 84 |
+
type=RADIOModel.from_pretrained,
|
| 85 |
+
pretrained_model_name_or_path="nvidia/C-RADIOv3-H",
|
| 86 |
+
torch_dtype=torch.bfloat16,),
|
| 87 |
+
)
|
configs/pipelines/stage_2_base.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmengine.config import read_base
|
| 2 |
+
|
| 3 |
+
with read_base():
|
| 4 |
+
from ..models.qwen2_5_1_5b_radio_sd3_dynamic_puffin import model
|
| 5 |
+
|
| 6 |
+
model.freeze_visual_encoder = False
|
| 7 |
+
model.freeze_llm = False
|
| 8 |
+
model.freeze_transformer = False
|
| 9 |
+
model.use_activation_checkpointing = True
|
| 10 |
+
model.visual_encoder_grad_scale = 0.1
|
configs/pipelines/stage_3_thinking.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmengine.config import read_base
|
| 2 |
+
|
| 3 |
+
with read_base():
|
| 4 |
+
from ..models.qwen2_5_1_5b_radio_sd3_dynamic_puffin import model
|
| 5 |
+
|
| 6 |
+
model.freeze_visual_encoder = False
|
| 7 |
+
model.freeze_llm = False
|
| 8 |
+
model.freeze_transformer = False
|
| 9 |
+
model.use_activation_checkpointing = True
|
| 10 |
+
model.visual_encoder_grad_scale = 0.1
|
| 11 |
+
#model.pretrained_pth = 'work_dirs/stage_2_base/iter_30000.pth'
|
configs/pipelines/stage_4_instruction_tuning.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmengine.config import read_base
|
| 2 |
+
with read_base():
|
| 3 |
+
from ..models.qwen2_5_1_5b_radio_sd3_dynamic_puffin import model
|
| 4 |
+
|
| 5 |
+
model.freeze_visual_encoder = True
|
| 6 |
+
model.freeze_llm = False
|
| 7 |
+
model.freeze_transformer = False
|
| 8 |
+
model.use_activation_checkpointing = True
|
| 9 |
+
model.unconditional_cross_view=0.1
|
configs/qwen2.5/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 1536,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 8960,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 21,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 28,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_theta": 1000000.0,
|
| 20 |
+
"sliding_window": 32768,
|
| 21 |
+
"tie_word_embeddings": true,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.43.1",
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"use_sliding_window": false,
|
| 26 |
+
"vocab_size": 151936
|
| 27 |
+
}
|
configs/qwen2.5/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"pad_token_id": 151643,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
151645,
|
| 7 |
+
151643
|
| 8 |
+
],
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_p": 0.8,
|
| 12 |
+
"top_k": 20,
|
| 13 |
+
"transformers_version": "4.37.0"
|
| 14 |
+
}
|
configs/qwen2.5/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
configs/qwen2.5/tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"split_special_tokens": false,
|
| 205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 206 |
+
"unk_token": null
|
| 207 |
+
}
|
configs/qwen2.5/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
configs/radio3/config.json
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"adaptor_configs": {},
|
| 3 |
+
"adaptor_names": null,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"RADIOModel"
|
| 6 |
+
],
|
| 7 |
+
"args": {
|
| 8 |
+
"aa": null,
|
| 9 |
+
"amp": true,
|
| 10 |
+
"amp_dtype": "bfloat16",
|
| 11 |
+
"amp_impl": "native",
|
| 12 |
+
"aug_repeats": 0,
|
| 13 |
+
"aug_splits": 0,
|
| 14 |
+
"bn_eps": null,
|
| 15 |
+
"bn_momentum": null,
|
| 16 |
+
"cache_dir": null,
|
| 17 |
+
"channels_last": false,
|
| 18 |
+
"checkpoint_hist": 10,
|
| 19 |
+
"chk_keep_forever": 100,
|
| 20 |
+
"class_map": "",
|
| 21 |
+
"clip_grad": null,
|
| 22 |
+
"clip_mode": "norm",
|
| 23 |
+
"cls_token_per_teacher": true,
|
| 24 |
+
"coco_annotations_file": "/datasets/coco2017-adlsa/annotations/captions_val2017.json",
|
| 25 |
+
"coco_image_dir": "/datasets/coco2017-adlsa/val2017",
|
| 26 |
+
"color_jitter": 0.4,
|
| 27 |
+
"cooldown_epochs": 0,
|
| 28 |
+
"cpe_max_size": 2048,
|
| 29 |
+
"cpe_num_registers": 4,
|
| 30 |
+
"crd_loss": false,
|
| 31 |
+
"crd_loss_weight": 0.8,
|
| 32 |
+
"crop_pct": null,
|
| 33 |
+
"cutmix": 0.0,
|
| 34 |
+
"cutmix_minmax": null,
|
| 35 |
+
"dataset_download": false,
|
| 36 |
+
"debug_full_knn": false,
|
| 37 |
+
"decay_epochs": 90,
|
| 38 |
+
"decay_milestones": [
|
| 39 |
+
90,
|
| 40 |
+
180,
|
| 41 |
+
270
|
| 42 |
+
],
|
| 43 |
+
"decay_rate": 0.1,
|
| 44 |
+
"depchain": true,
|
| 45 |
+
"detect_anomaly": false,
|
| 46 |
+
"dist_bn": "reduce",
|
| 47 |
+
"dist_norm_weight": 0.0,
|
| 48 |
+
"distributed": true,
|
| 49 |
+
"drop": 0.0,
|
| 50 |
+
"drop_block": null,
|
| 51 |
+
"drop_connect": null,
|
| 52 |
+
"drop_path": null,
|
| 53 |
+
"dtype": "float32",
|
| 54 |
+
"epoch_repeats": 0.0,
|
| 55 |
+
"eval": false,
|
| 56 |
+
"eval_metric": "knn_top1",
|
| 57 |
+
"eval_teacher": false,
|
| 58 |
+
"eval_teacher_only": false,
|
| 59 |
+
"eval_throughput": false,
|
| 60 |
+
"fast_norm": false,
|
| 61 |
+
"fd_loss_fn": "MSE",
|
| 62 |
+
"feature_normalization": "PHI_STANDARDIZE",
|
| 63 |
+
"feature_summarizer": "cls_token",
|
| 64 |
+
"feature_upscale_factor": null,
|
| 65 |
+
"force_new_wandb_id": false,
|
| 66 |
+
"force_spectral_reparam": false,
|
| 67 |
+
"freeze_bn": false,
|
| 68 |
+
"fsdp": true,
|
| 69 |
+
"full_equivariance": false,
|
| 70 |
+
"fuser": "",
|
| 71 |
+
"gp": null,
|
| 72 |
+
"grad_accum_steps": 1,
|
| 73 |
+
"grad_checkpointing": false,
|
| 74 |
+
"head_init_bias": null,
|
| 75 |
+
"head_init_scale": null,
|
| 76 |
+
"head_lr": null,
|
| 77 |
+
"head_warmup": 5,
|
| 78 |
+
"head_weight_decay": 0.01,
|
| 79 |
+
"hflip": 0.5,
|
| 80 |
+
"img_size": null,
|
| 81 |
+
"in_chans": null,
|
| 82 |
+
"initial_checkpoint": null,
|
| 83 |
+
"input_size": null,
|
| 84 |
+
"interpolation": "",
|
| 85 |
+
"layer_decay": null,
|
| 86 |
+
"local_rank": 0,
|
| 87 |
+
"log_interval": 50,
|
| 88 |
+
"log_mlflow": false,
|
| 89 |
+
"log_wandb": true,
|
| 90 |
+
"loss_auto_balance": false,
|
| 91 |
+
"lr_base": 0.1,
|
| 92 |
+
"lr_base_scale": "",
|
| 93 |
+
"lr_base_size": 256,
|
| 94 |
+
"lr_cycle_decay": 0.5,
|
| 95 |
+
"lr_cycle_limit": 1,
|
| 96 |
+
"lr_cycle_mul": 1.0,
|
| 97 |
+
"lr_k_decay": 1.0,
|
| 98 |
+
"lr_noise": null,
|
| 99 |
+
"lr_noise_pct": 0.67,
|
| 100 |
+
"lr_noise_std": 1.0,
|
| 101 |
+
"mean": null,
|
| 102 |
+
"mesa": false,
|
| 103 |
+
"min_lr": 0.0001,
|
| 104 |
+
"mixup": 0.0,
|
| 105 |
+
"mixup_mode": "batch",
|
| 106 |
+
"mixup_off_epoch": 0,
|
| 107 |
+
"mixup_prob": 1.0,
|
| 108 |
+
"mixup_switch_prob": 0.5,
|
| 109 |
+
"mlp_hidden_size": 2560,
|
| 110 |
+
"mlp_num_inner": 1,
|
| 111 |
+
"mlp_version": "v2",
|
| 112 |
+
"model": "vit_huge_patch16_224",
|
| 113 |
+
"model_kwargs": {},
|
| 114 |
+
"model_norm": false,
|
| 115 |
+
"momentum": 0.9,
|
| 116 |
+
"no_aug": false,
|
| 117 |
+
"no_custom_validation": false,
|
| 118 |
+
"no_ddp_bb": true,
|
| 119 |
+
"no_knn": false,
|
| 120 |
+
"no_prefetcher": false,
|
| 121 |
+
"no_resume_opt": false,
|
| 122 |
+
"num_classes": null,
|
| 123 |
+
"one_logger_app_tag": "",
|
| 124 |
+
"one_logger_is_baseline": false,
|
| 125 |
+
"one_logger_run_name": "",
|
| 126 |
+
"onelogger": null,
|
| 127 |
+
"opt_betas": null,
|
| 128 |
+
"opt_eps": null,
|
| 129 |
+
"patience_epochs": 10,
|
| 130 |
+
"pin_mem": false,
|
| 131 |
+
"prefetcher": true,
|
| 132 |
+
"pretrained": false,
|
| 133 |
+
"rank": 0,
|
| 134 |
+
"ratio": [
|
| 135 |
+
0.75,
|
| 136 |
+
1.3333333333333333
|
| 137 |
+
],
|
| 138 |
+
"recount": 1,
|
| 139 |
+
"recovery_interval": 0,
|
| 140 |
+
"register_multiple": 0,
|
| 141 |
+
"remode": "pixel",
|
| 142 |
+
"reprob": 0.0,
|
| 143 |
+
"reset_loss_state": true,
|
| 144 |
+
"resplit": false,
|
| 145 |
+
"sample_tracking": false,
|
| 146 |
+
"save_images": false,
|
| 147 |
+
"scale": [
|
| 148 |
+
0.5,
|
| 149 |
+
1.0
|
| 150 |
+
],
|
| 151 |
+
"sched": "cosine",
|
| 152 |
+
"seed": 42,
|
| 153 |
+
"shift_equivariance": true,
|
| 154 |
+
"smoothing": 0.1,
|
| 155 |
+
"spectral_heads": false,
|
| 156 |
+
"spectral_reparam": false,
|
| 157 |
+
"spectral_weight_decay": null,
|
| 158 |
+
"split_bn": false,
|
| 159 |
+
"start_epoch": null,
|
| 160 |
+
"std": null,
|
| 161 |
+
"stream_teachers": true,
|
| 162 |
+
"sync_bn": false,
|
| 163 |
+
"synchronize_step": false,
|
| 164 |
+
"teachers": [
|
| 165 |
+
{
|
| 166 |
+
"fd_normalize": false,
|
| 167 |
+
"feature_distillation": true,
|
| 168 |
+
"input_size": 378,
|
| 169 |
+
"model": "ViT-H-14-378-quickgelu",
|
| 170 |
+
"name": "clip",
|
| 171 |
+
"pretrained": "dfn5b",
|
| 172 |
+
"type": "open_clip",
|
| 173 |
+
"use_summary": true
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"fd_normalize": false,
|
| 177 |
+
"feature_distillation": true,
|
| 178 |
+
"input_size": 384,
|
| 179 |
+
"model": "siglip2-g-384",
|
| 180 |
+
"name": "siglip2-g",
|
| 181 |
+
"type": "siglip2",
|
| 182 |
+
"use_summary": true
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"fd_normalize": false,
|
| 186 |
+
"feature_distillation": true,
|
| 187 |
+
"input_size": 224,
|
| 188 |
+
"model": "dinov2_vitg14_reg",
|
| 189 |
+
"name": "dino_v2",
|
| 190 |
+
"type": "dino_v2",
|
| 191 |
+
"use_summary": true
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"fd_normalize": false,
|
| 195 |
+
"feature_distillation": true,
|
| 196 |
+
"input_size": 1024,
|
| 197 |
+
"model": "vit-h",
|
| 198 |
+
"name": "sam",
|
| 199 |
+
"type": "sam",
|
| 200 |
+
"use_summary": false
|
| 201 |
+
}
|
| 202 |
+
],
|
| 203 |
+
"torchcompile": null,
|
| 204 |
+
"torchscript": false,
|
| 205 |
+
"train_interpolation": "random",
|
| 206 |
+
"train_split": "train",
|
| 207 |
+
"tta": 0,
|
| 208 |
+
"use_coco": false,
|
| 209 |
+
"use_multi_epochs_loader": false,
|
| 210 |
+
"val_ema_only": false,
|
| 211 |
+
"val_split": "val",
|
| 212 |
+
"vflip": 0.0,
|
| 213 |
+
"vitdet_version": 1,
|
| 214 |
+
"wandb_entity": "",
|
| 215 |
+
"wandb_id": "",
|
| 216 |
+
"wandb_job_type": "",
|
| 217 |
+
"wandb_name": "",
|
| 218 |
+
"wandb_project": "",
|
| 219 |
+
"warmup_lr": 1e-05,
|
| 220 |
+
"warmup_prefix": false,
|
| 221 |
+
"worker_seeding": "all",
|
| 222 |
+
"workers": 8,
|
| 223 |
+
"world_size": 256
|
| 224 |
+
},
|
| 225 |
+
"auto_map": {
|
| 226 |
+
"AutoConfig": "hf_model.RADIOConfig",
|
| 227 |
+
"AutoModel": "hf_model.RADIOModel"
|
| 228 |
+
},
|
| 229 |
+
"feature_normalizer_config": null,
|
| 230 |
+
"inter_feature_normalizer_config": null,
|
| 231 |
+
"max_resolution": 2048,
|
| 232 |
+
"patch_size": 16,
|
| 233 |
+
"preferred_resolution": [
|
| 234 |
+
512,
|
| 235 |
+
512
|
| 236 |
+
],
|
| 237 |
+
"torch_dtype": "float32",
|
| 238 |
+
"transformers_version": "4.51.3",
|
| 239 |
+
"version": "c-radio_v3-h",
|
| 240 |
+
"vitdet_window_size": null
|
| 241 |
+
}
|
configs/sd3/scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "FlowMatchEulerDiscreteScheduler",
|
| 3 |
+
"_diffusers_version": "0.29.0.dev0",
|
| 4 |
+
"num_train_timesteps": 1000,
|
| 5 |
+
"shift": 3.0
|
| 6 |
+
}
|
configs/sd3/transformer/config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "SD3Transformer2DModel",
|
| 3 |
+
"_diffusers_version": "0.29.0.dev0",
|
| 4 |
+
"attention_head_dim": 64,
|
| 5 |
+
"caption_projection_dim": 1536,
|
| 6 |
+
"in_channels": 16,
|
| 7 |
+
"joint_attention_dim": 4096,
|
| 8 |
+
"num_attention_heads": 24,
|
| 9 |
+
"num_layers": 24,
|
| 10 |
+
"out_channels": 16,
|
| 11 |
+
"patch_size": 2,
|
| 12 |
+
"pooled_projection_dim": 2048,
|
| 13 |
+
"pos_embed_max_size": 192,
|
| 14 |
+
"sample_size": 128
|
| 15 |
+
}
|
configs/sd3/vae/config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.29.0.dev0",
|
| 4 |
+
"act_fn": "silu",
|
| 5 |
+
"block_out_channels": [
|
| 6 |
+
128,
|
| 7 |
+
256,
|
| 8 |
+
512,
|
| 9 |
+
512
|
| 10 |
+
],
|
| 11 |
+
"down_block_types": [
|
| 12 |
+
"DownEncoderBlock2D",
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D"
|
| 16 |
+
],
|
| 17 |
+
"force_upcast": true,
|
| 18 |
+
"in_channels": 3,
|
| 19 |
+
"latent_channels": 16,
|
| 20 |
+
"latents_mean": null,
|
| 21 |
+
"latents_std": null,
|
| 22 |
+
"layers_per_block": 2,
|
| 23 |
+
"norm_num_groups": 32,
|
| 24 |
+
"out_channels": 3,
|
| 25 |
+
"sample_size": 1024,
|
| 26 |
+
"scaling_factor": 1.5305,
|
| 27 |
+
"shift_factor": 0.0609,
|
| 28 |
+
"up_block_types": [
|
| 29 |
+
"UpDecoderBlock2D",
|
| 30 |
+
"UpDecoderBlock2D",
|
| 31 |
+
"UpDecoderBlock2D",
|
| 32 |
+
"UpDecoderBlock2D"
|
| 33 |
+
],
|
| 34 |
+
"use_post_quant_conv": false,
|
| 35 |
+
"use_quant_conv": false
|
| 36 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
accelerate
|
| 3 |
+
diffusers==0.34.0
|
| 4 |
+
gradio
|
| 5 |
+
torchvision
|
| 6 |
+
safetensors
|
| 7 |
+
matplotlib==3.10.1
|
| 8 |
+
matplotlib-inline==0.1.7
|
| 9 |
+
mmengine==0.10.7
|
| 10 |
+
numpy==2.2.5
|
| 11 |
+
pillow==11.2.1
|
| 12 |
+
scipy==1.15.2
|
| 13 |
+
timm==0.9.12
|
| 14 |
+
transformers==4.49.0
|
| 15 |
+
xtuner==0.1.23
|
| 16 |
+
deepspeed
|
| 17 |
+
|
scripts/camera/cam_dataset.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from scripts.camera.geometry.camera import SimpleRadial
|
| 8 |
+
from scripts.camera.geometry.gravity import Gravity
|
| 9 |
+
from scripts.camera.geometry.perspective_fields import get_perspective_field
|
| 10 |
+
from scripts.camera.utils.conversions import fov2focal
|
| 11 |
+
from scripts.camera.utils.text import parse_camera_params
|
| 12 |
+
|
| 13 |
+
class Cam_Generator:
|
| 14 |
+
def __init__(self, mode="base"):
|
| 15 |
+
self.mode = mode
|
| 16 |
+
|
| 17 |
+
def _load_text(self, caption, h=512, w=512, k1=0, k2=0):
|
| 18 |
+
# Parse camera params from caption
|
| 19 |
+
roll, pitch, vfov = parse_camera_params(caption, self.mode)
|
| 20 |
+
|
| 21 |
+
# Convert vertical FoV to focal length
|
| 22 |
+
f = fov2focal(torch.tensor(vfov), h)
|
| 23 |
+
px, py = w / 2, h / 2
|
| 24 |
+
params = torch.tensor([w, h, f, f, px, py, k1, k2]).float()
|
| 25 |
+
gravity = torch.tensor([roll, pitch]).float()
|
| 26 |
+
return params, gravity
|
| 27 |
+
|
| 28 |
+
def _read_param(self, parameters, gravity):
|
| 29 |
+
# Build camera and gravity objects
|
| 30 |
+
camera = SimpleRadial(parameters).float()
|
| 31 |
+
roll, pitch = gravity.unbind(-1)
|
| 32 |
+
gravity_obj = Gravity.from_rp(roll, pitch)
|
| 33 |
+
camera = camera.scale(torch.Tensor([1, 1]))
|
| 34 |
+
return {"camera": camera, "gravity": gravity_obj}
|
| 35 |
+
|
| 36 |
+
def _get_perspective(self, data):
|
| 37 |
+
# Generate up and latitude fields
|
| 38 |
+
camera = data["camera"]
|
| 39 |
+
gravity_obj = data["gravity"]
|
| 40 |
+
up_field, lat_field = get_perspective_field(
|
| 41 |
+
camera, gravity_obj, use_up=True, use_latitude=True
|
| 42 |
+
)
|
| 43 |
+
del camera, gravity_obj
|
| 44 |
+
return torch.cat([up_field[0], lat_field[0]], dim=0)
|
| 45 |
+
|
| 46 |
+
def get_cam(self, caption):
|
| 47 |
+
params, gravity = self._load_text(caption)
|
| 48 |
+
data = self._read_param(params, gravity)
|
| 49 |
+
return self._get_perspective(data)
|
| 50 |
+
|
| 51 |
+
def process_folders(input_root, output_root, start_idx=0, num_folders=None, mode="base"):
|
| 52 |
+
gen = Cam_Generator(mode=mode)
|
| 53 |
+
all_dirs = sorted([
|
| 54 |
+
d for d in os.listdir(input_root)
|
| 55 |
+
if os.path.isdir(os.path.join(input_root, d))
|
| 56 |
+
])
|
| 57 |
+
if num_folders is None:
|
| 58 |
+
num_folders = len(all_dirs) - start_idx
|
| 59 |
+
selected = all_dirs[start_idx:start_idx + num_folders]
|
| 60 |
+
|
| 61 |
+
for sub in tqdm(selected, desc="Subfolders"):
|
| 62 |
+
in_sub = os.path.join(input_root, sub)
|
| 63 |
+
out_sub = os.path.join(output_root, sub)
|
| 64 |
+
os.makedirs(out_sub, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
json_files = sorted([
|
| 67 |
+
f for f in os.listdir(in_sub)
|
| 68 |
+
if f.lower().endswith('.json')
|
| 69 |
+
])
|
| 70 |
+
|
| 71 |
+
for jf in tqdm(json_files, desc=f"Processing {sub}", leave=False):
|
| 72 |
+
in_path = os.path.join(in_sub, jf)
|
| 73 |
+
with open(in_path, 'r', encoding='utf-8') as f:
|
| 74 |
+
data = json.load(f)
|
| 75 |
+
caption = data.get('caption', '')
|
| 76 |
+
cam = gen.get_cam(caption)
|
| 77 |
+
out_name = os.path.splitext(jf)[0] + '.pt'
|
| 78 |
+
out_path = os.path.join(out_sub, out_name)
|
| 79 |
+
torch.save(cam, out_path)
|
| 80 |
+
|
| 81 |
+
def main():
|
| 82 |
+
parser = argparse.ArgumentParser(
|
| 83 |
+
description="Batch process the captions to the camera maps and save as .pt"
|
| 84 |
+
)
|
| 85 |
+
parser.add_argument('--input_root', type=str,
|
| 86 |
+
help='Root directory of JSON subfolders')
|
| 87 |
+
parser.add_argument('--output_root', type=str,
|
| 88 |
+
help='Root directory to save .pt files')
|
| 89 |
+
parser.add_argument('--start_idx', type=int, default=0,
|
| 90 |
+
help='Start index of subfolders (0-based, default=0)')
|
| 91 |
+
parser.add_argument('--num_folders', type=int, default=None,
|
| 92 |
+
help='Number of subfolders to process (default: all)')
|
| 93 |
+
parser.add_argument('--mode', type=str, default='base',
|
| 94 |
+
help='parse_camera_params mode')
|
| 95 |
+
args = parser.parse_args()
|
| 96 |
+
|
| 97 |
+
process_folders(
|
| 98 |
+
args.input_root,
|
| 99 |
+
args.output_root,
|
| 100 |
+
start_idx=args.start_idx,
|
| 101 |
+
num_folders=args.num_folders,
|
| 102 |
+
mode=args.mode
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if __name__ == '__main__':
|
| 107 |
+
main()
|
scripts/camera/geometry/__init__.py
ADDED
|
File without changes
|
scripts/camera/geometry/base_camera.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Convenience classes a for camera models.
|
| 2 |
+
|
| 3 |
+
Based on PyTorch tensors: differentiable, batched, with GPU support.
|
| 4 |
+
Adapted from https://github.com/cvg/GeoCalib
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from abc import abstractmethod
|
| 8 |
+
from typing import Dict, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch.func import jacfwd, vmap
|
| 12 |
+
from torch.nn import functional as F
|
| 13 |
+
|
| 14 |
+
from scripts.camera.geometry.gravity import Gravity
|
| 15 |
+
from scripts.camera.utils.conversions import deg2rad, focal2fov, fov2focal, rad2rotmat
|
| 16 |
+
from scripts.camera.utils.tensor import TensorWrapper, autocast
|
| 17 |
+
|
| 18 |
+
# mypy: ignore-errors
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class BaseCamera(TensorWrapper):
|
| 22 |
+
"""Camera tensor class."""
|
| 23 |
+
|
| 24 |
+
eps = 1e-3
|
| 25 |
+
|
| 26 |
+
@autocast
|
| 27 |
+
def __init__(self, data: torch.Tensor):
|
| 28 |
+
"""Camera parameters with shape (..., {w, h, fx, fy, cx, cy, *dist}).
|
| 29 |
+
|
| 30 |
+
Tensor convention: (..., {w, h, fx, fy, cx, cy, pitch, roll, *dist}) where
|
| 31 |
+
- w, h: image size in pixels
|
| 32 |
+
- fx, fy: focal lengths in pixels
|
| 33 |
+
- cx, cy: principal points in normalized image coordinates
|
| 34 |
+
- dist: distortion parameters
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
data (torch.Tensor): Camera parameters with shape (..., {6, 7, 8}).
|
| 38 |
+
"""
|
| 39 |
+
# w, h, fx, fy, cx, cy, dist
|
| 40 |
+
assert data.shape[-1] in {6, 7, 8}, data.shape
|
| 41 |
+
|
| 42 |
+
pad = data.new_zeros(data.shape[:-1] + (8 - data.shape[-1],))
|
| 43 |
+
data = torch.cat([data, pad], -1) if data.shape[-1] != 8 else data
|
| 44 |
+
super().__init__(data)
|
| 45 |
+
|
| 46 |
+
@classmethod
|
| 47 |
+
def from_dict(cls, param_dict: Dict[str, torch.Tensor]) -> "BaseCamera":
|
| 48 |
+
"""Create a Camera object from a dictionary of parameters.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
param_dict (Dict[str, torch.Tensor]): Dictionary of parameters.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
Camera: Camera object.
|
| 55 |
+
"""
|
| 56 |
+
for key, value in param_dict.items():
|
| 57 |
+
if not isinstance(value, torch.Tensor):
|
| 58 |
+
param_dict[key] = torch.tensor(value)
|
| 59 |
+
|
| 60 |
+
h, w = param_dict["height"], param_dict["width"]
|
| 61 |
+
cx, cy = param_dict.get("cx", w / 2), param_dict.get("cy", h / 2)
|
| 62 |
+
|
| 63 |
+
vfov = param_dict.get("vfov")
|
| 64 |
+
f = param_dict.get("f", fov2focal(vfov, h))
|
| 65 |
+
|
| 66 |
+
if "dist" in param_dict:
|
| 67 |
+
k1, k2 = param_dict["dist"][..., 0], param_dict["dist"][..., 1]
|
| 68 |
+
elif "k1_hat" in param_dict:
|
| 69 |
+
k1 = param_dict["k1_hat"] * (f / h) ** 2
|
| 70 |
+
|
| 71 |
+
k2 = param_dict.get("k2", torch.zeros_like(k1))
|
| 72 |
+
else:
|
| 73 |
+
k1 = param_dict.get("k1", torch.zeros_like(f))
|
| 74 |
+
k2 = param_dict.get("k2", torch.zeros_like(f))
|
| 75 |
+
|
| 76 |
+
fx, fy = f, f
|
| 77 |
+
if "scales" in param_dict:
|
| 78 |
+
scales = param_dict["scales"]
|
| 79 |
+
fx = fx * scales[..., 0] / scales[..., 1]
|
| 80 |
+
|
| 81 |
+
params = torch.stack([w, h, fx, fy, cx, cy, k1, k2], dim=-1)
|
| 82 |
+
return cls(params)
|
| 83 |
+
|
| 84 |
+
def pinhole(self):
|
| 85 |
+
"""Return the pinhole camera model."""
|
| 86 |
+
return self.__class__(self._data[..., :6])
|
| 87 |
+
|
| 88 |
+
@property
|
| 89 |
+
def size(self) -> torch.Tensor:
|
| 90 |
+
"""Size (width height) of the images, with shape (..., 2)."""
|
| 91 |
+
return self._data[..., :2]
|
| 92 |
+
|
| 93 |
+
@property
|
| 94 |
+
def f(self) -> torch.Tensor:
|
| 95 |
+
"""Focal lengths (fx, fy) with shape (..., 2)."""
|
| 96 |
+
return self._data[..., 2:4]
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def vfov(self) -> torch.Tensor:
|
| 100 |
+
"""Vertical field of view in radians."""
|
| 101 |
+
return focal2fov(self.f[..., 1], self.size[..., 1])
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def hfov(self) -> torch.Tensor:
|
| 105 |
+
"""Horizontal field of view in radians."""
|
| 106 |
+
return focal2fov(self.f[..., 0], self.size[..., 0])
|
| 107 |
+
|
| 108 |
+
@property
|
| 109 |
+
def c(self) -> torch.Tensor:
|
| 110 |
+
"""Principal points (cx, cy) with shape (..., 2)."""
|
| 111 |
+
return self._data[..., 4:6]
|
| 112 |
+
|
| 113 |
+
@property
|
| 114 |
+
def K(self) -> torch.Tensor:
|
| 115 |
+
"""Returns the self intrinsic matrix with shape (..., 3, 3)."""
|
| 116 |
+
shape = self.shape + (3, 3)
|
| 117 |
+
K = self._data.new_zeros(shape)
|
| 118 |
+
K[..., 0, 0] = self.f[..., 0]
|
| 119 |
+
K[..., 1, 1] = self.f[..., 1]
|
| 120 |
+
K[..., 0, 2] = self.c[..., 0]
|
| 121 |
+
K[..., 1, 2] = self.c[..., 1]
|
| 122 |
+
K[..., 2, 2] = 1
|
| 123 |
+
return K
|
| 124 |
+
|
| 125 |
+
def update_focal(self, delta: torch.Tensor, as_log: bool = False):
|
| 126 |
+
"""Update the self parameters after changing the focal length."""
|
| 127 |
+
f = torch.exp(torch.log(self.f) + delta) if as_log else self.f + delta
|
| 128 |
+
|
| 129 |
+
# clamp focal length to a reasonable range for stability during training
|
| 130 |
+
min_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(150), self.size[..., 1])
|
| 131 |
+
max_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(5), self.size[..., 1])
|
| 132 |
+
min_f = min_f.unsqueeze(-1).expand(-1, 2)
|
| 133 |
+
max_f = max_f.unsqueeze(-1).expand(-1, 2)
|
| 134 |
+
f = f.clamp(min=min_f, max=max_f)
|
| 135 |
+
|
| 136 |
+
# make sure focal ration stays the same (avoid inplace operations)
|
| 137 |
+
fx = f[..., 1] * self.f[..., 0] / self.f[..., 1]
|
| 138 |
+
f = torch.stack([fx, f[..., 1]], -1)
|
| 139 |
+
|
| 140 |
+
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
|
| 141 |
+
return self.__class__(torch.cat([self.size, f, self.c, dist], -1))
|
| 142 |
+
|
| 143 |
+
def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]):
|
| 144 |
+
"""Update the self parameters after resizing an image."""
|
| 145 |
+
scales = (scales, scales) if isinstance(scales, (int, float)) else scales
|
| 146 |
+
s = scales if isinstance(scales, torch.Tensor) else self.new_tensor(scales)
|
| 147 |
+
|
| 148 |
+
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
|
| 149 |
+
return self.__class__(torch.cat([self.size * s, self.f * s, self.c * s, dist], -1))
|
| 150 |
+
|
| 151 |
+
def crop(self, pad: Tuple[float]):
|
| 152 |
+
"""Update the self parameters after cropping an image."""
|
| 153 |
+
pad = pad if isinstance(pad, torch.Tensor) else self.new_tensor(pad)
|
| 154 |
+
size = self.size + pad.to(self.size)
|
| 155 |
+
c = self.c + pad.to(self.c) / 2
|
| 156 |
+
|
| 157 |
+
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
|
| 158 |
+
return self.__class__(torch.cat([size, self.f, c, dist], -1))
|
| 159 |
+
|
| 160 |
+
def undo_scale_crop(self, data: Dict[str, torch.Tensor]):
|
| 161 |
+
"""Undo transforms done during scaling and cropping."""
|
| 162 |
+
camera = self.crop(-data["crop_pad"]) if "crop_pad" in data else self
|
| 163 |
+
return camera.scale(1.0 / data["scales"])
|
| 164 |
+
|
| 165 |
+
@autocast
|
| 166 |
+
def in_image(self, p2d: torch.Tensor):
|
| 167 |
+
"""Check if 2D points are within the image boundaries."""
|
| 168 |
+
assert p2d.shape[-1] == 2
|
| 169 |
+
size = self.size.unsqueeze(-2)
|
| 170 |
+
return torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
|
| 171 |
+
|
| 172 |
+
@autocast
|
| 173 |
+
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 174 |
+
"""Project 3D points into the self plane and check for visibility."""
|
| 175 |
+
z = p3d[..., -1]
|
| 176 |
+
valid = z > self.eps
|
| 177 |
+
z = z.clamp(min=self.eps)
|
| 178 |
+
p2d = p3d[..., :-1] / z.unsqueeze(-1)
|
| 179 |
+
return p2d, valid
|
| 180 |
+
|
| 181 |
+
def J_project(self, p3d: torch.Tensor):
|
| 182 |
+
"""Jacobian of the projection function."""
|
| 183 |
+
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
|
| 184 |
+
zero = torch.zeros_like(z)
|
| 185 |
+
z = z.clamp(min=self.eps)
|
| 186 |
+
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
|
| 187 |
+
J = J.reshape(p3d.shape[:-1] + (2, 3))
|
| 188 |
+
return J # N x 2 x 3
|
| 189 |
+
|
| 190 |
+
@abstractmethod
|
| 191 |
+
def distort(self, pts: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 192 |
+
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
|
| 193 |
+
raise NotImplementedError("distort() must be implemented.")
|
| 194 |
+
|
| 195 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 196 |
+
"""Jacobian of the distortion function."""
|
| 197 |
+
if wrt == "scale2pts": # (..., 2)
|
| 198 |
+
J = [
|
| 199 |
+
vmap(jacfwd(lambda x: self[idx].distort(x, return_scale=True)[0]))(p2d[idx])[None]
|
| 200 |
+
for idx in range(p2d.shape[0])
|
| 201 |
+
]
|
| 202 |
+
|
| 203 |
+
return torch.cat(J, dim=0).squeeze(-3, -2)
|
| 204 |
+
|
| 205 |
+
elif wrt == "scale2dist": # (..., 1)
|
| 206 |
+
J = []
|
| 207 |
+
for idx in range(p2d.shape[0]): # loop to batch pts dimension
|
| 208 |
+
|
| 209 |
+
def func(x):
|
| 210 |
+
params = torch.cat([self._data[idx, :6], x[None]], -1)
|
| 211 |
+
return self.__class__(params).distort(p2d[idx], return_scale=True)[0]
|
| 212 |
+
|
| 213 |
+
J.append(vmap(jacfwd(func))(self[idx].dist))
|
| 214 |
+
|
| 215 |
+
return torch.cat(J, dim=0)
|
| 216 |
+
|
| 217 |
+
else:
|
| 218 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 219 |
+
|
| 220 |
+
@abstractmethod
|
| 221 |
+
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 222 |
+
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
|
| 223 |
+
raise NotImplementedError("undistort() must be implemented.")
|
| 224 |
+
|
| 225 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 226 |
+
"""Jacobian of the undistortion function."""
|
| 227 |
+
if wrt == "pts": # (..., 2, 2)
|
| 228 |
+
J = [
|
| 229 |
+
vmap(jacfwd(lambda x: self[idx].undistort(x)[0]))(p2d[idx])[None]
|
| 230 |
+
for idx in range(p2d.shape[0])
|
| 231 |
+
]
|
| 232 |
+
|
| 233 |
+
return torch.cat(J, dim=0).squeeze(-3)
|
| 234 |
+
|
| 235 |
+
elif wrt == "dist": # (..., 1)
|
| 236 |
+
J = []
|
| 237 |
+
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
|
| 238 |
+
|
| 239 |
+
def func(x):
|
| 240 |
+
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)
|
| 241 |
+
return self.__class__(params).undistort(p2d[batch_idx])[0]
|
| 242 |
+
|
| 243 |
+
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
|
| 244 |
+
|
| 245 |
+
return torch.cat(J, dim=0)
|
| 246 |
+
else:
|
| 247 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 248 |
+
|
| 249 |
+
@autocast
|
| 250 |
+
def up_projection_offset(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 251 |
+
"""Compute the offset for the up-projection."""
|
| 252 |
+
return self.J_distort(p2d, wrt="scale2pts") # (B, N, 2)
|
| 253 |
+
|
| 254 |
+
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 255 |
+
"""Jacobian of the distortion offset for up-projection."""
|
| 256 |
+
if wrt == "uv": # (B, N, 2, 2)
|
| 257 |
+
J = [
|
| 258 |
+
vmap(jacfwd(lambda x: self[idx].up_projection_offset(x)[0, 0]))(p2d[idx])[None]
|
| 259 |
+
for idx in range(p2d.shape[0])
|
| 260 |
+
]
|
| 261 |
+
|
| 262 |
+
return torch.cat(J, dim=0)
|
| 263 |
+
|
| 264 |
+
elif wrt == "dist": # (B, N, 2)
|
| 265 |
+
J = []
|
| 266 |
+
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
|
| 267 |
+
|
| 268 |
+
def func(x):
|
| 269 |
+
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)[None]
|
| 270 |
+
return self.__class__(params).up_projection_offset(p2d[batch_idx][None])
|
| 271 |
+
|
| 272 |
+
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
|
| 273 |
+
|
| 274 |
+
return torch.cat(J, dim=0).squeeze(1)
|
| 275 |
+
else:
|
| 276 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 277 |
+
|
| 278 |
+
@autocast
|
| 279 |
+
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 280 |
+
"""Convert normalized 2D coordinates into pixel coordinates."""
|
| 281 |
+
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)
|
| 282 |
+
|
| 283 |
+
def J_denormalize(self):
|
| 284 |
+
"""Jacobian of the denormalization function."""
|
| 285 |
+
return torch.diag_embed(self.f) # ..., 2 x 2
|
| 286 |
+
|
| 287 |
+
@autocast
|
| 288 |
+
def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 289 |
+
"""Convert pixel coordinates into normalized 2D coordinates."""
|
| 290 |
+
return (p2d - self.c.unsqueeze(-2)) / (self.f.unsqueeze(-2))
|
| 291 |
+
|
| 292 |
+
def J_normalize(self, p2d: torch.Tensor, wrt: str = "f"):
|
| 293 |
+
"""Jacobian of the normalization function."""
|
| 294 |
+
# ... x N x 2 x 2
|
| 295 |
+
if wrt == "f":
|
| 296 |
+
J_f = -(p2d - self.c.unsqueeze(-2)) / ((self.f.unsqueeze(-2)) ** 2)
|
| 297 |
+
return torch.diag_embed(J_f)
|
| 298 |
+
elif wrt == "pts":
|
| 299 |
+
J_pts = 1 / self.f
|
| 300 |
+
return torch.diag_embed(J_pts)
|
| 301 |
+
else:
|
| 302 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 303 |
+
|
| 304 |
+
def pixel_coordinates(self) -> torch.Tensor:
|
| 305 |
+
"""Pixel coordinates in self frame.
|
| 306 |
+
|
| 307 |
+
Returns:
|
| 308 |
+
torch.Tensor: Pixel coordinates as a tensor of shape (B, h * w, 2).
|
| 309 |
+
"""
|
| 310 |
+
w, h = self.size[0].unbind(-1)
|
| 311 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 312 |
+
|
| 313 |
+
# create grid
|
| 314 |
+
x = torch.arange(0, w, dtype=self.dtype, device=self.device)
|
| 315 |
+
y = torch.arange(0, h, dtype=self.dtype, device=self.device)
|
| 316 |
+
x, y = torch.meshgrid(x, y, indexing="xy")
|
| 317 |
+
xy = torch.stack((x, y), dim=-1).reshape(-1, 2) # shape (h * w, 2)
|
| 318 |
+
|
| 319 |
+
# add batch dimension (normalize() would broadcast but we make it explicit)
|
| 320 |
+
B = self.shape[0]
|
| 321 |
+
xy = xy.unsqueeze(0).expand(B, -1, -1) # if B > 0 else xy
|
| 322 |
+
|
| 323 |
+
return xy.to(self.device).to(self.dtype)
|
| 324 |
+
|
| 325 |
+
def normalized_image_coordinates(self) -> torch.Tensor:
|
| 326 |
+
"""Normalized image coordinates in self frame.
|
| 327 |
+
|
| 328 |
+
Returns:
|
| 329 |
+
torch.Tensor: Normalized image coordinates as a tensor of shape (B, h * w, 3).
|
| 330 |
+
"""
|
| 331 |
+
xy = self.pixel_coordinates()
|
| 332 |
+
uv1, _ = self.image2world(xy)
|
| 333 |
+
|
| 334 |
+
B = self.shape[0]
|
| 335 |
+
uv1 = uv1.reshape(B, -1, 3)
|
| 336 |
+
return uv1.to(self.device).to(self.dtype)
|
| 337 |
+
|
| 338 |
+
@autocast
|
| 339 |
+
def pixel_bearing_many(self, p3d: torch.Tensor) -> torch.Tensor:
|
| 340 |
+
"""Get the bearing vectors of pixel coordinates.
|
| 341 |
+
|
| 342 |
+
Args:
|
| 343 |
+
p2d (torch.Tensor): Pixel coordinates as a tensor of shape (..., 3).
|
| 344 |
+
|
| 345 |
+
Returns:
|
| 346 |
+
torch.Tensor: Bearing vectors as a tensor of shape (..., 3).
|
| 347 |
+
"""
|
| 348 |
+
return F.normalize(p3d, dim=-1)
|
| 349 |
+
|
| 350 |
+
@autocast
|
| 351 |
+
def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 352 |
+
"""Transform 3D points into 2D pixel coordinates."""
|
| 353 |
+
p2d, visible = self.project(p3d)
|
| 354 |
+
p2d, mask = self.distort(p2d)
|
| 355 |
+
p2d = self.denormalize(p2d)
|
| 356 |
+
valid = visible & mask & self.in_image(p2d)
|
| 357 |
+
return p2d, valid
|
| 358 |
+
|
| 359 |
+
@autocast
|
| 360 |
+
def J_world2image(self, p3d: torch.Tensor):
|
| 361 |
+
"""Jacobian of the world2image function."""
|
| 362 |
+
p2d_proj, valid = self.project(p3d)
|
| 363 |
+
|
| 364 |
+
J_dnorm = self.J_denormalize()
|
| 365 |
+
J_dist = self.J_distort(p2d_proj)
|
| 366 |
+
J_proj = self.J_project(p3d)
|
| 367 |
+
|
| 368 |
+
J = torch.einsum("...ij,...jk,...kl->...il", J_dnorm, J_dist, J_proj)
|
| 369 |
+
return J, valid
|
| 370 |
+
|
| 371 |
+
@autocast
|
| 372 |
+
def image2world(self, p2d: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 373 |
+
"""Transform point in the image plane to 3D world coordinates."""
|
| 374 |
+
p2d = self.normalize(p2d)
|
| 375 |
+
p2d, valid = self.undistort(p2d)
|
| 376 |
+
ones = p2d.new_ones(p2d.shape[:-1] + (1,))
|
| 377 |
+
p3d = torch.cat([p2d, ones], -1)
|
| 378 |
+
return p3d, valid
|
| 379 |
+
|
| 380 |
+
@autocast
|
| 381 |
+
def J_image2world(self, p2d: torch.Tensor, wrt: str = "f") -> Tuple[torch.Tensor, torch.Tensor]:
|
| 382 |
+
"""Jacobian of the image2world function."""
|
| 383 |
+
if wrt == "dist":
|
| 384 |
+
p2d_norm = self.normalize(p2d)
|
| 385 |
+
return self.J_undistort(p2d_norm, wrt)
|
| 386 |
+
elif wrt == "f":
|
| 387 |
+
J_norm2f = self.J_normalize(p2d, wrt)
|
| 388 |
+
p2d_norm = self.normalize(p2d)
|
| 389 |
+
J_dist2norm = self.J_undistort(p2d_norm, "pts")
|
| 390 |
+
|
| 391 |
+
return torch.einsum("...ij,...jk->...ik", J_dist2norm, J_norm2f)
|
| 392 |
+
else:
|
| 393 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
| 394 |
+
|
| 395 |
+
@autocast
|
| 396 |
+
def undistort_image(self, img: torch.Tensor) -> torch.Tensor:
|
| 397 |
+
"""Undistort an image using the distortion model."""
|
| 398 |
+
assert self.shape[0] == 1, "Batch size must be 1."
|
| 399 |
+
W, H = self.size.unbind(-1)
|
| 400 |
+
H, W = H.int().item(), W.int().item()
|
| 401 |
+
|
| 402 |
+
x, y = torch.arange(0, W), torch.arange(0, H)
|
| 403 |
+
x, y = torch.meshgrid(x, y, indexing="xy")
|
| 404 |
+
coords = torch.stack((x, y), dim=-1).reshape(-1, 2)
|
| 405 |
+
|
| 406 |
+
p3d, _ = self.pinhole().image2world(coords.to(self.device).to(self.dtype))
|
| 407 |
+
p2d, _ = self.world2image(p3d)
|
| 408 |
+
|
| 409 |
+
mapx, mapy = p2d[..., 0].reshape((1, H, W)), p2d[..., 1].reshape((1, H, W))
|
| 410 |
+
grid = torch.stack((mapx, mapy), dim=-1)
|
| 411 |
+
grid = 2.0 * grid / torch.tensor([W - 1, H - 1]).to(grid) - 1
|
| 412 |
+
return F.grid_sample(img, grid, align_corners=True)
|
| 413 |
+
|
| 414 |
+
def get_img_from_pano(
|
| 415 |
+
self,
|
| 416 |
+
pano_img: torch.Tensor,
|
| 417 |
+
gravity: Gravity,
|
| 418 |
+
yaws: torch.Tensor = 0.0,
|
| 419 |
+
resize_factor: Optional[torch.Tensor] = None,
|
| 420 |
+
) -> torch.Tensor:
|
| 421 |
+
"""Render an image from a panorama.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
pano_img (torch.Tensor): Panorama image of shape (3, H, W) in [0, 1].
|
| 425 |
+
gravity (Gravity): Gravity direction of the camera.
|
| 426 |
+
yaws (torch.Tensor | list, optional): Yaw angle in radians. Defaults to 0.0.
|
| 427 |
+
resize_factor (torch.Tensor, optional): Resize the panorama to be a multiple of the
|
| 428 |
+
field of view. Defaults to 1.
|
| 429 |
+
|
| 430 |
+
Returns:
|
| 431 |
+
torch.Tensor: Image rendered from the panorama.
|
| 432 |
+
"""
|
| 433 |
+
B = self.shape[0]
|
| 434 |
+
if B > 0:
|
| 435 |
+
assert self.size[..., 0].unique().shape[0] == 1, "All images must have the same width."
|
| 436 |
+
assert self.size[..., 1].unique().shape[0] == 1, "All images must have the same height."
|
| 437 |
+
|
| 438 |
+
w, h = self.size[0].unbind(-1)
|
| 439 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 440 |
+
|
| 441 |
+
if isinstance(yaws, (int, float)):
|
| 442 |
+
yaws = [yaws]
|
| 443 |
+
if isinstance(resize_factor, (int, float)):
|
| 444 |
+
resize_factor = [resize_factor]
|
| 445 |
+
|
| 446 |
+
yaws = (
|
| 447 |
+
yaws.to(self.dtype).to(self.device)
|
| 448 |
+
if isinstance(yaws, torch.Tensor)
|
| 449 |
+
else self.new_tensor(yaws)
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if isinstance(resize_factor, torch.Tensor):
|
| 453 |
+
resize_factor = resize_factor.to(self.dtype).to(self.device)
|
| 454 |
+
elif resize_factor is not None:
|
| 455 |
+
resize_factor = self.new_tensor(resize_factor)
|
| 456 |
+
|
| 457 |
+
assert isinstance(pano_img, torch.Tensor), "Panorama image must be a torch.Tensor."
|
| 458 |
+
pano_img = pano_img if pano_img.dim() == 4 else pano_img.unsqueeze(0) # B x 3 x H x W
|
| 459 |
+
|
| 460 |
+
pano_imgs = []
|
| 461 |
+
for i, yaw in enumerate(yaws):
|
| 462 |
+
if resize_factor is not None:
|
| 463 |
+
# resize the panorama such that the fov of the panorama has the same height as the
|
| 464 |
+
# image
|
| 465 |
+
vfov = self.vfov[i] if B != 0 else self.vfov
|
| 466 |
+
scale = torch.pi / float(vfov) * float(h) / pano_img.shape[-2] * resize_factor[i]
|
| 467 |
+
pano_shape = (int(pano_img.shape[-2] * scale), int(pano_img.shape[-1] * scale))
|
| 468 |
+
|
| 469 |
+
mode = "bicubic" if scale >= 1 else "area"
|
| 470 |
+
resized_pano = F.interpolate(pano_img, size=pano_shape, mode=mode)
|
| 471 |
+
else:
|
| 472 |
+
# make sure to copy: resized_pano = pano_img
|
| 473 |
+
resized_pano = pano_img
|
| 474 |
+
pano_shape = pano_img.shape[-2:][::-1]
|
| 475 |
+
|
| 476 |
+
pano_imgs.append((resized_pano, pano_shape))
|
| 477 |
+
|
| 478 |
+
xy = self.pixel_coordinates()
|
| 479 |
+
uv1, valid = self.image2world(xy)
|
| 480 |
+
bearings = self.pixel_bearing_many(uv1)
|
| 481 |
+
|
| 482 |
+
# rotate bearings
|
| 483 |
+
R_yaw = rad2rotmat(self.new_zeros(yaw.shape), self.new_zeros(yaw.shape), yaws)
|
| 484 |
+
rotated_bearings = bearings @ gravity.R @ R_yaw
|
| 485 |
+
|
| 486 |
+
# spherical coordinates
|
| 487 |
+
lon = torch.atan2(rotated_bearings[..., 0], rotated_bearings[..., 2])
|
| 488 |
+
lat = torch.atan2(
|
| 489 |
+
rotated_bearings[..., 1], torch.norm(rotated_bearings[..., [0, 2]], dim=-1)
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
images = []
|
| 493 |
+
for idx, (resized_pano, pano_shape) in enumerate(pano_imgs):
|
| 494 |
+
min_lon, max_lon = -torch.pi, torch.pi
|
| 495 |
+
min_lat, max_lat = -torch.pi / 2.0, torch.pi / 2.0
|
| 496 |
+
min_x, max_x = 0, pano_shape[0] - 1.0
|
| 497 |
+
min_y, max_y = 0, pano_shape[1] - 1.0
|
| 498 |
+
|
| 499 |
+
# map Spherical Coordinates to Panoramic Coordinates
|
| 500 |
+
nx = (lon[idx] - min_lon) / (max_lon - min_lon) * (max_x - min_x) + min_x
|
| 501 |
+
ny = (lat[idx] - min_lat) / (max_lat - min_lat) * (max_y - min_y) + min_y
|
| 502 |
+
|
| 503 |
+
# reshape and cast to numpy for remap
|
| 504 |
+
mapx = nx.reshape((1, h, w))
|
| 505 |
+
mapy = ny.reshape((1, h, w))
|
| 506 |
+
|
| 507 |
+
grid = torch.stack((mapx, mapy), dim=-1) # Add batch dimension
|
| 508 |
+
# Normalize to [-1, 1]
|
| 509 |
+
grid = 2.0 * grid / torch.tensor([pano_shape[-2] - 1, pano_shape[-1] - 1]).to(grid) - 1
|
| 510 |
+
# Apply grid sample
|
| 511 |
+
image = F.grid_sample(resized_pano, grid, align_corners=True)#True
|
| 512 |
+
images.append(image)
|
| 513 |
+
|
| 514 |
+
return torch.concatenate(images, 0) if B > 0 else images[0]
|
| 515 |
+
|
| 516 |
+
def __repr__(self):
|
| 517 |
+
"""Print the Camera object."""
|
| 518 |
+
return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"
|
scripts/camera/geometry/camera.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of the pinhole, simple radial, and simple divisional camera models."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from scripts.camera.geometry.base_camera import BaseCamera
|
| 9 |
+
from scripts.camera.utils.tensor import autocast
|
| 10 |
+
|
| 11 |
+
# flake8: noqa: E741
|
| 12 |
+
|
| 13 |
+
# mypy: ignore-errors
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Pinhole(BaseCamera):
|
| 17 |
+
"""Implementation of the pinhole camera model."""
|
| 18 |
+
|
| 19 |
+
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 20 |
+
"""Distort normalized 2D coordinates."""
|
| 21 |
+
if return_scale:
|
| 22 |
+
return p2d.new_ones(p2d.shape[:-1] + (1,))
|
| 23 |
+
|
| 24 |
+
return p2d, p2d.new_ones((p2d.shape[0], 1)).bool()
|
| 25 |
+
|
| 26 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 27 |
+
"""Jacobian of the distortion function."""
|
| 28 |
+
if wrt == "pts":
|
| 29 |
+
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
|
| 30 |
+
else:
|
| 31 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
| 32 |
+
|
| 33 |
+
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 34 |
+
"""Undistort normalized 2D coordinates."""
|
| 35 |
+
return pts, pts.new_ones((pts.shape[0], 1)).bool()
|
| 36 |
+
|
| 37 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 38 |
+
"""Jacobian of the undistortion function."""
|
| 39 |
+
if wrt == "pts":
|
| 40 |
+
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
|
| 41 |
+
else:
|
| 42 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class SimpleRadial(BaseCamera):
|
| 46 |
+
"""Implementation of the simple radial camera model."""
|
| 47 |
+
|
| 48 |
+
@property
|
| 49 |
+
def dist(self) -> torch.Tensor:
|
| 50 |
+
"""Distortion parameters, with shape (..., 1)."""
|
| 51 |
+
return self._data[..., 6:]
|
| 52 |
+
|
| 53 |
+
@property
|
| 54 |
+
def k1(self) -> torch.Tensor:
|
| 55 |
+
"""Distortion parameters, with shape (...)."""
|
| 56 |
+
return self._data[..., 6]
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def k1_hat(self) -> torch.Tensor:
|
| 60 |
+
"""Distortion parameters, with shape (...)."""
|
| 61 |
+
return self.k1 / (self.f[..., 1] / self.size[..., 1]) ** 2
|
| 62 |
+
|
| 63 |
+
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-0.7, 0.7)):
|
| 64 |
+
"""Update the self parameters after changing the k1 distortion parameter."""
|
| 65 |
+
delta_dist = self.new_ones(self.dist.shape) * delta
|
| 66 |
+
dist = (self.dist + delta_dist).clamp(*dist_range)
|
| 67 |
+
data = torch.cat([self.size, self.f, self.c, dist], -1)
|
| 68 |
+
return self.__class__(data)
|
| 69 |
+
|
| 70 |
+
@autocast
|
| 71 |
+
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 72 |
+
"""Check if the distorted points are valid."""
|
| 73 |
+
return p2d.new_ones(p2d.shape[:-1]).bool()
|
| 74 |
+
|
| 75 |
+
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 76 |
+
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
|
| 77 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 78 |
+
radial = 1 + self.k1[..., None, None] * r2
|
| 79 |
+
|
| 80 |
+
if return_scale:
|
| 81 |
+
return radial, None
|
| 82 |
+
|
| 83 |
+
return p2d * radial, self.check_valid(p2d)
|
| 84 |
+
|
| 85 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
|
| 86 |
+
"""Jacobian of the distortion function."""
|
| 87 |
+
k1 = self.k1[..., None, None]
|
| 88 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 89 |
+
if wrt == "pts": # (..., 2, 2)
|
| 90 |
+
radial = 1 + k1 * r2
|
| 91 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 92 |
+
return (2 * k1 * ppT) + torch.diag_embed(radial.expand(radial.shape[:-1] + (2,)))
|
| 93 |
+
elif wrt == "dist": # (..., 2)
|
| 94 |
+
return r2 * p2d
|
| 95 |
+
elif wrt == "scale2dist": # (..., 1)
|
| 96 |
+
return r2
|
| 97 |
+
elif wrt == "scale2pts": # (..., 2)
|
| 98 |
+
return 2 * k1 * p2d
|
| 99 |
+
else:
|
| 100 |
+
return super().J_distort(p2d, wrt)
|
| 101 |
+
|
| 102 |
+
@autocast
|
| 103 |
+
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 104 |
+
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
|
| 105 |
+
b1 = -self.k1[..., None, None]
|
| 106 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 107 |
+
radial = 1 + b1 * r2
|
| 108 |
+
return p2d * radial, self.check_valid(p2d)
|
| 109 |
+
|
| 110 |
+
@autocast
|
| 111 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 112 |
+
"""Jacobian of the undistortion function."""
|
| 113 |
+
b1 = -self.k1[..., None, None]
|
| 114 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 115 |
+
if wrt == "dist":
|
| 116 |
+
return -r2 * p2d
|
| 117 |
+
elif wrt == "pts":
|
| 118 |
+
radial = 1 + b1 * r2
|
| 119 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 120 |
+
return (2 * b1[..., None] * ppT) + torch.diag_embed(
|
| 121 |
+
radial.expand(radial.shape[:-1] + (2,))
|
| 122 |
+
)
|
| 123 |
+
else:
|
| 124 |
+
return super().J_undistort(p2d, wrt)
|
| 125 |
+
|
| 126 |
+
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 127 |
+
"""Jacobian of the up-projection offset."""
|
| 128 |
+
if wrt == "uv": # (..., 2, 2)
|
| 129 |
+
return torch.diag_embed((2 * self.k1[..., None, None]).expand(p2d.shape[:-1] + (2,)))
|
| 130 |
+
elif wrt == "dist":
|
| 131 |
+
return 2 * p2d # (..., 2)
|
| 132 |
+
else:
|
| 133 |
+
return super().J_up_projection_offset(p2d, wrt)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class SimpleDivisional(BaseCamera):
|
| 137 |
+
"""Implementation of the simple divisional camera model."""
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def dist(self) -> torch.Tensor:
|
| 141 |
+
"""Distortion parameters, with shape (..., 1)."""
|
| 142 |
+
return self._data[..., 6:]
|
| 143 |
+
|
| 144 |
+
@property
|
| 145 |
+
def k1(self) -> torch.Tensor:
|
| 146 |
+
"""Distortion parameters, with shape (...)."""
|
| 147 |
+
return self._data[..., 6]
|
| 148 |
+
|
| 149 |
+
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-3.0, 3.0)):
|
| 150 |
+
"""Update the self parameters after changing the k1 distortion parameter."""
|
| 151 |
+
delta_dist = self.new_ones(self.dist.shape) * delta
|
| 152 |
+
dist = (self.dist + delta_dist).clamp(*dist_range)
|
| 153 |
+
data = torch.cat([self.size, self.f, self.c, dist], -1)
|
| 154 |
+
return self.__class__(data)
|
| 155 |
+
|
| 156 |
+
@autocast
|
| 157 |
+
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 158 |
+
"""Check if the distorted points are valid."""
|
| 159 |
+
return p2d.new_ones(p2d.shape[:-1]).bool()
|
| 160 |
+
|
| 161 |
+
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 162 |
+
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
|
| 163 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 164 |
+
radial = 1 - torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=0))
|
| 165 |
+
denom = 2 * self.k1[..., None, None] * r2
|
| 166 |
+
|
| 167 |
+
ones = radial.new_ones(radial.shape)
|
| 168 |
+
radial = torch.where(denom == 0, ones, radial / denom.masked_fill(denom == 0, 1e6))
|
| 169 |
+
|
| 170 |
+
if return_scale:
|
| 171 |
+
return radial, None
|
| 172 |
+
|
| 173 |
+
return p2d * radial, self.check_valid(p2d)
|
| 174 |
+
|
| 175 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
|
| 176 |
+
"""Jacobian of the distortion function."""
|
| 177 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 178 |
+
t0 = torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=1e-6))
|
| 179 |
+
if wrt == "scale2pts": # (B, N, 2)
|
| 180 |
+
d1 = t0 * 2 * r2
|
| 181 |
+
d2 = self.k1[..., None, None] * r2**2
|
| 182 |
+
denom = d1 * d2
|
| 183 |
+
return p2d * (4 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
|
| 184 |
+
|
| 185 |
+
elif wrt == "scale2dist":
|
| 186 |
+
d1 = 2 * self.k1[..., None, None] * t0
|
| 187 |
+
d2 = 2 * r2 * self.k1[..., None, None] ** 2
|
| 188 |
+
denom = d1 * d2
|
| 189 |
+
return (2 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
|
| 190 |
+
|
| 191 |
+
else:
|
| 192 |
+
return super().J_distort(p2d, wrt)
|
| 193 |
+
|
| 194 |
+
@autocast
|
| 195 |
+
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 196 |
+
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
|
| 197 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 198 |
+
denom = 1 + self.k1[..., None, None] * r2
|
| 199 |
+
radial = 1 / denom.masked_fill(denom == 0, 1e6)
|
| 200 |
+
return p2d * radial, self.check_valid(p2d)
|
| 201 |
+
|
| 202 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 203 |
+
"""Jacobian of the undistortion function."""
|
| 204 |
+
# return super().J_undistort(p2d, wrt)
|
| 205 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 206 |
+
k1 = self.k1[..., None, None]
|
| 207 |
+
if wrt == "dist":
|
| 208 |
+
denom = (1 + k1 * r2) ** 2
|
| 209 |
+
return -r2 / denom.masked_fill(denom == 0, 1e6) * p2d
|
| 210 |
+
elif wrt == "pts":
|
| 211 |
+
t0 = 1 + k1 * r2
|
| 212 |
+
t0 = t0.masked_fill(t0 == 0, 1e6)
|
| 213 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 214 |
+
J = torch.diag_embed((1 / t0).expand(p2d.shape[:-1] + (2,)))
|
| 215 |
+
return J - 2 * k1[..., None] * ppT / t0[..., None] ** 2 # (..., N, 2, 2)
|
| 216 |
+
|
| 217 |
+
else:
|
| 218 |
+
return super().J_undistort(p2d, wrt)
|
| 219 |
+
|
| 220 |
+
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 221 |
+
"""Jacobian of the up-projection offset.
|
| 222 |
+
|
| 223 |
+
func(uv, dist) = 4 / (2 * norm2(uv)^2 * (1-4*k1*norm2(uv)^2)^0.5) * uv
|
| 224 |
+
- (1-(1-4*k1*norm2(uv)^2)^0.5) / (k1 * norm2(uv)^4) * uv
|
| 225 |
+
"""
|
| 226 |
+
k1 = self.k1[..., None, None]
|
| 227 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 228 |
+
t0 = (1 - 4 * k1 * r2).clamp(min=1e-6)
|
| 229 |
+
t1 = torch.sqrt(t0)
|
| 230 |
+
if wrt == "dist":
|
| 231 |
+
denom = 4 * t0 ** (3 / 2)
|
| 232 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 233 |
+
J = 16 / denom
|
| 234 |
+
|
| 235 |
+
denom = r2 * t1 * k1
|
| 236 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 237 |
+
J = J - 2 / denom
|
| 238 |
+
|
| 239 |
+
denom = (r2 * k1) ** 2
|
| 240 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 241 |
+
J = J + (1 - t1) / denom
|
| 242 |
+
|
| 243 |
+
return J * p2d
|
| 244 |
+
elif wrt == "uv":
|
| 245 |
+
# ! unstable (gradient checker might fail), rewrite to use single division (by denom)
|
| 246 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 247 |
+
|
| 248 |
+
denom = 2 * r2 * t1
|
| 249 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 250 |
+
J = torch.diag_embed((4 / denom).expand(p2d.shape[:-1] + (2,)))
|
| 251 |
+
|
| 252 |
+
denom = 4 * t1 * r2**2
|
| 253 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 254 |
+
J = J - 16 / denom[..., None] * ppT
|
| 255 |
+
|
| 256 |
+
denom = 4 * r2 * t0 ** (3 / 2)
|
| 257 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 258 |
+
J = J + (32 * k1[..., None]) / denom[..., None] * ppT
|
| 259 |
+
|
| 260 |
+
denom = r2**2 * t1
|
| 261 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 262 |
+
J = J - 4 / denom[..., None] * ppT
|
| 263 |
+
|
| 264 |
+
denom = k1 * r2**3
|
| 265 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 266 |
+
J = J + (4 * (1 - t1) / denom)[..., None] * ppT
|
| 267 |
+
|
| 268 |
+
denom = k1 * r2**2
|
| 269 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 270 |
+
J = J - torch.diag_embed(((1 - t1) / denom).expand(p2d.shape[:-1] + (2,)))
|
| 271 |
+
|
| 272 |
+
return J
|
| 273 |
+
else:
|
| 274 |
+
return super().J_up_projection_offset(p2d, wrt)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
camera_models = {
|
| 278 |
+
"pinhole": Pinhole,
|
| 279 |
+
"simple_radial": SimpleRadial,
|
| 280 |
+
"simple_divisional": SimpleDivisional,
|
| 281 |
+
}
|
scripts/camera/geometry/gravity.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Tensor class for gravity vector in camera frame."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
from scripts.camera.geometry.manifolds import EuclideanManifold, SphericalManifold
|
| 8 |
+
from scripts.camera.utils.conversions import rad2rotmat
|
| 9 |
+
from scripts.camera.utils.tensor import TensorWrapper, autocast
|
| 10 |
+
|
| 11 |
+
# mypy: ignore-errors
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Gravity(TensorWrapper):
|
| 15 |
+
"""Gravity vector in camera frame."""
|
| 16 |
+
|
| 17 |
+
eps = 1e-4
|
| 18 |
+
|
| 19 |
+
@autocast
|
| 20 |
+
def __init__(self, data: torch.Tensor) -> None:
|
| 21 |
+
"""Create gravity vector from data.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
data (torch.Tensor): gravity vector as 3D vector in camera frame.
|
| 25 |
+
"""
|
| 26 |
+
assert data.shape[-1] == 3, data.shape
|
| 27 |
+
|
| 28 |
+
data = F.normalize(data, dim=-1)
|
| 29 |
+
|
| 30 |
+
super().__init__(data)
|
| 31 |
+
|
| 32 |
+
@classmethod
|
| 33 |
+
def from_rp(cls, roll: torch.Tensor, pitch: torch.Tensor) -> "Gravity":
|
| 34 |
+
"""Create gravity vector from roll and pitch angles."""
|
| 35 |
+
if not isinstance(roll, torch.Tensor):
|
| 36 |
+
roll = torch.tensor(roll)
|
| 37 |
+
if not isinstance(pitch, torch.Tensor):
|
| 38 |
+
pitch = torch.tensor(pitch)
|
| 39 |
+
|
| 40 |
+
sr, cr = torch.sin(roll), torch.cos(roll)
|
| 41 |
+
sp, cp = torch.sin(pitch), torch.cos(pitch)
|
| 42 |
+
return cls(torch.stack([-sr * cp, -cr * cp, sp], dim=-1))
|
| 43 |
+
|
| 44 |
+
@property
|
| 45 |
+
def vec3d(self) -> torch.Tensor:
|
| 46 |
+
"""Return the gravity vector in the representation."""
|
| 47 |
+
return self._data
|
| 48 |
+
|
| 49 |
+
@property
|
| 50 |
+
def x(self) -> torch.Tensor:
|
| 51 |
+
"""Return first component of the gravity vector."""
|
| 52 |
+
return self._data[..., 0]
|
| 53 |
+
|
| 54 |
+
@property
|
| 55 |
+
def y(self) -> torch.Tensor:
|
| 56 |
+
"""Return second component of the gravity vector."""
|
| 57 |
+
return self._data[..., 1]
|
| 58 |
+
|
| 59 |
+
@property
|
| 60 |
+
def z(self) -> torch.Tensor:
|
| 61 |
+
"""Return third component of the gravity vector."""
|
| 62 |
+
return self._data[..., 2]
|
| 63 |
+
|
| 64 |
+
@property
|
| 65 |
+
def roll(self) -> torch.Tensor:
|
| 66 |
+
"""Return the roll angle of the gravity vector."""
|
| 67 |
+
roll = torch.asin(-self.x / (torch.sqrt(1 - self.z**2) + self.eps))
|
| 68 |
+
offset = -torch.pi * torch.sign(self.x)
|
| 69 |
+
return torch.where(self.y < 0, roll, -roll + offset)
|
| 70 |
+
|
| 71 |
+
def J_roll(self) -> torch.Tensor:
|
| 72 |
+
"""Return the Jacobian of the roll angle of the gravity vector."""
|
| 73 |
+
cp, _ = torch.cos(self.pitch), torch.sin(self.pitch)
|
| 74 |
+
cr, sr = torch.cos(self.roll), torch.sin(self.roll)
|
| 75 |
+
Jr = self.new_zeros(self.shape + (3,))
|
| 76 |
+
Jr[..., 0] = -cr * cp
|
| 77 |
+
Jr[..., 1] = sr * cp
|
| 78 |
+
return Jr
|
| 79 |
+
|
| 80 |
+
@property
|
| 81 |
+
def pitch(self) -> torch.Tensor:
|
| 82 |
+
"""Return the pitch angle of the gravity vector."""
|
| 83 |
+
return torch.asin(self.z)
|
| 84 |
+
|
| 85 |
+
def J_pitch(self) -> torch.Tensor:
|
| 86 |
+
"""Return the Jacobian of the pitch angle of the gravity vector."""
|
| 87 |
+
cp, sp = torch.cos(self.pitch), torch.sin(self.pitch)
|
| 88 |
+
cr, sr = torch.cos(self.roll), torch.sin(self.roll)
|
| 89 |
+
|
| 90 |
+
Jp = self.new_zeros(self.shape + (3,))
|
| 91 |
+
Jp[..., 0] = sr * sp
|
| 92 |
+
Jp[..., 1] = cr * sp
|
| 93 |
+
Jp[..., 2] = cp
|
| 94 |
+
return Jp
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def rp(self) -> torch.Tensor:
|
| 98 |
+
"""Return the roll and pitch angles of the gravity vector."""
|
| 99 |
+
return torch.stack([self.roll, self.pitch], dim=-1)
|
| 100 |
+
|
| 101 |
+
def J_rp(self) -> torch.Tensor:
|
| 102 |
+
"""Return the Jacobian of the roll and pitch angles of the gravity vector."""
|
| 103 |
+
return torch.stack([self.J_roll(), self.J_pitch()], dim=-1)
|
| 104 |
+
|
| 105 |
+
@property
|
| 106 |
+
def R(self) -> torch.Tensor:
|
| 107 |
+
"""Return the rotation matrix from the gravity vector."""
|
| 108 |
+
return rad2rotmat(roll=self.roll, pitch=self.pitch)
|
| 109 |
+
|
| 110 |
+
def J_R(self) -> torch.Tensor:
|
| 111 |
+
"""Return the Jacobian of the rotation matrix from the gravity vector."""
|
| 112 |
+
raise NotImplementedError
|
| 113 |
+
|
| 114 |
+
def update(self, delta: torch.Tensor, spherical: bool = False) -> "Gravity":
|
| 115 |
+
"""Update the gravity vector by adding a delta."""
|
| 116 |
+
if spherical:
|
| 117 |
+
data = SphericalManifold.plus(self.vec3d, delta)
|
| 118 |
+
return self.__class__(data)
|
| 119 |
+
|
| 120 |
+
data = EuclideanManifold.plus(self.rp, delta)
|
| 121 |
+
return self.from_rp(data[..., 0], data[..., 1])
|
| 122 |
+
|
| 123 |
+
def J_update(self, spherical: bool = False) -> torch.Tensor:
|
| 124 |
+
"""Return the Jacobian of the update."""
|
| 125 |
+
return SphericalManifold if spherical else EuclideanManifold
|
| 126 |
+
|
| 127 |
+
def __repr__(self):
|
| 128 |
+
"""Print the Camera object."""
|
| 129 |
+
return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"
|
scripts/camera/geometry/jacobians.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Jacobians for optimization."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@torch.jit.script
|
| 8 |
+
def J_vecnorm(vec: torch.Tensor) -> torch.Tensor:
|
| 9 |
+
"""Compute the jacobian of vec / norm2(vec).
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
vec (torch.Tensor): [..., D] tensor.
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
torch.Tensor: [..., D, D] Jacobian.
|
| 16 |
+
"""
|
| 17 |
+
D = vec.shape[-1]
|
| 18 |
+
norm_x = torch.norm(vec, dim=-1, keepdim=True).unsqueeze(-1) # (..., 1, 1)
|
| 19 |
+
|
| 20 |
+
if (norm_x == 0).any():
|
| 21 |
+
norm_x = norm_x + 1e-6
|
| 22 |
+
|
| 23 |
+
xxT = torch.einsum("...i,...j->...ij", vec, vec) # (..., D, D)
|
| 24 |
+
identity = torch.eye(D, device=vec.device, dtype=vec.dtype) # (D, D)
|
| 25 |
+
|
| 26 |
+
return identity / norm_x - (xxT / norm_x**3) # (..., D, D)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@torch.jit.script
|
| 30 |
+
def J_focal2fov(focal: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
"""Compute the jacobian of the focal2fov function."""
|
| 32 |
+
return -4 * h / (4 * focal**2 + h**2)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@torch.jit.script
|
| 36 |
+
def J_up_projection(uv: torch.Tensor, abc: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 37 |
+
"""Compute the jacobian of the up-vector projection.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
uv (torch.Tensor): Normalized image coordinates of shape (..., 2).
|
| 41 |
+
abc (torch.Tensor): Gravity vector of shape (..., 3).
|
| 42 |
+
wrt (str, optional): Parameter to differentiate with respect to. Defaults to "uv".
|
| 43 |
+
|
| 44 |
+
Raises:
|
| 45 |
+
ValueError: If the wrt parameter is unknown.
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
torch.Tensor: Jacobian with respect to the parameter.
|
| 49 |
+
"""
|
| 50 |
+
if wrt == "uv":
|
| 51 |
+
c = abc[..., 2][..., None, None, None]
|
| 52 |
+
return -c * torch.eye(2, device=uv.device, dtype=uv.dtype).expand(uv.shape[:-1] + (2, 2))
|
| 53 |
+
|
| 54 |
+
elif wrt == "abc":
|
| 55 |
+
J = uv.new_zeros(uv.shape[:-1] + (2, 3))
|
| 56 |
+
J[..., 0, 0] = 1
|
| 57 |
+
J[..., 1, 1] = 1
|
| 58 |
+
J[..., 0, 2] = -uv[..., 0]
|
| 59 |
+
J[..., 1, 2] = -uv[..., 1]
|
| 60 |
+
return J
|
| 61 |
+
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
scripts/camera/geometry/manifolds.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of manifolds."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class EuclideanManifold:
|
| 12 |
+
"""Simple euclidean manifold."""
|
| 13 |
+
|
| 14 |
+
@staticmethod
|
| 15 |
+
def J_plus(x: torch.Tensor) -> torch.Tensor:
|
| 16 |
+
"""Plus operator Jacobian."""
|
| 17 |
+
return torch.eye(x.shape[-1]).to(x)
|
| 18 |
+
|
| 19 |
+
@staticmethod
|
| 20 |
+
def plus(x: torch.Tensor, delta: torch.Tensor) -> torch.Tensor:
|
| 21 |
+
"""Plus operator."""
|
| 22 |
+
return x + delta
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class SphericalManifold:
|
| 26 |
+
"""Implementation of the spherical manifold.
|
| 27 |
+
|
| 28 |
+
Following the derivation from 'Integrating Generic Sensor Fusion Algorithms with Sound State
|
| 29 |
+
Representations through Encapsulation of Manifolds' by Hertzberg et al. (B.2, p. 25).
|
| 30 |
+
|
| 31 |
+
Householder transformation following Algorithm 5.1.1 (p. 210) from 'Matrix Computations' by
|
| 32 |
+
Golub et al.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
@staticmethod
|
| 36 |
+
def householder_vector(x: torch.Tensor) -> torch.Tensor:
|
| 37 |
+
"""Return the Householder vector and beta.
|
| 38 |
+
|
| 39 |
+
Algorithm 5.1.1 (p. 210) from 'Matrix Computations' by Golub et al. (Johns Hopkins Studies
|
| 40 |
+
in Mathematical Sciences) but using the nth element of the input vector as pivot instead of
|
| 41 |
+
first.
|
| 42 |
+
|
| 43 |
+
This computes the vector v with v(n) = 1 and beta such that H = I - beta * v * v^T is
|
| 44 |
+
orthogonal and H * x = ||x||_2 * e_n.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
x (torch.Tensor): [..., n] tensor.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
torch.Tensor: v of shape [..., n]
|
| 51 |
+
torch.Tensor: beta of shape [...]
|
| 52 |
+
"""
|
| 53 |
+
sigma = torch.sum(x[..., :-1] ** 2, -1)
|
| 54 |
+
xpiv = x[..., -1]
|
| 55 |
+
norm = torch.norm(x, dim=-1)
|
| 56 |
+
if torch.any(sigma < 1e-7):
|
| 57 |
+
sigma = torch.where(sigma < 1e-7, sigma + 1e-7, sigma)
|
| 58 |
+
logger.warning("sigma < 1e-7")
|
| 59 |
+
|
| 60 |
+
vpiv = torch.where(xpiv < 0, xpiv - norm, -sigma / (xpiv + norm))
|
| 61 |
+
beta = 2 * vpiv**2 / (sigma + vpiv**2)
|
| 62 |
+
v = torch.cat([x[..., :-1] / vpiv[..., None], torch.ones_like(vpiv)[..., None]], -1)
|
| 63 |
+
return v, beta
|
| 64 |
+
|
| 65 |
+
@staticmethod
|
| 66 |
+
def apply_householder(y: torch.Tensor, v: torch.Tensor, beta: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
"""Apply Householder transformation.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
y (torch.Tensor): Vector to transform of shape [..., n].
|
| 71 |
+
v (torch.Tensor): Householder vector of shape [..., n].
|
| 72 |
+
beta (torch.Tensor): Householder beta of shape [...].
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
torch.Tensor: Transformed vector of shape [..., n].
|
| 76 |
+
"""
|
| 77 |
+
return y - v * (beta * torch.einsum("...i,...i->...", v, y))[..., None]
|
| 78 |
+
|
| 79 |
+
@classmethod
|
| 80 |
+
def J_plus(cls, x: torch.Tensor) -> torch.Tensor:
|
| 81 |
+
"""Plus operator Jacobian."""
|
| 82 |
+
v, beta = cls.householder_vector(x)
|
| 83 |
+
H = -torch.einsum("..., ...k, ...l->...kl", beta, v, v)
|
| 84 |
+
H = H + torch.eye(H.shape[-1]).to(H)
|
| 85 |
+
return H[..., :-1] # J
|
| 86 |
+
|
| 87 |
+
@classmethod
|
| 88 |
+
def plus(cls, x: torch.Tensor, delta: torch.Tensor) -> torch.Tensor:
|
| 89 |
+
"""Plus operator.
|
| 90 |
+
|
| 91 |
+
Equation 109 (p. 25) from 'Integrating Generic Sensor Fusion Algorithms with Sound State
|
| 92 |
+
Representations through Encapsulation of Manifolds' by Hertzberg et al. but using the nth
|
| 93 |
+
element of the input vector as pivot instead of first.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
x: point on the manifold
|
| 97 |
+
delta: tangent vector
|
| 98 |
+
"""
|
| 99 |
+
eps = 1e-7
|
| 100 |
+
# keep norm is not equal to 1
|
| 101 |
+
nx = torch.norm(x, dim=-1, keepdim=True)
|
| 102 |
+
nd = torch.norm(delta, dim=-1, keepdim=True)
|
| 103 |
+
|
| 104 |
+
# make sure we don't divide by zero in backward as torch.where computes grad for both
|
| 105 |
+
# branches
|
| 106 |
+
nd_ = torch.where(nd < eps, nd + eps, nd)
|
| 107 |
+
sinc = torch.where(nd < eps, nd.new_ones(nd.shape), torch.sin(nd_) / nd_)
|
| 108 |
+
|
| 109 |
+
# cos is applied to last dim instead of first
|
| 110 |
+
exp_delta = torch.cat([sinc * delta, torch.cos(nd)], -1)
|
| 111 |
+
|
| 112 |
+
v, beta = cls.householder_vector(x)
|
| 113 |
+
return nx * cls.apply_householder(exp_delta, v, beta)
|
scripts/camera/geometry/perspective_fields.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of perspective fields.
|
| 2 |
+
|
| 3 |
+
Adapted from https://github.com/jinlinyi/PerspectiveFields/blob/main/perspective2d/utils/panocam.py
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
from scripts.camera.geometry.base_camera import BaseCamera
|
| 12 |
+
from scripts.camera.geometry.gravity import Gravity
|
| 13 |
+
from scripts.camera.geometry.jacobians import J_up_projection, J_vecnorm
|
| 14 |
+
from scripts.camera.geometry.manifolds import SphericalManifold
|
| 15 |
+
|
| 16 |
+
# flake8: noqa: E266
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_horizon_line(camera: BaseCamera, gravity: Gravity, relative: bool = True) -> torch.Tensor:
|
| 20 |
+
"""Get the horizon line from the camera parameters.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
camera (Camera): Camera parameters.
|
| 24 |
+
gravity (Gravity): Gravity vector.
|
| 25 |
+
relative (bool, optional): Whether to normalize horizon line by img_h. Defaults to True.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
torch.Tensor: In image frame, fraction of image left/right border intersection with
|
| 29 |
+
respect to image height.
|
| 30 |
+
"""
|
| 31 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 32 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 33 |
+
|
| 34 |
+
# project horizon midpoint to image plane
|
| 35 |
+
horizon_midpoint = camera.new_tensor([0, 0, 1])
|
| 36 |
+
horizon_midpoint = camera.K @ gravity.R @ horizon_midpoint
|
| 37 |
+
midpoint = horizon_midpoint[:2] / horizon_midpoint[2]
|
| 38 |
+
|
| 39 |
+
# compute left and right offset to borders
|
| 40 |
+
left_offset = midpoint[0] * torch.tan(gravity.roll)
|
| 41 |
+
right_offset = (camera.size[0] - midpoint[0]) * torch.tan(gravity.roll)
|
| 42 |
+
left, right = midpoint[1] + left_offset, midpoint[1] - right_offset
|
| 43 |
+
|
| 44 |
+
horizon = camera.new_tensor([left, right])
|
| 45 |
+
return horizon / camera.size[1] if relative else horizon
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_up_field(camera: BaseCamera, gravity: Gravity, normalize: bool = True) -> torch.Tensor:
|
| 49 |
+
"""Get the up vector field from the camera parameters.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
camera (Camera): Camera parameters.
|
| 53 |
+
normalize (bool, optional): Whether to normalize the up vector. Defaults to True.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
torch.Tensor: up vector field as tensor of shape (..., h, w, 2).
|
| 57 |
+
"""
|
| 58 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 59 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 60 |
+
|
| 61 |
+
w, h = camera.size[0].unbind(-1)
|
| 62 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 63 |
+
|
| 64 |
+
uv = camera.normalize(camera.pixel_coordinates())
|
| 65 |
+
|
| 66 |
+
# projected up is (a, b) - c * (u, v)
|
| 67 |
+
abc = gravity.vec3d
|
| 68 |
+
projected_up2d = abc[..., None, :2] - abc[..., 2, None, None] * uv # (..., N, 2)
|
| 69 |
+
|
| 70 |
+
if hasattr(camera, "dist"):
|
| 71 |
+
d_uv = camera.distort(uv, return_scale=True)[0] # (..., N, 1)
|
| 72 |
+
d_uv = torch.diag_embed(d_uv.expand(d_uv.shape[:-1] + (2,))) # (..., N, 2, 2)
|
| 73 |
+
offset = camera.up_projection_offset(uv) # (..., N, 2)
|
| 74 |
+
offset = torch.einsum("...i,...j->...ij", offset, uv) # (..., N, 2, 2)
|
| 75 |
+
|
| 76 |
+
# (..., N, 2)
|
| 77 |
+
projected_up2d = torch.einsum("...Nij,...Nj->...Ni", d_uv + offset, projected_up2d)
|
| 78 |
+
|
| 79 |
+
if normalize:
|
| 80 |
+
projected_up2d = F.normalize(projected_up2d, dim=-1) # (..., N, 2)
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
del uv, abc, d_uv, offset
|
| 84 |
+
except NameError:
|
| 85 |
+
pass
|
| 86 |
+
|
| 87 |
+
return projected_up2d.reshape(camera.shape[0], h, w, 2)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def J_up_field(
|
| 91 |
+
camera: BaseCamera, gravity: Gravity, spherical: bool = False, log_focal: bool = False
|
| 92 |
+
) -> torch.Tensor:
|
| 93 |
+
"""Get the jacobian of the up field.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
camera (Camera): Camera parameters.
|
| 97 |
+
gravity (Gravity): Gravity vector.
|
| 98 |
+
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
|
| 99 |
+
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
torch.Tensor: Jacobian of the up field as a tensor of shape (..., h, w, 2, 2, 3).
|
| 103 |
+
"""
|
| 104 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 105 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 106 |
+
|
| 107 |
+
w, h = camera.size[0].unbind(-1)
|
| 108 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 109 |
+
|
| 110 |
+
# Forward
|
| 111 |
+
xy = camera.pixel_coordinates()
|
| 112 |
+
uv = camera.normalize(xy)
|
| 113 |
+
|
| 114 |
+
projected_up2d = gravity.vec3d[..., None, :2] - gravity.vec3d[..., 2, None, None] * uv
|
| 115 |
+
|
| 116 |
+
# Backward
|
| 117 |
+
J = []
|
| 118 |
+
|
| 119 |
+
# (..., N, 2, 2)
|
| 120 |
+
J_norm2proj = J_vecnorm(
|
| 121 |
+
get_up_field(camera, gravity, normalize=False).reshape(camera.shape[0], -1, 2)
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# distortion values
|
| 125 |
+
if hasattr(camera, "dist"):
|
| 126 |
+
d_uv = camera.distort(uv, return_scale=True)[0] # (..., N, 1)
|
| 127 |
+
d_uv = torch.diag_embed(d_uv.expand(d_uv.shape[:-1] + (2,))) # (..., N, 2, 2)
|
| 128 |
+
offset = camera.up_projection_offset(uv) # (..., N, 2)
|
| 129 |
+
offset_uv = torch.einsum("...i,...j->...ij", offset, uv) # (..., N, 2, 2)
|
| 130 |
+
|
| 131 |
+
######################
|
| 132 |
+
## Gravity Jacobian ##
|
| 133 |
+
######################
|
| 134 |
+
|
| 135 |
+
J_proj2abc = J_up_projection(uv, gravity.vec3d, wrt="abc") # (..., N, 2, 3)
|
| 136 |
+
|
| 137 |
+
if hasattr(camera, "dist"):
|
| 138 |
+
# (..., N, 2, 3)
|
| 139 |
+
J_proj2abc = torch.einsum("...Nij,...Njk->...Nik", d_uv + offset_uv, J_proj2abc)
|
| 140 |
+
|
| 141 |
+
J_abc2delta = SphericalManifold.J_plus(gravity.vec3d) if spherical else gravity.J_rp()
|
| 142 |
+
J_proj2delta = torch.einsum("...Nij,...jk->...Nik", J_proj2abc, J_abc2delta)
|
| 143 |
+
J_up2delta = torch.einsum("...Nij,...Njk->...Nik", J_norm2proj, J_proj2delta)
|
| 144 |
+
J.append(J_up2delta)
|
| 145 |
+
|
| 146 |
+
######################
|
| 147 |
+
### Focal Jacobian ###
|
| 148 |
+
######################
|
| 149 |
+
|
| 150 |
+
J_proj2uv = J_up_projection(uv, gravity.vec3d, wrt="uv") # (..., N, 2, 2)
|
| 151 |
+
|
| 152 |
+
if hasattr(camera, "dist"):
|
| 153 |
+
J_proj2up = torch.einsum("...Nij,...Njk->...Nik", d_uv + offset_uv, J_proj2uv)
|
| 154 |
+
J_proj2duv = torch.einsum("...i,...j->...ji", offset, projected_up2d)
|
| 155 |
+
|
| 156 |
+
inner = (uv * projected_up2d).sum(-1)[..., None, None]
|
| 157 |
+
J_proj2offset1 = inner * camera.J_up_projection_offset(uv, wrt="uv")
|
| 158 |
+
J_proj2offset2 = torch.einsum("...i,...j->...ij", offset, projected_up2d) # (..., N, 2, 2)
|
| 159 |
+
J_proj2uv = (J_proj2duv + J_proj2offset1 + J_proj2offset2) + J_proj2up
|
| 160 |
+
|
| 161 |
+
J_uv2f = camera.J_normalize(xy) # (..., N, 2, 2)
|
| 162 |
+
|
| 163 |
+
if log_focal:
|
| 164 |
+
J_uv2f = J_uv2f * camera.f[..., None, None, :] # (..., N, 2, 2)
|
| 165 |
+
|
| 166 |
+
J_uv2f = J_uv2f.sum(-1) # (..., N, 2)
|
| 167 |
+
|
| 168 |
+
J_proj2f = torch.einsum("...ij,...j->...i", J_proj2uv, J_uv2f) # (..., N, 2)
|
| 169 |
+
J_up2f = torch.einsum("...Nij,...Nj->...Ni", J_norm2proj, J_proj2f)[..., None] # (..., N, 2, 1)
|
| 170 |
+
J.append(J_up2f)
|
| 171 |
+
|
| 172 |
+
######################
|
| 173 |
+
##### K1 Jacobian ####
|
| 174 |
+
######################
|
| 175 |
+
|
| 176 |
+
if hasattr(camera, "dist"):
|
| 177 |
+
J_duv = camera.J_distort(uv, wrt="scale2dist")
|
| 178 |
+
J_duv = torch.diag_embed(J_duv.expand(J_duv.shape[:-1] + (2,))) # (..., N, 2, 2)
|
| 179 |
+
J_offset = torch.einsum(
|
| 180 |
+
"...i,...j->...ij", camera.J_up_projection_offset(uv, wrt="dist"), uv
|
| 181 |
+
)
|
| 182 |
+
J_proj2k1 = torch.einsum("...Nij,...Nj->...Ni", J_duv + J_offset, projected_up2d)
|
| 183 |
+
J_k1 = torch.einsum("...Nij,...Nj->...Ni", J_norm2proj, J_proj2k1)[..., None]
|
| 184 |
+
J.append(J_k1)
|
| 185 |
+
|
| 186 |
+
n_params = sum(j.shape[-1] for j in J)
|
| 187 |
+
return torch.cat(J, axis=-1).reshape(camera.shape[0], h, w, 2, n_params)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def get_latitude_field(camera: BaseCamera, gravity: Gravity) -> torch.Tensor:
|
| 191 |
+
"""Get the latitudes of the camera pixels in radians.
|
| 192 |
+
|
| 193 |
+
Latitudes are defined as the angle between the ray and the up vector.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
camera (Camera): Camera parameters.
|
| 197 |
+
gravity (Gravity): Gravity vector.
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
torch.Tensor: Latitudes in radians as a tensor of shape (..., h, w, 1).
|
| 201 |
+
"""
|
| 202 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 203 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 204 |
+
|
| 205 |
+
w, h = camera.size[0].unbind(-1)
|
| 206 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 207 |
+
|
| 208 |
+
uv1, _ = camera.image2world(camera.pixel_coordinates())
|
| 209 |
+
rays = camera.pixel_bearing_many(uv1)
|
| 210 |
+
|
| 211 |
+
lat = torch.einsum("...Nj,...j->...N", rays, gravity.vec3d)
|
| 212 |
+
|
| 213 |
+
eps = 1e-6
|
| 214 |
+
lat_asin = torch.asin(lat.clamp(min=-1 + eps, max=1 - eps))
|
| 215 |
+
|
| 216 |
+
try:
|
| 217 |
+
del uv1, rays
|
| 218 |
+
except NameError:
|
| 219 |
+
pass
|
| 220 |
+
|
| 221 |
+
return lat_asin.reshape(camera.shape[0], h, w, 1)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def J_latitude_field(
|
| 225 |
+
camera: BaseCamera, gravity: Gravity, spherical: bool = False, log_focal: bool = False
|
| 226 |
+
) -> torch.Tensor:
|
| 227 |
+
"""Get the jacobian of the latitude field.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
camera (Camera): Camera parameters.
|
| 231 |
+
gravity (Gravity): Gravity vector.
|
| 232 |
+
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
|
| 233 |
+
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
|
| 234 |
+
|
| 235 |
+
Returns:
|
| 236 |
+
torch.Tensor: Jacobian of the latitude field as a tensor of shape (..., h, w, 1, 3).
|
| 237 |
+
"""
|
| 238 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 239 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 240 |
+
|
| 241 |
+
w, h = camera.size[0].unbind(-1)
|
| 242 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 243 |
+
|
| 244 |
+
# Forward
|
| 245 |
+
xy = camera.pixel_coordinates()
|
| 246 |
+
uv1, _ = camera.image2world(xy)
|
| 247 |
+
uv1_norm = camera.pixel_bearing_many(uv1) # (..., N, 3)
|
| 248 |
+
|
| 249 |
+
# Backward
|
| 250 |
+
J = []
|
| 251 |
+
J_norm2w_to_img = J_vecnorm(uv1)[..., :2] # (..., N, 2)
|
| 252 |
+
|
| 253 |
+
######################
|
| 254 |
+
## Gravity Jacobian ##
|
| 255 |
+
######################
|
| 256 |
+
|
| 257 |
+
J_delta = SphericalManifold.J_plus(gravity.vec3d) if spherical else gravity.J_rp()
|
| 258 |
+
J_delta = torch.einsum("...Ni,...ij->...Nj", uv1_norm, J_delta) # (..., N, 2)
|
| 259 |
+
J.append(J_delta)
|
| 260 |
+
|
| 261 |
+
######################
|
| 262 |
+
### Focal Jacobian ###
|
| 263 |
+
######################
|
| 264 |
+
|
| 265 |
+
J_w_to_img2f = camera.J_image2world(xy, "f") # (..., N, 2, 2)
|
| 266 |
+
if log_focal:
|
| 267 |
+
J_w_to_img2f = J_w_to_img2f * camera.f[..., None, None, :]
|
| 268 |
+
J_w_to_img2f = J_w_to_img2f.sum(-1) # (..., N, 2)
|
| 269 |
+
|
| 270 |
+
J_norm2f = torch.einsum("...Nij,...Nj->...Ni", J_norm2w_to_img, J_w_to_img2f) # (..., N, 3)
|
| 271 |
+
J_f = torch.einsum("...Ni,...i->...N", J_norm2f, gravity.vec3d).unsqueeze(-1) # (..., N, 1)
|
| 272 |
+
J.append(J_f)
|
| 273 |
+
|
| 274 |
+
######################
|
| 275 |
+
##### K1 Jacobian ####
|
| 276 |
+
######################
|
| 277 |
+
|
| 278 |
+
if hasattr(camera, "dist"):
|
| 279 |
+
J_w_to_img2k1 = camera.J_image2world(xy, "dist") # (..., N, 2)
|
| 280 |
+
# (..., N, 2)
|
| 281 |
+
J_norm2k1 = torch.einsum("...Nij,...Nj->...Ni", J_norm2w_to_img, J_w_to_img2k1)
|
| 282 |
+
# (..., N, 1)
|
| 283 |
+
J_k1 = torch.einsum("...Ni,...i->...N", J_norm2k1, gravity.vec3d).unsqueeze(-1)
|
| 284 |
+
J.append(J_k1)
|
| 285 |
+
|
| 286 |
+
n_params = sum(j.shape[-1] for j in J)
|
| 287 |
+
return torch.cat(J, axis=-1).reshape(camera.shape[0], h, w, 1, n_params)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def get_perspective_field(
|
| 291 |
+
camera: BaseCamera,
|
| 292 |
+
gravity: Gravity,
|
| 293 |
+
use_up: bool = True,
|
| 294 |
+
use_latitude: bool = True,
|
| 295 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 296 |
+
"""Get the perspective field from the camera parameters.
|
| 297 |
+
|
| 298 |
+
Args:
|
| 299 |
+
camera (Camera): Camera parameters.
|
| 300 |
+
gravity (Gravity): Gravity vector.
|
| 301 |
+
use_up (bool, optional): Whether to include the up vector field. Defaults to True.
|
| 302 |
+
use_latitude (bool, optional): Whether to include the latitude field. Defaults to True.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
Tuple[torch.Tensor, torch.Tensor]: Up and latitude fields as tensors of shape
|
| 306 |
+
(..., 2, h, w) and (..., 1, h, w).
|
| 307 |
+
"""
|
| 308 |
+
assert use_up or use_latitude, "At least one of use_up or use_latitude must be True."
|
| 309 |
+
|
| 310 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 311 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 312 |
+
|
| 313 |
+
w, h = camera.size[0].unbind(-1)
|
| 314 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 315 |
+
|
| 316 |
+
if use_up:
|
| 317 |
+
permute = (0, 3, 1, 2)
|
| 318 |
+
# (..., 2, h, w)
|
| 319 |
+
up = get_up_field(camera, gravity).permute(permute)
|
| 320 |
+
else:
|
| 321 |
+
shape = (camera.shape[0], 2, h, w)
|
| 322 |
+
up = camera.new_zeros(shape)
|
| 323 |
+
|
| 324 |
+
if use_latitude:
|
| 325 |
+
permute = (0, 3, 1, 2)
|
| 326 |
+
# (..., 1, h, w)
|
| 327 |
+
lat = get_latitude_field(camera, gravity).permute(permute)
|
| 328 |
+
else:
|
| 329 |
+
shape = (camera.shape[0], 1, h, w)
|
| 330 |
+
lat = camera.new_zeros(shape)
|
| 331 |
+
|
| 332 |
+
torch.cuda.empty_cache()
|
| 333 |
+
|
| 334 |
+
return up, lat
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def J_perspective_field(
|
| 338 |
+
camera: BaseCamera,
|
| 339 |
+
gravity: Gravity,
|
| 340 |
+
use_up: bool = True,
|
| 341 |
+
use_latitude: bool = True,
|
| 342 |
+
spherical: bool = False,
|
| 343 |
+
log_focal: bool = False,
|
| 344 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 345 |
+
"""Get the jacobian of the perspective field.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
camera (Camera): Camera parameters.
|
| 349 |
+
gravity (Gravity): Gravity vector.
|
| 350 |
+
use_up (bool, optional): Whether to include the up vector field. Defaults to True.
|
| 351 |
+
use_latitude (bool, optional): Whether to include the latitude field. Defaults to True.
|
| 352 |
+
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
|
| 353 |
+
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
|
| 354 |
+
|
| 355 |
+
Returns:
|
| 356 |
+
Tuple[torch.Tensor, torch.Tensor]: Up and latitude jacobians as tensors of shape
|
| 357 |
+
(..., h, w, 2, 4) and (..., h, w, 1, 4).
|
| 358 |
+
"""
|
| 359 |
+
assert use_up or use_latitude, "At least one of use_up or use_latitude must be True."
|
| 360 |
+
|
| 361 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 362 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 363 |
+
|
| 364 |
+
w, h = camera.size[0].unbind(-1)
|
| 365 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 366 |
+
|
| 367 |
+
if use_up:
|
| 368 |
+
J_up = J_up_field(camera, gravity, spherical, log_focal) # (..., h, w, 2, 4)
|
| 369 |
+
else:
|
| 370 |
+
shape = (camera.shape[0], h, w, 2, 4)
|
| 371 |
+
J_up = camera.new_zeros(shape)
|
| 372 |
+
|
| 373 |
+
if use_latitude:
|
| 374 |
+
J_lat = J_latitude_field(camera, gravity, spherical, log_focal) # (..., h, w, 1, 4)
|
| 375 |
+
else:
|
| 376 |
+
shape = (camera.shape[0], h, w, 1, 4)
|
| 377 |
+
J_lat = camera.new_zeros(shape)
|
| 378 |
+
|
| 379 |
+
return J_up, J_lat
|
scripts/camera/utils/conversions.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility functions for conversions between different representations."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def skew_symmetric(v: torch.Tensor) -> torch.Tensor:
|
| 10 |
+
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3).
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
(torch.Tensor): Vector of size (..., 3).
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
(torch.Tensor): Skew-symmetric matrix of size (..., 3, 3).
|
| 17 |
+
"""
|
| 18 |
+
z = torch.zeros_like(v[..., 0])
|
| 19 |
+
return torch.stack(
|
| 20 |
+
[
|
| 21 |
+
z,
|
| 22 |
+
-v[..., 2],
|
| 23 |
+
v[..., 1],
|
| 24 |
+
v[..., 2],
|
| 25 |
+
z,
|
| 26 |
+
-v[..., 0],
|
| 27 |
+
-v[..., 1],
|
| 28 |
+
v[..., 0],
|
| 29 |
+
z,
|
| 30 |
+
],
|
| 31 |
+
dim=-1,
|
| 32 |
+
).reshape(v.shape[:-1] + (3, 3))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def rad2rotmat(
|
| 36 |
+
roll: torch.Tensor, pitch: torch.Tensor, yaw: Optional[torch.Tensor] = None
|
| 37 |
+
) -> torch.Tensor:
|
| 38 |
+
"""Convert (batched) roll, pitch, yaw angles (in radians) to rotation matrix.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
roll (torch.Tensor): Roll angle in radians.
|
| 42 |
+
pitch (torch.Tensor): Pitch angle in radians.
|
| 43 |
+
yaw (torch.Tensor, optional): Yaw angle in radians. Defaults to None.
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
torch.Tensor: Rotation matrix of shape (..., 3, 3).
|
| 47 |
+
"""
|
| 48 |
+
if yaw is None:
|
| 49 |
+
yaw = roll.new_zeros(roll.shape)
|
| 50 |
+
|
| 51 |
+
Rx = pitch.new_zeros(pitch.shape + (3, 3))
|
| 52 |
+
Rx[..., 0, 0] = 1
|
| 53 |
+
Rx[..., 1, 1] = torch.cos(pitch)
|
| 54 |
+
Rx[..., 1, 2] = torch.sin(pitch)
|
| 55 |
+
Rx[..., 2, 1] = -torch.sin(pitch)
|
| 56 |
+
Rx[..., 2, 2] = torch.cos(pitch)
|
| 57 |
+
|
| 58 |
+
Ry = yaw.new_zeros(yaw.shape + (3, 3))
|
| 59 |
+
Ry[..., 0, 0] = torch.cos(yaw)
|
| 60 |
+
Ry[..., 0, 2] = -torch.sin(yaw)
|
| 61 |
+
Ry[..., 1, 1] = 1
|
| 62 |
+
Ry[..., 2, 0] = torch.sin(yaw)
|
| 63 |
+
Ry[..., 2, 2] = torch.cos(yaw)
|
| 64 |
+
|
| 65 |
+
Rz = roll.new_zeros(roll.shape + (3, 3))
|
| 66 |
+
Rz[..., 0, 0] = torch.cos(roll)
|
| 67 |
+
Rz[..., 0, 1] = torch.sin(roll)
|
| 68 |
+
Rz[..., 1, 0] = -torch.sin(roll)
|
| 69 |
+
Rz[..., 1, 1] = torch.cos(roll)
|
| 70 |
+
Rz[..., 2, 2] = 1
|
| 71 |
+
|
| 72 |
+
return Rz @ Rx @ Ry
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def fov2focal(fov: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
|
| 76 |
+
"""Compute focal length from (vertical/horizontal) field of view.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
fov (torch.Tensor): Field of view in radians.
|
| 80 |
+
size (torch.Tensor): Image height / width in pixels.
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
torch.Tensor: Focal length in pixels.
|
| 84 |
+
"""
|
| 85 |
+
return size / 2 / torch.tan(fov / 2)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def focal2fov(focal: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
|
| 89 |
+
"""Compute (vertical/horizontal) field of view from focal length.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
focal (torch.Tensor): Focal length in pixels.
|
| 93 |
+
size (torch.Tensor): Image height / width in pixels.
|
| 94 |
+
|
| 95 |
+
Returns:
|
| 96 |
+
torch.Tensor: Field of view in radians.
|
| 97 |
+
"""
|
| 98 |
+
return 2 * torch.arctan(size / (2 * focal))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def pitch2rho(pitch: torch.Tensor, f: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
|
| 102 |
+
"""Compute the distance from principal point to the horizon.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
pitch (torch.Tensor): Pitch angle in radians.
|
| 106 |
+
f (torch.Tensor): Focal length in pixels.
|
| 107 |
+
h (torch.Tensor): Image height in pixels.
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
torch.Tensor: Relative distance to the horizon.
|
| 111 |
+
"""
|
| 112 |
+
return torch.tan(pitch) * f / h
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def rho2pitch(rho: torch.Tensor, f: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
|
| 116 |
+
"""Compute the pitch angle from the distance to the horizon.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
rho (torch.Tensor): Relative distance to the horizon.
|
| 120 |
+
f (torch.Tensor): Focal length in pixels.
|
| 121 |
+
h (torch.Tensor): Image height in pixels.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
torch.Tensor: Pitch angle in radians.
|
| 125 |
+
"""
|
| 126 |
+
return torch.atan(rho * h / f)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def rad2deg(rad: torch.Tensor) -> torch.Tensor:
|
| 130 |
+
"""Convert radians to degrees.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
rad (torch.Tensor): Angle in radians.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
torch.Tensor: Angle in degrees.
|
| 137 |
+
"""
|
| 138 |
+
return rad / torch.pi * 180
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def deg2rad(deg: torch.Tensor) -> torch.Tensor:
|
| 142 |
+
"""Convert degrees to radians.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
deg (torch.Tensor): Angle in degrees.
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
torch.Tensor: Angle in radians.
|
| 149 |
+
"""
|
| 150 |
+
return deg / 180 * torch.pi
|
scripts/camera/utils/image.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Image preprocessing utilities."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import collections.abc as collections
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import cv2
|
| 9 |
+
import kornia
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
import torchvision
|
| 13 |
+
from omegaconf import OmegaConf
|
| 14 |
+
from PIL import Image
|
| 15 |
+
|
| 16 |
+
from tensor import fit_features_to_multiple
|
| 17 |
+
|
| 18 |
+
# mypy: ignore-errors
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ImagePreprocessor:
|
| 22 |
+
"""Preprocess images for calibration."""
|
| 23 |
+
|
| 24 |
+
default_conf = {
|
| 25 |
+
"resize": None, # target edge length (320), None for no resizing
|
| 26 |
+
"edge_divisible_by": None,
|
| 27 |
+
"side": "short",
|
| 28 |
+
"interpolation": "bilinear",
|
| 29 |
+
"align_corners": None,
|
| 30 |
+
"antialias": True,
|
| 31 |
+
"square_crop": False,
|
| 32 |
+
"add_padding_mask": False,
|
| 33 |
+
"resize_backend": "kornia", # torchvision, kornia
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def __init__(self, conf) -> None:
|
| 37 |
+
"""Initialize the image preprocessor."""
|
| 38 |
+
super().__init__()
|
| 39 |
+
default_conf = OmegaConf.create(self.default_conf)
|
| 40 |
+
OmegaConf.set_struct(default_conf, True)
|
| 41 |
+
self.conf = OmegaConf.merge(default_conf, conf)
|
| 42 |
+
|
| 43 |
+
def __call__(self, img: torch.Tensor, interpolation: Optional[str] = None) -> dict:
|
| 44 |
+
"""Resize and preprocess an image, return image and resize scale."""
|
| 45 |
+
h, w = img.shape[-2:]
|
| 46 |
+
size = h, w
|
| 47 |
+
|
| 48 |
+
if self.conf.square_crop:
|
| 49 |
+
min_size = min(h, w)
|
| 50 |
+
offset = (h - min_size) // 2, (w - min_size) // 2
|
| 51 |
+
img = img[:, offset[0] : offset[0] + min_size, offset[1] : offset[1] + min_size]
|
| 52 |
+
size = img.shape[-2:]
|
| 53 |
+
|
| 54 |
+
if self.conf.resize is not None:
|
| 55 |
+
if interpolation is None:
|
| 56 |
+
interpolation = self.conf.interpolation
|
| 57 |
+
size = self.get_new_image_size(h, w)
|
| 58 |
+
img = self.resize(img, size, interpolation)
|
| 59 |
+
|
| 60 |
+
scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
|
| 61 |
+
T = np.diag([scale[0].cpu(), scale[1].cpu(), 1])
|
| 62 |
+
|
| 63 |
+
data = {
|
| 64 |
+
"scales": scale,
|
| 65 |
+
"image_size": np.array(size[::-1]),
|
| 66 |
+
"transform": T,
|
| 67 |
+
"original_image_size": np.array([w, h]),
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
if self.conf.edge_divisible_by is not None:
|
| 71 |
+
# crop to make the edge divisible by a number
|
| 72 |
+
w_, h_ = img.shape[-1], img.shape[-2]
|
| 73 |
+
img, _ = fit_features_to_multiple(img, self.conf.edge_divisible_by, crop=True)
|
| 74 |
+
crop_pad = torch.Tensor([img.shape[-1] - w_, img.shape[-2] - h_]).to(img)
|
| 75 |
+
data["crop_pad"] = crop_pad
|
| 76 |
+
data["image_size"] = np.array([img.shape[-1], img.shape[-2]])
|
| 77 |
+
|
| 78 |
+
data["image"] = img
|
| 79 |
+
return data
|
| 80 |
+
|
| 81 |
+
def resize(self, img: torch.Tensor, size: Tuple[int, int], interpolation: str) -> torch.Tensor:
|
| 82 |
+
"""Resize an image using the specified backend."""
|
| 83 |
+
if self.conf.resize_backend == "kornia":
|
| 84 |
+
return kornia.geometry.transform.resize(
|
| 85 |
+
img,
|
| 86 |
+
size,
|
| 87 |
+
side=self.conf.side,
|
| 88 |
+
antialias=self.conf.antialias,
|
| 89 |
+
align_corners=self.conf.align_corners,
|
| 90 |
+
interpolation=interpolation,
|
| 91 |
+
)
|
| 92 |
+
elif self.conf.resize_backend == "PIL":
|
| 93 |
+
device = img.device
|
| 94 |
+
imgs = []
|
| 95 |
+
has_batch_dim = img.ndim == 4
|
| 96 |
+
img = img if has_batch_dim else img[None]
|
| 97 |
+
for im in img:
|
| 98 |
+
im = (im.permute(1, 2, 0) * 255).cpu().numpy().astype(np.uint8)
|
| 99 |
+
im = Image.fromarray(im).resize(size[::-1], Image.BILINEAR)
|
| 100 |
+
im = torch.tensor(np.array(im)).permute(2, 0, 1) / 255.0
|
| 101 |
+
imgs.append(im.to(device))
|
| 102 |
+
imgs = torch.stack(imgs)
|
| 103 |
+
return imgs if has_batch_dim else imgs[0]
|
| 104 |
+
|
| 105 |
+
elif self.conf.resize_backend == "torchvision":
|
| 106 |
+
return torchvision.transforms.Resize(size, antialias=self.conf.antialias)(img)
|
| 107 |
+
else:
|
| 108 |
+
raise ValueError(f"{self.conf.resize_backend} not implemented.")
|
| 109 |
+
|
| 110 |
+
def load_image(self, image_path: Path) -> dict:
|
| 111 |
+
"""Load an image from a path and preprocess it."""
|
| 112 |
+
return self(load_image(image_path))
|
| 113 |
+
|
| 114 |
+
def get_new_image_size(self, h: int, w: int) -> Tuple[int, int]:
|
| 115 |
+
"""Get the new image size after resizing."""
|
| 116 |
+
side = self.conf.side
|
| 117 |
+
if isinstance(self.conf.resize, collections.Iterable):
|
| 118 |
+
assert len(self.conf.resize) == 2
|
| 119 |
+
return tuple(self.conf.resize)
|
| 120 |
+
side_size = self.conf.resize
|
| 121 |
+
aspect_ratio = w / h
|
| 122 |
+
if side not in ("short", "long", "vert", "horz"):
|
| 123 |
+
raise ValueError(
|
| 124 |
+
f"side can be one of 'short', 'long', 'vert', and 'horz'. Got '{side}'"
|
| 125 |
+
)
|
| 126 |
+
return (
|
| 127 |
+
(side_size, int(side_size * aspect_ratio))
|
| 128 |
+
if side == "vert" or (side != "horz" and (side == "short") ^ (aspect_ratio < 1.0))
|
| 129 |
+
else (int(side_size / aspect_ratio), side_size)
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
|
| 134 |
+
"""Normalize the image tensor and reorder the dimensions."""
|
| 135 |
+
if image.ndim == 3:
|
| 136 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
| 137 |
+
elif image.ndim == 2:
|
| 138 |
+
image = image[None] # add channel axis
|
| 139 |
+
else:
|
| 140 |
+
raise ValueError(f"Not an image: {image.shape}")
|
| 141 |
+
return torch.tensor(image / 255.0, dtype=torch.float)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def torch_image_to_numpy(image: torch.Tensor) -> np.ndarray:
|
| 145 |
+
"""Normalize and reorder the dimensions of an image tensor."""
|
| 146 |
+
if image.ndim == 3:
|
| 147 |
+
image = image.permute((1, 2, 0)) # CxHxW to HxWxC
|
| 148 |
+
elif image.ndim == 2:
|
| 149 |
+
image = image[None] # add channel axis
|
| 150 |
+
else:
|
| 151 |
+
raise ValueError(f"Not an image: {image.shape}")
|
| 152 |
+
return (image.cpu().detach().numpy() * 255).astype(np.uint8)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
|
| 156 |
+
"""Read an image from path as RGB or grayscale."""
|
| 157 |
+
if not Path(path).exists():
|
| 158 |
+
raise FileNotFoundError(f"No image at path {path}.")
|
| 159 |
+
mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
|
| 160 |
+
image = cv2.imread(str(path), mode)
|
| 161 |
+
if image is None:
|
| 162 |
+
raise IOError(f"Could not read image at {path}.")
|
| 163 |
+
if not grayscale:
|
| 164 |
+
image = image[..., ::-1]
|
| 165 |
+
return image
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def write_image(img: torch.Tensor, path: Path):
|
| 169 |
+
"""Write an image tensor to a file."""
|
| 170 |
+
img = torch_image_to_numpy(img) if isinstance(img, torch.Tensor) else img
|
| 171 |
+
cv2.imwrite(str(path), img[..., ::-1])
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def load_image(path: Path, grayscale: bool = False, return_tensor: bool = True) -> torch.Tensor:
|
| 175 |
+
"""Load an image from a path and return as a tensor."""
|
| 176 |
+
image = read_image(path, grayscale=grayscale)
|
| 177 |
+
if return_tensor:
|
| 178 |
+
return numpy_image_to_torch(image)
|
| 179 |
+
|
| 180 |
+
assert image.ndim in [2, 3], f"Not an image: {image.shape}"
|
| 181 |
+
image = image[None] if image.ndim == 2 else image
|
| 182 |
+
return torch.tensor(image.copy(), dtype=torch.uint8)
|
scripts/camera/utils/tensor.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 2 |
+
|
| 3 |
+
import collections.abc as collections
|
| 4 |
+
import functools
|
| 5 |
+
import inspect
|
| 6 |
+
from typing import Callable, List, Tuple
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
# flake8: noqa
|
| 12 |
+
# mypy: ignore-errors
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
string_classes = (str, bytes)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def autocast(func: Callable) -> Callable:
|
| 19 |
+
"""Cast the inputs of a TensorWrapper method to PyTorch tensors if they are numpy arrays.
|
| 20 |
+
|
| 21 |
+
Use the device and dtype of the wrapper.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
func (Callable): Method of a TensorWrapper class.
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Callable: Wrapped method.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
@functools.wraps(func)
|
| 31 |
+
def wrap(self, *args):
|
| 32 |
+
device = torch.device("cpu")
|
| 33 |
+
dtype = None
|
| 34 |
+
if isinstance(self, TensorWrapper):
|
| 35 |
+
if self._data is not None:
|
| 36 |
+
device = self.device
|
| 37 |
+
dtype = self.dtype
|
| 38 |
+
elif not inspect.isclass(self) or not issubclass(self, TensorWrapper):
|
| 39 |
+
raise ValueError(self)
|
| 40 |
+
|
| 41 |
+
cast_args = []
|
| 42 |
+
for arg in args:
|
| 43 |
+
if isinstance(arg, np.ndarray):
|
| 44 |
+
arg = torch.from_numpy(arg)
|
| 45 |
+
arg = arg.to(device=device, dtype=dtype)
|
| 46 |
+
cast_args.append(arg)
|
| 47 |
+
return func(self, *cast_args)
|
| 48 |
+
|
| 49 |
+
return wrap
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class TensorWrapper:
|
| 53 |
+
"""Wrapper for PyTorch tensors."""
|
| 54 |
+
|
| 55 |
+
_data = None
|
| 56 |
+
|
| 57 |
+
@autocast
|
| 58 |
+
def __init__(self, data: torch.Tensor):
|
| 59 |
+
"""Wrapper for PyTorch tensors."""
|
| 60 |
+
self._data = data
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def shape(self) -> torch.Size:
|
| 64 |
+
"""Shape of the underlying tensor."""
|
| 65 |
+
return self._data.shape[:-1]
|
| 66 |
+
|
| 67 |
+
@property
|
| 68 |
+
def device(self) -> torch.device:
|
| 69 |
+
"""Get the device of the underlying tensor."""
|
| 70 |
+
return self._data.device
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def dtype(self) -> torch.dtype:
|
| 74 |
+
"""Get the dtype of the underlying tensor."""
|
| 75 |
+
return self._data.dtype
|
| 76 |
+
|
| 77 |
+
def __getitem__(self, index) -> torch.Tensor:
|
| 78 |
+
"""Get the underlying tensor."""
|
| 79 |
+
return self.__class__(self._data[index])
|
| 80 |
+
|
| 81 |
+
def __setitem__(self, index, item):
|
| 82 |
+
"""Set the underlying tensor."""
|
| 83 |
+
self._data[index] = item.data
|
| 84 |
+
|
| 85 |
+
def to(self, *args, **kwargs):
|
| 86 |
+
"""Move the underlying tensor to a new device."""
|
| 87 |
+
return self.__class__(self._data.to(*args, **kwargs))
|
| 88 |
+
|
| 89 |
+
def cpu(self):
|
| 90 |
+
"""Move the underlying tensor to the CPU."""
|
| 91 |
+
return self.__class__(self._data.cpu())
|
| 92 |
+
|
| 93 |
+
def cuda(self):
|
| 94 |
+
"""Move the underlying tensor to the GPU."""
|
| 95 |
+
return self.__class__(self._data.cuda())
|
| 96 |
+
|
| 97 |
+
def pin_memory(self):
|
| 98 |
+
"""Pin the underlying tensor to memory."""
|
| 99 |
+
return self.__class__(self._data.pin_memory())
|
| 100 |
+
|
| 101 |
+
def float(self):
|
| 102 |
+
"""Cast the underlying tensor to float."""
|
| 103 |
+
return self.__class__(self._data.float())
|
| 104 |
+
|
| 105 |
+
def double(self):
|
| 106 |
+
"""Cast the underlying tensor to double."""
|
| 107 |
+
return self.__class__(self._data.double())
|
| 108 |
+
|
| 109 |
+
def detach(self):
|
| 110 |
+
"""Detach the underlying tensor."""
|
| 111 |
+
return self.__class__(self._data.detach())
|
| 112 |
+
|
| 113 |
+
def numpy(self):
|
| 114 |
+
"""Convert the underlying tensor to a numpy array."""
|
| 115 |
+
return self._data.detach().cpu().numpy()
|
| 116 |
+
|
| 117 |
+
def new_tensor(self, *args, **kwargs):
|
| 118 |
+
"""Create a new tensor of the same type and device."""
|
| 119 |
+
return self._data.new_tensor(*args, **kwargs)
|
| 120 |
+
|
| 121 |
+
def new_zeros(self, *args, **kwargs):
|
| 122 |
+
"""Create a new tensor of the same type and device."""
|
| 123 |
+
return self._data.new_zeros(*args, **kwargs)
|
| 124 |
+
|
| 125 |
+
def new_ones(self, *args, **kwargs):
|
| 126 |
+
"""Create a new tensor of the same type and device."""
|
| 127 |
+
return self._data.new_ones(*args, **kwargs)
|
| 128 |
+
|
| 129 |
+
def new_full(self, *args, **kwargs):
|
| 130 |
+
"""Create a new tensor of the same type and device."""
|
| 131 |
+
return self._data.new_full(*args, **kwargs)
|
| 132 |
+
|
| 133 |
+
def new_empty(self, *args, **kwargs):
|
| 134 |
+
"""Create a new tensor of the same type and device."""
|
| 135 |
+
return self._data.new_empty(*args, **kwargs)
|
| 136 |
+
|
| 137 |
+
def unsqueeze(self, *args, **kwargs):
|
| 138 |
+
"""Create a new tensor of the same type and device."""
|
| 139 |
+
return self.__class__(self._data.unsqueeze(*args, **kwargs))
|
| 140 |
+
|
| 141 |
+
def squeeze(self, *args, **kwargs):
|
| 142 |
+
"""Create a new tensor of the same type and device."""
|
| 143 |
+
return self.__class__(self._data.squeeze(*args, **kwargs))
|
| 144 |
+
|
| 145 |
+
@classmethod
|
| 146 |
+
def stack(cls, objects: List, dim=0, *, out=None):
|
| 147 |
+
"""Stack a list of objects with the same type and shape."""
|
| 148 |
+
data = torch.stack([obj._data for obj in objects], dim=dim, out=out)
|
| 149 |
+
return cls(data)
|
| 150 |
+
|
| 151 |
+
@classmethod
|
| 152 |
+
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
| 153 |
+
"""Support torch functions."""
|
| 154 |
+
if kwargs is None:
|
| 155 |
+
kwargs = {}
|
| 156 |
+
return cls.stack(*args, **kwargs) if func is torch.stack else NotImplemented
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def map_tensor(input_, func):
|
| 160 |
+
if isinstance(input_, string_classes):
|
| 161 |
+
return input_
|
| 162 |
+
elif isinstance(input_, collections.Mapping):
|
| 163 |
+
return {k: map_tensor(sample, func) for k, sample in input_.items()}
|
| 164 |
+
elif isinstance(input_, collections.Sequence):
|
| 165 |
+
return [map_tensor(sample, func) for sample in input_]
|
| 166 |
+
elif input_ is None:
|
| 167 |
+
return None
|
| 168 |
+
else:
|
| 169 |
+
return func(input_)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def batch_to_numpy(batch):
|
| 173 |
+
return map_tensor(batch, lambda tensor: tensor.cpu().numpy())
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def batch_to_device(batch, device, non_blocking=True, detach=False):
|
| 177 |
+
def _func(tensor):
|
| 178 |
+
t = tensor.to(device=device, non_blocking=non_blocking, dtype=torch.float32)
|
| 179 |
+
return t.detach() if detach else t
|
| 180 |
+
|
| 181 |
+
return map_tensor(batch, _func)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def remove_batch_dim(data: dict) -> dict:
|
| 185 |
+
"""Remove batch dimension from elements in data"""
|
| 186 |
+
return {
|
| 187 |
+
k: v[0] if isinstance(v, (torch.Tensor, np.ndarray, list)) else v for k, v in data.items()
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def add_batch_dim(data: dict) -> dict:
|
| 192 |
+
"""Add batch dimension to elements in data"""
|
| 193 |
+
return {
|
| 194 |
+
k: v[None] if isinstance(v, (torch.Tensor, np.ndarray, list)) else v
|
| 195 |
+
for k, v in data.items()
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def fit_to_multiple(x: torch.Tensor, multiple: int, mode: str = "center", crop: bool = False):
|
| 200 |
+
"""Get padding to make the image size a multiple of the given number.
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
x (torch.Tensor): Input tensor.
|
| 204 |
+
multiple (int, optional): Multiple.
|
| 205 |
+
crop (bool, optional): Whether to crop or pad. Defaults to False.
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
torch.Tensor: Padding.
|
| 209 |
+
"""
|
| 210 |
+
h, w = x.shape[-2:]
|
| 211 |
+
|
| 212 |
+
if crop:
|
| 213 |
+
pad_w = (w // multiple) * multiple - w
|
| 214 |
+
pad_h = (h // multiple) * multiple - h
|
| 215 |
+
else:
|
| 216 |
+
pad_w = (multiple - w % multiple) % multiple
|
| 217 |
+
pad_h = (multiple - h % multiple) % multiple
|
| 218 |
+
|
| 219 |
+
if mode == "center":
|
| 220 |
+
pad_l = pad_w // 2
|
| 221 |
+
pad_r = pad_w - pad_l
|
| 222 |
+
pad_t = pad_h // 2
|
| 223 |
+
pad_b = pad_h - pad_t
|
| 224 |
+
elif mode == "left":
|
| 225 |
+
pad_l = 0
|
| 226 |
+
pad_r = pad_w
|
| 227 |
+
pad_t = 0
|
| 228 |
+
pad_b = pad_h
|
| 229 |
+
else:
|
| 230 |
+
raise ValueError(f"Unknown mode {mode}")
|
| 231 |
+
|
| 232 |
+
return (pad_l, pad_r, pad_t, pad_b)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def fit_features_to_multiple(
|
| 236 |
+
features: torch.Tensor, multiple: int = 32, crop: bool = False
|
| 237 |
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 238 |
+
"""Pad image to a multiple of the given number.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
features (torch.Tensor): Input features.
|
| 242 |
+
multiple (int, optional): Multiple. Defaults to 32.
|
| 243 |
+
crop (bool, optional): Whether to crop or pad. Defaults to False.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
Tuple[torch.Tensor, Tuple[int, int]]: Padded features and padding.
|
| 247 |
+
"""
|
| 248 |
+
pad = fit_to_multiple(features, multiple, crop=crop)
|
| 249 |
+
return torch.nn.functional.pad(features, pad, mode="reflect"), pad
|
scripts/camera/utils/text.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
def parse_camera_params(
|
| 5 |
+
text: str,
|
| 6 |
+
mode: str = "base"
|
| 7 |
+
) -> Tuple[float, float, float]:
|
| 8 |
+
"""
|
| 9 |
+
Extract roll, pitch, fov from text using one of two patterns:
|
| 10 |
+
- 'base' mode: ... are: roll, pitch, fov.
|
| 11 |
+
- 'cot' mode: <answer>roll, pitch, fov</answer>
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
text: The full text to search.
|
| 15 |
+
mode: One of {"base", "cot"}.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
roll, pitch, fov as floats.
|
| 19 |
+
|
| 20 |
+
Raises:
|
| 21 |
+
ValueError if the chosen pattern is not found, or mode is invalid.
|
| 22 |
+
"""
|
| 23 |
+
# compile both regexes
|
| 24 |
+
pat_base = re.compile(
|
| 25 |
+
r"are:\s*([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 26 |
+
r"([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 27 |
+
r"([+-]?\d+(?:\.\d+)?)[\.\s]*$"
|
| 28 |
+
)
|
| 29 |
+
pat_cot = re.compile(
|
| 30 |
+
r"<answer>\s*([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 31 |
+
r"([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 32 |
+
r"([+-]?\d+(?:\.\d+)?)\s*</answer>"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
m = None
|
| 36 |
+
if mode == "base":
|
| 37 |
+
m = pat_base.search(text)
|
| 38 |
+
elif mode == "cot":
|
| 39 |
+
m = pat_cot.search(text)
|
| 40 |
+
else:
|
| 41 |
+
raise ValueError(f"Invalid mode: {mode!r}. Choose 'base', 'cot', or 'auto'.")
|
| 42 |
+
|
| 43 |
+
if not m:
|
| 44 |
+
raise ValueError(f"No camera parameters found using mode '{mode}'.")
|
| 45 |
+
|
| 46 |
+
roll_s, pitch_s, fov_s = m.group(1), m.group(2), m.group(3)
|
| 47 |
+
return float(roll_s), float(pitch_s), float(fov_s)
|
scripts/camera/visualization/visualize_batch.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Visualization of predicted and ground truth for a single batch."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
from typing import Any, Dict
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from scripts.camera.geometry.perspective_fields import get_latitude_field
|
| 10 |
+
from scripts.camera.utils.conversions import rad2deg
|
| 11 |
+
from scripts.camera.utils.tensor import batch_to_device
|
| 12 |
+
from scripts.camera.visualization.viz2d import (
|
| 13 |
+
plot_confidences,
|
| 14 |
+
plot_heatmaps,
|
| 15 |
+
plot_image_grid,
|
| 16 |
+
plot_latitudes,
|
| 17 |
+
plot_vector_fields,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def make_up_figure(
|
| 22 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 23 |
+
) -> Dict[str, Any]:
|
| 24 |
+
"""Get predicted and ground truth up fields and errors.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
pred (Dict[str, torch.Tensor]): Predicted up field.
|
| 28 |
+
data (Dict[str, torch.Tensor]): Ground truth up field.
|
| 29 |
+
n_pairs (int): Number of pairs to visualize.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
Dict[str, Any]: Dictionary with figure.
|
| 33 |
+
"""
|
| 34 |
+
pred = batch_to_device(pred, "cpu", detach=True)
|
| 35 |
+
data = batch_to_device(data, "cpu", detach=True)
|
| 36 |
+
|
| 37 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 38 |
+
|
| 39 |
+
if "up_field" not in pred.keys():
|
| 40 |
+
return {}
|
| 41 |
+
|
| 42 |
+
up_fields = []
|
| 43 |
+
for i in range(n_pairs):
|
| 44 |
+
row = [data["up_field"][i]]
|
| 45 |
+
titles = ["Up GT"]
|
| 46 |
+
|
| 47 |
+
if "up_confidence" in pred.keys():
|
| 48 |
+
row += [pred["up_confidence"][i]]
|
| 49 |
+
titles += ["Up Confidence"]
|
| 50 |
+
|
| 51 |
+
row = [r.float().numpy() if isinstance(r, torch.Tensor) else r for r in row]
|
| 52 |
+
up_fields.append(row)
|
| 53 |
+
|
| 54 |
+
# create figure
|
| 55 |
+
N, M = len(up_fields), len(up_fields[0]) + 1
|
| 56 |
+
imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)]
|
| 57 |
+
fig, ax = plot_image_grid(imgs, return_fig=True, set_lim=True)
|
| 58 |
+
ax = np.array(ax)
|
| 59 |
+
|
| 60 |
+
for i in range(n_pairs):
|
| 61 |
+
plot_vector_fields([up_fields[i][0]], axes=ax[i, [1]])
|
| 62 |
+
#plot_heatmaps([up_fields[i][2]], cmap="turbo", colorbar=True, axes=ax[i, [3]])
|
| 63 |
+
|
| 64 |
+
if "up_confidence" in pred.keys():
|
| 65 |
+
plot_confidences([up_fields[i][3]], axes=ax[i, [4]])
|
| 66 |
+
|
| 67 |
+
return {"up": fig}
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def make_latitude_figure(
|
| 71 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 72 |
+
) -> Dict[str, Any]:
|
| 73 |
+
"""Get predicted and ground truth latitude fields and errors.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
pred (Dict[str, torch.Tensor]): Predicted latitude field.
|
| 77 |
+
data (Dict[str, torch.Tensor]): Ground truth latitude field.
|
| 78 |
+
n_pairs (int, optional): Number of pairs to visualize. Defaults to 2.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
Dict[str, Any]: Dictionary with figure.
|
| 82 |
+
"""
|
| 83 |
+
pred = batch_to_device(pred, "cpu", detach=True)
|
| 84 |
+
data = batch_to_device(data, "cpu", detach=True)
|
| 85 |
+
|
| 86 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 87 |
+
latitude_fields = []
|
| 88 |
+
|
| 89 |
+
if "latitude_field" not in pred.keys():
|
| 90 |
+
return {}
|
| 91 |
+
|
| 92 |
+
for i in range(n_pairs):
|
| 93 |
+
row = [
|
| 94 |
+
rad2deg(data["latitude_field"][i][0]),
|
| 95 |
+
#rad2deg(pred["latitude_field"][i][0]),
|
| 96 |
+
#errors[i],
|
| 97 |
+
]
|
| 98 |
+
titles = ["Latitude GT"]
|
| 99 |
+
|
| 100 |
+
if "latitude_confidence" in pred.keys():
|
| 101 |
+
row += [pred["latitude_confidence"][i]]
|
| 102 |
+
titles += ["Latitude Confidence"]
|
| 103 |
+
|
| 104 |
+
row = [r.float().numpy() if isinstance(r, torch.Tensor) else r for r in row]
|
| 105 |
+
latitude_fields.append(row)
|
| 106 |
+
|
| 107 |
+
# create figure
|
| 108 |
+
N, M = len(latitude_fields), len(latitude_fields[0]) + 1
|
| 109 |
+
imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)]
|
| 110 |
+
fig, ax = plot_image_grid(imgs, return_fig=True, set_lim=True)
|
| 111 |
+
ax = np.array(ax)
|
| 112 |
+
|
| 113 |
+
for i in range(n_pairs):
|
| 114 |
+
plot_latitudes([latitude_fields[i][0]], is_radians=False, axes=ax[i, [1]])
|
| 115 |
+
#plot_heatmaps([latitude_fields[i][2]], cmap="turbo", colorbar=True, axes=ax[i, [3]])
|
| 116 |
+
|
| 117 |
+
if "latitude_confidence" in pred.keys():
|
| 118 |
+
plot_confidences([latitude_fields[i][3]], axes=ax[i, [4]])
|
| 119 |
+
|
| 120 |
+
return {"latitude": fig}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def make_camera_figure(
|
| 124 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 125 |
+
) -> Dict[str, Any]:
|
| 126 |
+
"""Get predicted and ground truth camera parameters.
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
pred (Dict[str, torch.Tensor]): Predicted camera parameters.
|
| 130 |
+
data (Dict[str, torch.Tensor]): Ground truth camera parameters.
|
| 131 |
+
n_pairs (int, optional): Number of pairs to visualize. Defaults to 2.
|
| 132 |
+
|
| 133 |
+
Returns:
|
| 134 |
+
Dict[str, Any]: Dictionary with figure.
|
| 135 |
+
"""
|
| 136 |
+
pred = batch_to_device(pred, "cpu", detach=True)
|
| 137 |
+
data = batch_to_device(data, "cpu", detach=True)
|
| 138 |
+
|
| 139 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 140 |
+
|
| 141 |
+
if "camera" not in pred.keys():
|
| 142 |
+
return {}
|
| 143 |
+
|
| 144 |
+
latitudes = []
|
| 145 |
+
for i in range(n_pairs):
|
| 146 |
+
titles = ["Cameras GT"]
|
| 147 |
+
row = [get_latitude_field(data["camera"][i], data["gravity"][i])]
|
| 148 |
+
|
| 149 |
+
if "camera" in pred.keys() and "gravity" in pred.keys():
|
| 150 |
+
row += [get_latitude_field(pred["camera"][i], pred["gravity"][i])]
|
| 151 |
+
titles += ["Cameras Pred"]
|
| 152 |
+
|
| 153 |
+
row = [rad2deg(r).squeeze(-1).float().numpy()[0] for r in row]
|
| 154 |
+
latitudes.append(row)
|
| 155 |
+
|
| 156 |
+
# create figure
|
| 157 |
+
N, M = len(latitudes), len(latitudes[0]) + 1
|
| 158 |
+
imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)]
|
| 159 |
+
fig, ax = plot_image_grid(imgs, titles=[["Image"] + titles] * N, return_fig=True, set_lim=True)
|
| 160 |
+
ax = np.array(ax)
|
| 161 |
+
|
| 162 |
+
for i in range(n_pairs):
|
| 163 |
+
plot_latitudes(latitudes[i], is_radians=False, axes=ax[i, 1:])
|
| 164 |
+
|
| 165 |
+
return {"camera": fig}
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def make_perspective_figures(
|
| 169 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 170 |
+
) -> Dict[str, Any]:
|
| 171 |
+
"""Get predicted and ground truth perspective fields.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
pred (Dict[str, torch.Tensor]): Predicted perspective fields.
|
| 175 |
+
data (Dict[str, torch.Tensor]): Ground truth perspective fields.
|
| 176 |
+
n_pairs (int, optional): Number of pairs to visualize. Defaults to 2.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Dict[str, Any]: Dictionary with figure.
|
| 180 |
+
"""
|
| 181 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 182 |
+
figures = make_up_figure(pred, data, n_pairs)
|
| 183 |
+
figures |= make_latitude_figure(pred, data, n_pairs)
|
| 184 |
+
#figures |= make_camera_figure(pred, data, n_pairs)
|
| 185 |
+
|
| 186 |
+
{f.tight_layout() for f in figures.values()}
|
| 187 |
+
|
| 188 |
+
return figures
|
scripts/camera/visualization/viz2d.py
ADDED
|
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
2D visualization primitives based on Matplotlib.
|
| 3 |
+
1) Plot images with `plot_images`.
|
| 4 |
+
2) Call TODO: add functions
|
| 5 |
+
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`.
|
| 6 |
+
"""
|
| 7 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 8 |
+
|
| 9 |
+
import matplotlib.patheffects as path_effects
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from scripts.camera.geometry.perspective_fields import get_perspective_field
|
| 15 |
+
from scripts.camera.utils.conversions import rad2deg
|
| 16 |
+
|
| 17 |
+
# flake8: noqa
|
| 18 |
+
# mypy: ignore-errors
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def cm_ranking(sc, ths=None):
|
| 22 |
+
if ths is None:
|
| 23 |
+
ths = [512, 1024, 2048, 4096]
|
| 24 |
+
|
| 25 |
+
ls = sc.shape[0]
|
| 26 |
+
colors = ["red", "yellow", "lime", "cyan", "blue"]
|
| 27 |
+
out = ["gray"] * ls
|
| 28 |
+
for i in range(ls):
|
| 29 |
+
for c, th in zip(colors[: len(ths) + 1], ths + [ls]):
|
| 30 |
+
if i < th:
|
| 31 |
+
out[i] = c
|
| 32 |
+
break
|
| 33 |
+
sid = np.argsort(sc, axis=0).flip(0)
|
| 34 |
+
return np.array(out)[sid]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def cm_RdBl(x):
|
| 38 |
+
"""Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
|
| 39 |
+
x = np.clip(x, 0, 1)[..., None] * 2
|
| 40 |
+
c = x * np.array([[0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0]])
|
| 41 |
+
return np.clip(c, 0, 1)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def cm_RdGn(x):
|
| 45 |
+
"""Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
|
| 46 |
+
x = np.clip(x, 0, 1)[..., None] * 2
|
| 47 |
+
c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]])
|
| 48 |
+
return np.clip(c, 0, 1)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def cm_BlRdGn(x_):
|
| 52 |
+
"""Custom colormap: blue (-1) -> red (0.0) -> green (1)."""
|
| 53 |
+
x = np.clip(x_, 0, 1)[..., None] * 2
|
| 54 |
+
c = x * np.array([[0, 1.0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0, 1.0]])
|
| 55 |
+
|
| 56 |
+
xn = -np.clip(x_, -1, 0)[..., None] * 2
|
| 57 |
+
cn = xn * np.array([[0, 1.0, 0, 1.0]]) + (2 - xn) * np.array([[1.0, 0, 0, 1.0]])
|
| 58 |
+
return np.clip(np.where(x_[..., None] < 0, cn, c), 0, 1)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def plot_images(imgs, titles=None, cmaps="gray", dpi=200, pad=0.5, adaptive=True):
|
| 62 |
+
"""Plot a list of images.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
imgs (List[np.ndarray]): List of images to plot.
|
| 66 |
+
titles (List[str], optional): Titles. Defaults to None.
|
| 67 |
+
cmaps (str, optional): Colormaps. Defaults to "gray".
|
| 68 |
+
dpi (int, optional): Dots per inch. Defaults to 200.
|
| 69 |
+
pad (float, optional): Padding. Defaults to 0.5.
|
| 70 |
+
adaptive (bool, optional): Whether to adapt the aspect ratio. Defaults to True.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
plt.Figure: Figure of the images.
|
| 74 |
+
"""
|
| 75 |
+
n = len(imgs)
|
| 76 |
+
if not isinstance(cmaps, (list, tuple)):
|
| 77 |
+
cmaps = [cmaps] * n
|
| 78 |
+
|
| 79 |
+
ratios = [i.shape[1] / i.shape[0] for i in imgs] if adaptive else [4 / 3] * n
|
| 80 |
+
figsize = [sum(ratios) * 4.5, 4.5]
|
| 81 |
+
fig, axs = plt.subplots(1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios})
|
| 82 |
+
if n == 1:
|
| 83 |
+
axs = [axs]
|
| 84 |
+
for i, (img, ax) in enumerate(zip(imgs, axs)):
|
| 85 |
+
ax.imshow(img, cmap=plt.get_cmap(cmaps[i]))
|
| 86 |
+
ax.set_axis_off()
|
| 87 |
+
if titles:
|
| 88 |
+
ax.set_title(titles[i])
|
| 89 |
+
fig.tight_layout(pad=pad)
|
| 90 |
+
|
| 91 |
+
return fig
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def plot_image_grid(
|
| 95 |
+
imgs,
|
| 96 |
+
titles=None,
|
| 97 |
+
cmaps="gray",
|
| 98 |
+
dpi=100,
|
| 99 |
+
pad=0.5,
|
| 100 |
+
fig=None,
|
| 101 |
+
adaptive=True,
|
| 102 |
+
figs=3.0,
|
| 103 |
+
return_fig=False,
|
| 104 |
+
set_lim=False,
|
| 105 |
+
) -> plt.Figure:
|
| 106 |
+
"""Plot a grid of images.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
imgs (List[np.ndarray]): List of images to plot.
|
| 110 |
+
titles (List[str], optional): Titles. Defaults to None.
|
| 111 |
+
cmaps (str, optional): Colormaps. Defaults to "gray".
|
| 112 |
+
dpi (int, optional): Dots per inch. Defaults to 100.
|
| 113 |
+
pad (float, optional): Padding. Defaults to 0.5.
|
| 114 |
+
fig (_type_, optional): Figure to plot on. Defaults to None.
|
| 115 |
+
adaptive (bool, optional): Whether to adapt the aspect ratio. Defaults to True.
|
| 116 |
+
figs (float, optional): Figure size. Defaults to 3.0.
|
| 117 |
+
return_fig (bool, optional): Whether to return the figure. Defaults to False.
|
| 118 |
+
set_lim (bool, optional): Whether to set the limits. Defaults to False.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
plt.Figure: Figure and axes or just axes.
|
| 122 |
+
"""
|
| 123 |
+
nr, n = len(imgs), len(imgs[0])
|
| 124 |
+
if not isinstance(cmaps, (list, tuple)):
|
| 125 |
+
cmaps = [cmaps] * n
|
| 126 |
+
|
| 127 |
+
if adaptive:
|
| 128 |
+
ratios = [i.shape[1] / i.shape[0] for i in imgs[0]] # W / H
|
| 129 |
+
else:
|
| 130 |
+
ratios = [4 / 3] * n
|
| 131 |
+
|
| 132 |
+
figsize = [sum(ratios) * figs, nr * figs]
|
| 133 |
+
if fig is None:
|
| 134 |
+
fig, axs = plt.subplots(
|
| 135 |
+
nr, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
|
| 136 |
+
)
|
| 137 |
+
else:
|
| 138 |
+
axs = fig.subplots(nr, n, gridspec_kw={"width_ratios": ratios})
|
| 139 |
+
fig.figure.set_size_inches(figsize)
|
| 140 |
+
|
| 141 |
+
if nr == 1 and n == 1:
|
| 142 |
+
axs = [[axs]]
|
| 143 |
+
elif n == 1:
|
| 144 |
+
axs = axs[:, None]
|
| 145 |
+
elif nr == 1:
|
| 146 |
+
axs = [axs]
|
| 147 |
+
|
| 148 |
+
for j in range(nr):
|
| 149 |
+
for i in range(n):
|
| 150 |
+
ax = axs[j][i]
|
| 151 |
+
ax.imshow(imgs[j][i], cmap=plt.get_cmap(cmaps[i]))
|
| 152 |
+
ax.set_axis_off()
|
| 153 |
+
if set_lim:
|
| 154 |
+
ax.set_xlim([0, imgs[j][i].shape[1]])
|
| 155 |
+
ax.set_ylim([imgs[j][i].shape[0], 0])
|
| 156 |
+
if titles:
|
| 157 |
+
ax.set_title(titles[j][i])
|
| 158 |
+
if isinstance(fig, plt.Figure):
|
| 159 |
+
fig.tight_layout(pad=pad)
|
| 160 |
+
return (fig, axs) if return_fig else axs
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def add_text(
|
| 164 |
+
idx,
|
| 165 |
+
text,
|
| 166 |
+
pos=(0.01, 0.99),
|
| 167 |
+
fs=15,
|
| 168 |
+
color="w",
|
| 169 |
+
lcolor="k",
|
| 170 |
+
lwidth=4,
|
| 171 |
+
ha="left",
|
| 172 |
+
va="top",
|
| 173 |
+
axes=None,
|
| 174 |
+
**kwargs,
|
| 175 |
+
):
|
| 176 |
+
"""Add text to a plot.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
idx (int): Index of the axes.
|
| 180 |
+
text (str): Text to add.
|
| 181 |
+
pos (tuple, optional): Text position. Defaults to (0.01, 0.99).
|
| 182 |
+
fs (int, optional): Font size. Defaults to 15.
|
| 183 |
+
color (str, optional): Text color. Defaults to "w".
|
| 184 |
+
lcolor (str, optional): Line color. Defaults to "k".
|
| 185 |
+
lwidth (int, optional): Line width. Defaults to 4.
|
| 186 |
+
ha (str, optional): Horizontal alignment. Defaults to "left".
|
| 187 |
+
va (str, optional): Vertical alignment. Defaults to "top".
|
| 188 |
+
axes (List[plt.Axes], optional): Axes to put text on. Defaults to None.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
plt.Text: Text object.
|
| 192 |
+
"""
|
| 193 |
+
if axes is None:
|
| 194 |
+
axes = plt.gcf().axes
|
| 195 |
+
|
| 196 |
+
ax = axes[idx]
|
| 197 |
+
|
| 198 |
+
t = ax.text(
|
| 199 |
+
*pos,
|
| 200 |
+
text,
|
| 201 |
+
fontsize=fs,
|
| 202 |
+
ha=ha,
|
| 203 |
+
va=va,
|
| 204 |
+
color=color,
|
| 205 |
+
transform=ax.transAxes,
|
| 206 |
+
zorder=5,
|
| 207 |
+
**kwargs,
|
| 208 |
+
)
|
| 209 |
+
if lcolor is not None:
|
| 210 |
+
t.set_path_effects(
|
| 211 |
+
[
|
| 212 |
+
path_effects.Stroke(linewidth=lwidth, foreground=lcolor),
|
| 213 |
+
path_effects.Normal(),
|
| 214 |
+
]
|
| 215 |
+
)
|
| 216 |
+
return t
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def plot_heatmaps(
|
| 220 |
+
heatmaps,
|
| 221 |
+
vmin=-1e-6, # include negative zero
|
| 222 |
+
vmax=None,
|
| 223 |
+
cmap="Spectral",
|
| 224 |
+
a=0.5,
|
| 225 |
+
axes=None,
|
| 226 |
+
contours_every=None,
|
| 227 |
+
contour_style="solid",
|
| 228 |
+
colorbar=False,
|
| 229 |
+
):
|
| 230 |
+
"""Plot heatmaps with optional contours.
|
| 231 |
+
|
| 232 |
+
To plot latitude field, set vmin=-90, vmax=90 and contours_every=15.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
heatmaps (List[np.ndarray | torch.Tensor]): List of 2D heatmaps.
|
| 236 |
+
vmin (float, optional): Min Value. Defaults to -1e-6.
|
| 237 |
+
vmax (float, optional): Max Value. Defaults to None.
|
| 238 |
+
cmap (str, optional): Colormap. Defaults to "Spectral".
|
| 239 |
+
a (float, optional): Alpha value. Defaults to 0.5.
|
| 240 |
+
axes (List[plt.Axes], optional): Axes to plot on. Defaults to None.
|
| 241 |
+
contours_every (int, optional): If not none, will draw contours. Defaults to None.
|
| 242 |
+
contour_style (str, optional): Style of the contours. Defaults to "solid".
|
| 243 |
+
colorbar (bool, optional): Whether to show colorbar. Defaults to False.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
List[plt.Artist]: List of artists.
|
| 247 |
+
"""
|
| 248 |
+
if axes is None:
|
| 249 |
+
axes = plt.gcf().axes
|
| 250 |
+
artists = []
|
| 251 |
+
|
| 252 |
+
for i in range(len(axes)):
|
| 253 |
+
a_ = a if isinstance(a, float) else a[i]
|
| 254 |
+
|
| 255 |
+
if isinstance(heatmaps[i], torch.Tensor):
|
| 256 |
+
heatmaps[i] = heatmaps[i].detach().cpu().numpy()
|
| 257 |
+
|
| 258 |
+
alpha = a_
|
| 259 |
+
# Plot the heatmap
|
| 260 |
+
art = axes[i].imshow(
|
| 261 |
+
heatmaps[i],
|
| 262 |
+
alpha=alpha,
|
| 263 |
+
vmin=vmin,
|
| 264 |
+
vmax=vmax,
|
| 265 |
+
cmap=cmap,
|
| 266 |
+
)
|
| 267 |
+
if colorbar:
|
| 268 |
+
cmax = vmax or np.percentile(heatmaps[i], 99)
|
| 269 |
+
art.set_clim(vmin, cmax)
|
| 270 |
+
cbar = plt.colorbar(art, ax=axes[i])
|
| 271 |
+
artists.append(cbar)
|
| 272 |
+
|
| 273 |
+
artists.append(art)
|
| 274 |
+
|
| 275 |
+
if contours_every is not None:
|
| 276 |
+
# Add contour lines to the heatmap
|
| 277 |
+
contour_data = np.arange(vmin, vmax + contours_every, contours_every)
|
| 278 |
+
|
| 279 |
+
# Get the colormap colors for contour lines
|
| 280 |
+
contour_colors = [
|
| 281 |
+
plt.colormaps.get_cmap(cmap)(plt.Normalize(vmin=vmin, vmax=vmax)(level))
|
| 282 |
+
for level in contour_data
|
| 283 |
+
]
|
| 284 |
+
contours = axes[i].contour(
|
| 285 |
+
heatmaps[i],
|
| 286 |
+
levels=contour_data,
|
| 287 |
+
linewidths=2,
|
| 288 |
+
colors=contour_colors,
|
| 289 |
+
linestyles=contour_style,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
contours.set_clim(vmin, vmax)
|
| 293 |
+
|
| 294 |
+
fmt = {
|
| 295 |
+
level: f"{label}°"
|
| 296 |
+
for level, label in zip(contour_data, contour_data.astype(int).astype(str))
|
| 297 |
+
}
|
| 298 |
+
t = axes[i].clabel(contours, inline=True, fmt=fmt, fontsize=16, colors="white")
|
| 299 |
+
|
| 300 |
+
for label in t:
|
| 301 |
+
label.set_path_effects(
|
| 302 |
+
[
|
| 303 |
+
path_effects.Stroke(linewidth=1, foreground="k"),
|
| 304 |
+
path_effects.Normal(),
|
| 305 |
+
]
|
| 306 |
+
)
|
| 307 |
+
artists.append(contours)
|
| 308 |
+
|
| 309 |
+
return artists
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def plot_horizon_lines(
|
| 313 |
+
cameras, gravities, line_colors="orange", lw=2, styles="solid", alpha=1.0, ax=None
|
| 314 |
+
):
|
| 315 |
+
"""Plot horizon lines on the perspective field.
|
| 316 |
+
|
| 317 |
+
Args:
|
| 318 |
+
cameras (List[Camera]): List of cameras.
|
| 319 |
+
gravities (List[Gravity]): Gravities.
|
| 320 |
+
line_colors (str, optional): Line Colors. Defaults to "orange".
|
| 321 |
+
lw (int, optional): Line width. Defaults to 2.
|
| 322 |
+
styles (str, optional): Line styles. Defaults to "solid".
|
| 323 |
+
alpha (float, optional): Alphas. Defaults to 1.0.
|
| 324 |
+
ax (List[plt.Axes], optional): Axes to draw horizon line on. Defaults to None.
|
| 325 |
+
"""
|
| 326 |
+
if not isinstance(line_colors, list):
|
| 327 |
+
line_colors = [line_colors] * len(cameras)
|
| 328 |
+
|
| 329 |
+
if not isinstance(styles, list):
|
| 330 |
+
styles = [styles] * len(cameras)
|
| 331 |
+
|
| 332 |
+
fig = plt.gcf()
|
| 333 |
+
ax = fig.gca() if ax is None else ax
|
| 334 |
+
|
| 335 |
+
if isinstance(ax, plt.Axes):
|
| 336 |
+
ax = [ax] * len(cameras)
|
| 337 |
+
|
| 338 |
+
assert len(ax) == len(cameras), f"{len(ax)}, {len(cameras)}"
|
| 339 |
+
|
| 340 |
+
for i in range(len(cameras)):
|
| 341 |
+
_, lat = get_perspective_field(cameras[i], gravities[i])
|
| 342 |
+
# horizon line is zero level of the latitude field
|
| 343 |
+
lat = lat[0, 0].cpu().numpy()
|
| 344 |
+
contours = ax[i].contour(lat, levels=[0], linewidths=lw, colors=line_colors[i])
|
| 345 |
+
for contour_line in contours.collections:
|
| 346 |
+
contour_line.set_linestyle(styles[i])
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def plot_vector_fields(
|
| 350 |
+
vector_fields,
|
| 351 |
+
cmap="lime",
|
| 352 |
+
subsample=15,
|
| 353 |
+
scale=None,
|
| 354 |
+
lw=None,
|
| 355 |
+
alphas=0.8,
|
| 356 |
+
axes=None,
|
| 357 |
+
):
|
| 358 |
+
"""Plot vector fields.
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
vector_fields (List[torch.Tensor]): List of vector fields of shape (2, H, W).
|
| 362 |
+
cmap (str, optional): Color of the vectors. Defaults to "lime".
|
| 363 |
+
subsample (int, optional): Subsample the vector field. Defaults to 15.
|
| 364 |
+
scale (float, optional): Scale of the vectors. Defaults to None.
|
| 365 |
+
lw (float, optional): Line width of the vectors. Defaults to None.
|
| 366 |
+
alphas (float | np.ndarray, optional): Alpha per vector or global. Defaults to 0.8.
|
| 367 |
+
axes (List[plt.Axes], optional): List of axes to draw on. Defaults to None.
|
| 368 |
+
|
| 369 |
+
Returns:
|
| 370 |
+
List[plt.Artist]: List of artists.
|
| 371 |
+
"""
|
| 372 |
+
if axes is None:
|
| 373 |
+
axes = plt.gcf().axes
|
| 374 |
+
|
| 375 |
+
vector_fields = [v.cpu().numpy() if isinstance(v, torch.Tensor) else v for v in vector_fields]
|
| 376 |
+
|
| 377 |
+
artists = []
|
| 378 |
+
|
| 379 |
+
H, W = vector_fields[0].shape[-2:]
|
| 380 |
+
if scale is None:
|
| 381 |
+
scale = subsample / min(H, W)
|
| 382 |
+
|
| 383 |
+
if lw is None:
|
| 384 |
+
lw = 0.1 / subsample
|
| 385 |
+
|
| 386 |
+
if alphas is None:
|
| 387 |
+
alphas = np.ones_like(vector_fields[0][0])
|
| 388 |
+
alphas = np.stack([alphas] * len(vector_fields), 0)
|
| 389 |
+
elif isinstance(alphas, float):
|
| 390 |
+
alphas = np.ones_like(vector_fields[0][0]) * alphas
|
| 391 |
+
alphas = np.stack([alphas] * len(vector_fields), 0)
|
| 392 |
+
else:
|
| 393 |
+
alphas = np.array(alphas)
|
| 394 |
+
|
| 395 |
+
subsample = min(W, H) // subsample
|
| 396 |
+
offset_x = ((W % subsample) + subsample) // 2
|
| 397 |
+
|
| 398 |
+
samples_x = np.arange(offset_x, W, subsample)
|
| 399 |
+
samples_y = np.arange(int(subsample * 0.9), H, subsample)
|
| 400 |
+
|
| 401 |
+
x_grid, y_grid = np.meshgrid(samples_x, samples_y)
|
| 402 |
+
|
| 403 |
+
for i in range(len(axes)):
|
| 404 |
+
# vector field of shape (2, H, W) with vectors of norm == 1
|
| 405 |
+
vector_field = vector_fields[i]
|
| 406 |
+
|
| 407 |
+
a = alphas[i][samples_y][:, samples_x]
|
| 408 |
+
x, y = vector_field[:, samples_y][:, :, samples_x]
|
| 409 |
+
|
| 410 |
+
c = cmap
|
| 411 |
+
if not isinstance(cmap, str):
|
| 412 |
+
c = cmap[i][samples_y][:, samples_x].reshape(-1, 3)
|
| 413 |
+
|
| 414 |
+
s = scale * min(H, W)
|
| 415 |
+
arrows = axes[i].quiver(
|
| 416 |
+
x_grid,
|
| 417 |
+
y_grid,
|
| 418 |
+
x,
|
| 419 |
+
y,
|
| 420 |
+
scale=s,
|
| 421 |
+
scale_units="width" if H > W else "height",
|
| 422 |
+
units="width" if H > W else "height",
|
| 423 |
+
alpha=a,
|
| 424 |
+
color=c,
|
| 425 |
+
angles="xy",
|
| 426 |
+
antialiased=True,
|
| 427 |
+
width=lw,
|
| 428 |
+
headaxislength=3.5,
|
| 429 |
+
zorder=5,
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
artists.append(arrows)
|
| 433 |
+
|
| 434 |
+
return artists
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def plot_latitudes(
|
| 438 |
+
latitude,
|
| 439 |
+
is_radians=True,
|
| 440 |
+
vmin=-90,
|
| 441 |
+
vmax=90,
|
| 442 |
+
cmap="seismic",
|
| 443 |
+
contours_every=15,
|
| 444 |
+
alpha=0.4,
|
| 445 |
+
axes=None,
|
| 446 |
+
**kwargs,
|
| 447 |
+
):
|
| 448 |
+
"""Plot latitudes.
|
| 449 |
+
|
| 450 |
+
Args:
|
| 451 |
+
latitude (List[torch.Tensor]): List of latitudes.
|
| 452 |
+
is_radians (bool, optional): Whether the latitudes are in radians. Defaults to True.
|
| 453 |
+
vmin (int, optional): Min value to clip to. Defaults to -90.
|
| 454 |
+
vmax (int, optional): Max value to clip to. Defaults to 90.
|
| 455 |
+
cmap (str, optional): Colormap. Defaults to "seismic".
|
| 456 |
+
contours_every (int, optional): Contours every. Defaults to 15.
|
| 457 |
+
alpha (float, optional): Alpha value. Defaults to 0.4.
|
| 458 |
+
axes (List[plt.Axes], optional): Axes to plot on. Defaults to None.
|
| 459 |
+
|
| 460 |
+
Returns:
|
| 461 |
+
List[plt.Artist]: List of artists.
|
| 462 |
+
"""
|
| 463 |
+
if axes is None:
|
| 464 |
+
axes = plt.gcf().axes
|
| 465 |
+
|
| 466 |
+
assert len(axes) == len(latitude), f"{len(axes)}, {len(latitude)}"
|
| 467 |
+
lat = [rad2deg(lat) for lat in latitude] if is_radians else latitude
|
| 468 |
+
return plot_heatmaps(
|
| 469 |
+
lat,
|
| 470 |
+
vmin=vmin,
|
| 471 |
+
vmax=vmax,
|
| 472 |
+
cmap=cmap,
|
| 473 |
+
a=alpha,
|
| 474 |
+
axes=axes,
|
| 475 |
+
contours_every=contours_every,
|
| 476 |
+
**kwargs,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def plot_confidences(
|
| 481 |
+
confidence,
|
| 482 |
+
as_log=True,
|
| 483 |
+
vmin=-4,
|
| 484 |
+
vmax=0,
|
| 485 |
+
cmap="turbo",
|
| 486 |
+
alpha=0.4,
|
| 487 |
+
axes=None,
|
| 488 |
+
**kwargs,
|
| 489 |
+
):
|
| 490 |
+
"""Plot confidences.
|
| 491 |
+
|
| 492 |
+
Args:
|
| 493 |
+
confidence (List[torch.Tensor]): Confidence maps.
|
| 494 |
+
as_log (bool, optional): Whether to plot in log scale. Defaults to True.
|
| 495 |
+
vmin (int, optional): Min value to clip to. Defaults to -4.
|
| 496 |
+
vmax (int, optional): Max value to clip to. Defaults to 0.
|
| 497 |
+
cmap (str, optional): Colormap. Defaults to "turbo".
|
| 498 |
+
alpha (float, optional): Alpha value. Defaults to 0.4.
|
| 499 |
+
axes (List[plt.Axes], optional): Axes to plot on. Defaults to None.
|
| 500 |
+
|
| 501 |
+
Returns:
|
| 502 |
+
List[plt.Artist]: List of artists.
|
| 503 |
+
"""
|
| 504 |
+
if axes is None:
|
| 505 |
+
axes = plt.gcf().axes
|
| 506 |
+
|
| 507 |
+
confidence = [c.cpu() if isinstance(c, torch.Tensor) else torch.tensor(c) for c in confidence]
|
| 508 |
+
|
| 509 |
+
assert len(axes) == len(confidence), f"{len(axes)}, {len(confidence)}"
|
| 510 |
+
|
| 511 |
+
if as_log:
|
| 512 |
+
confidence = [torch.log10(c.clip(1e-5)).clip(vmin, vmax) for c in confidence]
|
| 513 |
+
|
| 514 |
+
# normalize to [0, 1]
|
| 515 |
+
confidence = [(c - c.min()) / (c.max() - c.min()) for c in confidence]
|
| 516 |
+
return plot_heatmaps(confidence, vmin=0, vmax=1, cmap=cmap, a=alpha, axes=axes, **kwargs)
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def save_plot(path, **kw):
|
| 520 |
+
"""Save the current figure without any white margin."""
|
| 521 |
+
plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw)
|
src/datasets/utils.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import random
|
| 3 |
+
from xtuner.dataset.utils import get_bos_eos_token_ids
|
| 4 |
+
from xtuner.utils import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
INPUT_IMAGE_TOKEN_INDEX = IMAGE_TOKEN_INDEX
|
| 8 |
+
OUTPUT_IMAGE_TOKEN_INDEX = -300
|
| 9 |
+
QUERY_TOKEN_INDEX = -400
|
| 10 |
+
QUERY_TOKEN = '<query>'
|
| 11 |
+
|
| 12 |
+
def crop2square(pil_img):
|
| 13 |
+
width, height = pil_img.width, pil_img.height
|
| 14 |
+
|
| 15 |
+
if width > height:
|
| 16 |
+
y0, y1 = 0, height
|
| 17 |
+
x0 = random.randint(0, width - height)
|
| 18 |
+
x1 = x0 + height
|
| 19 |
+
else:
|
| 20 |
+
x0, x1 = 0, width
|
| 21 |
+
y0 = random.randint(0, height - width)
|
| 22 |
+
y1 = y0 + width
|
| 23 |
+
|
| 24 |
+
return pil_img.crop(box=(x0, y0, x1, y1))
|
| 25 |
+
|
| 26 |
+
def load_jsonl(json_file):
|
| 27 |
+
with open(json_file) as f:
|
| 28 |
+
lines = f.readlines()
|
| 29 |
+
data = []
|
| 30 |
+
for line in lines:
|
| 31 |
+
data.append(json.loads(line))
|
| 32 |
+
return data
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def encode_fn(example,
|
| 36 |
+
tokenizer,
|
| 37 |
+
max_length=None,
|
| 38 |
+
image_length=1,
|
| 39 |
+
query_length=1,
|
| 40 |
+
input_ids_with_output=True,
|
| 41 |
+
with_image_token=False,
|
| 42 |
+
prompt_template=None,
|
| 43 |
+
truncation='right'):
|
| 44 |
+
"""Only support the following three scenarios:
|
| 45 |
+
|
| 46 |
+
1. Incremental pretraining dataset.
|
| 47 |
+
example['conversation'] = [
|
| 48 |
+
{
|
| 49 |
+
'input': '',
|
| 50 |
+
'output': '### Human: Can you write xxx'
|
| 51 |
+
}
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
2. Single-turn conversation dataset.
|
| 55 |
+
example['conversation'] = [
|
| 56 |
+
{
|
| 57 |
+
'input': 'Give three tips for staying healthy.',
|
| 58 |
+
'output': '1.Eat a balanced diet xxx'
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
3. Multi-turn conversation dataset.
|
| 63 |
+
example['conversation'] = [
|
| 64 |
+
{
|
| 65 |
+
'input': 'Give three tips for staying healthy.',
|
| 66 |
+
'output': '1.Eat a balanced diet xxx'
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
'input': 'Please expand on the second point.',
|
| 70 |
+
'output': 'Here is an expanded explanation of the xxx'
|
| 71 |
+
}
|
| 72 |
+
]
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
bos_token_id, eos_token_id = get_bos_eos_token_ids(tokenizer)
|
| 76 |
+
is_multi_turn_conversation = len(example['conversation']) > 1
|
| 77 |
+
if is_multi_turn_conversation:
|
| 78 |
+
assert input_ids_with_output
|
| 79 |
+
|
| 80 |
+
input_ids, labels = [], []
|
| 81 |
+
next_needs_bos_token = True
|
| 82 |
+
for single_turn_conversation in example['conversation']:
|
| 83 |
+
input = single_turn_conversation['input']
|
| 84 |
+
if DEFAULT_IMAGE_TOKEN in input and with_image_token:
|
| 85 |
+
chunk_encode = [
|
| 86 |
+
tokenizer.encode(chunk, add_special_tokens=False)
|
| 87 |
+
for chunk in input.split(DEFAULT_IMAGE_TOKEN)
|
| 88 |
+
]
|
| 89 |
+
assert len(chunk_encode) == 2
|
| 90 |
+
input_encode = []
|
| 91 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
| 92 |
+
input_encode.extend(cur_chunk_encode)
|
| 93 |
+
if idx != len(chunk_encode) - 1:
|
| 94 |
+
input_encode += [INPUT_IMAGE_TOKEN_INDEX] * image_length
|
| 95 |
+
else:
|
| 96 |
+
input_encode = tokenizer.encode(input, add_special_tokens=False)
|
| 97 |
+
if next_needs_bos_token:
|
| 98 |
+
input_ids += bos_token_id
|
| 99 |
+
labels += [IGNORE_INDEX] * len(bos_token_id)
|
| 100 |
+
input_ids += input_encode
|
| 101 |
+
labels += [IGNORE_INDEX] * len(input_encode)
|
| 102 |
+
if input_ids_with_output and 'output' in single_turn_conversation:
|
| 103 |
+
# Add output
|
| 104 |
+
output_with_loss = single_turn_conversation.get(
|
| 105 |
+
'output_with_loss', True)
|
| 106 |
+
output = single_turn_conversation['output']
|
| 107 |
+
if DEFAULT_IMAGE_TOKEN in output and with_image_token:
|
| 108 |
+
chunk_encode = [
|
| 109 |
+
tokenizer.encode(chunk, add_special_tokens=False)
|
| 110 |
+
for chunk in output.split(DEFAULT_IMAGE_TOKEN)
|
| 111 |
+
]
|
| 112 |
+
assert len(chunk_encode) == 2
|
| 113 |
+
output_encode = []
|
| 114 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
| 115 |
+
output_encode.extend(cur_chunk_encode)
|
| 116 |
+
if idx != len(chunk_encode) - 1:
|
| 117 |
+
output_encode += [OUTPUT_IMAGE_TOKEN_INDEX] * image_length
|
| 118 |
+
elif QUERY_TOKEN in output:
|
| 119 |
+
chunk_encode = [
|
| 120 |
+
tokenizer.encode(chunk, add_special_tokens=False)
|
| 121 |
+
for chunk in output.split(QUERY_TOKEN)
|
| 122 |
+
]
|
| 123 |
+
assert len(chunk_encode) == 2
|
| 124 |
+
output_encode = []
|
| 125 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
| 126 |
+
output_encode.extend(cur_chunk_encode)
|
| 127 |
+
if idx != len(chunk_encode) - 1:
|
| 128 |
+
output_encode += [QUERY_TOKEN_INDEX] * query_length
|
| 129 |
+
else:
|
| 130 |
+
output_encode = tokenizer.encode(output, add_special_tokens=False)
|
| 131 |
+
input_ids += output_encode
|
| 132 |
+
if output_with_loss:
|
| 133 |
+
labels += copy.deepcopy(output_encode)
|
| 134 |
+
else:
|
| 135 |
+
labels += [IGNORE_INDEX] * len(output_encode)
|
| 136 |
+
# Add EOS_TOKEN (with loss)
|
| 137 |
+
if single_turn_conversation.get('need_eos_token', True):
|
| 138 |
+
next_needs_bos_token = True
|
| 139 |
+
input_ids += eos_token_id
|
| 140 |
+
if output_with_loss:
|
| 141 |
+
labels += copy.deepcopy(eos_token_id)
|
| 142 |
+
else:
|
| 143 |
+
labels += [IGNORE_INDEX] * len(eos_token_id)
|
| 144 |
+
else:
|
| 145 |
+
next_needs_bos_token = False
|
| 146 |
+
# Add SEP (without loss)
|
| 147 |
+
sep = single_turn_conversation.get('sep', '')
|
| 148 |
+
if sep != '':
|
| 149 |
+
sep_encode = tokenizer.encode(sep, add_special_tokens=False)
|
| 150 |
+
input_ids += sep_encode
|
| 151 |
+
labels += [IGNORE_INDEX] * len(sep_encode)
|
| 152 |
+
|
| 153 |
+
if max_length is not None and len(input_ids) > max_length:
|
| 154 |
+
if truncation == 'right':
|
| 155 |
+
input_ids = input_ids[:max_length]
|
| 156 |
+
labels = labels[:max_length]
|
| 157 |
+
elif truncation == 'left':
|
| 158 |
+
input_ids = input_ids[-max_length:]
|
| 159 |
+
labels = labels[-max_length:]
|
| 160 |
+
else:
|
| 161 |
+
assert truncation is None
|
| 162 |
+
return {'input_ids': input_ids, 'labels': labels}
|
src/models/connector/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .configuration_connector import ConnectorConfig
|
| 2 |
+
from .modeling_connector import ConnectorEncoder
|
src/models/connector/configuration_connector.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
logger = logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class ConnectorConfig(PretrainedConfig):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
hidden_size=768,
|
| 11 |
+
intermediate_size=3072,
|
| 12 |
+
num_hidden_layers=12,
|
| 13 |
+
num_attention_heads=12,
|
| 14 |
+
hidden_act="gelu_pytorch_tanh",
|
| 15 |
+
layer_norm_eps=1e-6,
|
| 16 |
+
attention_dropout=0.0,
|
| 17 |
+
**kwargs,
|
| 18 |
+
):
|
| 19 |
+
super().__init__(**kwargs)
|
| 20 |
+
|
| 21 |
+
self.hidden_size = hidden_size
|
| 22 |
+
self.intermediate_size = intermediate_size
|
| 23 |
+
self.num_hidden_layers = num_hidden_layers
|
| 24 |
+
self.num_attention_heads = num_attention_heads
|
| 25 |
+
self.attention_dropout = attention_dropout
|
| 26 |
+
self.layer_norm_eps = layer_norm_eps
|
| 27 |
+
self.hidden_act = hidden_act
|
src/models/connector/modeling_connector.py
ADDED
|
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch Connector model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
import warnings
|
| 19 |
+
from typing import Any, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.utils.checkpoint
|
| 23 |
+
from torch import nn
|
| 24 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
| 28 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
| 29 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 30 |
+
from transformers.utils import (
|
| 31 |
+
ModelOutput,
|
| 32 |
+
is_flash_attn_2_available,
|
| 33 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 34 |
+
logging,
|
| 35 |
+
replace_return_docstrings,
|
| 36 |
+
torch_int,
|
| 37 |
+
)
|
| 38 |
+
from .configuration_connector import ConnectorConfig
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if is_flash_attn_2_available():
|
| 42 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def init_weights(module):
|
| 49 |
+
"""Initialize the weights"""
|
| 50 |
+
if isinstance(module, nn.Embedding):
|
| 51 |
+
default_flax_embed_init(module.weight)
|
| 52 |
+
elif isinstance(module, ConnectorAttention):
|
| 53 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
| 54 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
| 55 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
| 56 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
| 57 |
+
nn.init.zeros_(module.q_proj.bias)
|
| 58 |
+
nn.init.zeros_(module.k_proj.bias)
|
| 59 |
+
nn.init.zeros_(module.v_proj.bias)
|
| 60 |
+
nn.init.zeros_(module.out_proj.bias)
|
| 61 |
+
elif isinstance(module, ConnectorMLP):
|
| 62 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
| 63 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
| 64 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
| 65 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
| 66 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 67 |
+
lecun_normal_(module.weight)
|
| 68 |
+
if module.bias is not None:
|
| 69 |
+
nn.init.zeros_(module.bias)
|
| 70 |
+
elif isinstance(module, nn.LayerNorm):
|
| 71 |
+
module.bias.data.zero_()
|
| 72 |
+
module.weight.data.fill_(1.0)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 76 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 77 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 78 |
+
def norm_cdf(x):
|
| 79 |
+
# Computes standard normal cumulative distribution function
|
| 80 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 81 |
+
|
| 82 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 83 |
+
warnings.warn(
|
| 84 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 85 |
+
"The distribution of values may be incorrect.",
|
| 86 |
+
stacklevel=2,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Values are generated by using a truncated uniform distribution and
|
| 90 |
+
# then using the inverse CDF for the normal distribution.
|
| 91 |
+
# Get upper and lower cdf values
|
| 92 |
+
l = norm_cdf((a - mean) / std)
|
| 93 |
+
u = norm_cdf((b - mean) / std)
|
| 94 |
+
|
| 95 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 96 |
+
# [2l-1, 2u-1].
|
| 97 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 98 |
+
|
| 99 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 100 |
+
# standard normal
|
| 101 |
+
tensor.erfinv_()
|
| 102 |
+
|
| 103 |
+
# Transform to proper mean, std
|
| 104 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 105 |
+
tensor.add_(mean)
|
| 106 |
+
|
| 107 |
+
# Clamp to ensure it's in the proper range
|
| 108 |
+
tensor.clamp_(min=a, max=b)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def trunc_normal_tf_(
|
| 112 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
| 113 |
+
) -> torch.Tensor:
|
| 114 |
+
"""Fills the input Tensor with values drawn from a truncated
|
| 115 |
+
normal distribution. The values are effectively drawn from the
|
| 116 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 117 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 118 |
+
the bounds. The method used for generating the random values works
|
| 119 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
| 120 |
+
|
| 121 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 122 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 123 |
+
and the result is subsequently scaled and shifted by the mean and std args.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 127 |
+
mean: the mean of the normal distribution
|
| 128 |
+
std: the standard deviation of the normal distribution
|
| 129 |
+
a: the minimum cutoff value
|
| 130 |
+
b: the maximum cutoff value
|
| 131 |
+
"""
|
| 132 |
+
with torch.no_grad():
|
| 133 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 134 |
+
tensor.mul_(std).add_(mean)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 138 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 139 |
+
if mode == "fan_in":
|
| 140 |
+
denom = fan_in
|
| 141 |
+
elif mode == "fan_out":
|
| 142 |
+
denom = fan_out
|
| 143 |
+
elif mode == "fan_avg":
|
| 144 |
+
denom = (fan_in + fan_out) / 2
|
| 145 |
+
|
| 146 |
+
variance = scale / denom
|
| 147 |
+
|
| 148 |
+
if distribution == "truncated_normal":
|
| 149 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 150 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 151 |
+
elif distribution == "normal":
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 154 |
+
elif distribution == "uniform":
|
| 155 |
+
bound = math.sqrt(3 * variance)
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
tensor.uniform_(-bound, bound)
|
| 158 |
+
else:
|
| 159 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def lecun_normal_(tensor):
|
| 163 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def default_flax_embed_init(tensor):
|
| 167 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class ConnectorAttention(nn.Module):
|
| 171 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 172 |
+
|
| 173 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
| 174 |
+
def __init__(self, config):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.config = config
|
| 177 |
+
self.embed_dim = config.hidden_size
|
| 178 |
+
self.num_heads = config.num_attention_heads
|
| 179 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 180 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 181 |
+
raise ValueError(
|
| 182 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 183 |
+
f" {self.num_heads})."
|
| 184 |
+
)
|
| 185 |
+
self.scale = self.head_dim**-0.5
|
| 186 |
+
self.dropout = config.attention_dropout
|
| 187 |
+
|
| 188 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 189 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 190 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 191 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 192 |
+
|
| 193 |
+
def forward(
|
| 194 |
+
self,
|
| 195 |
+
hidden_states: torch.Tensor,
|
| 196 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 197 |
+
output_attentions: Optional[bool] = False,
|
| 198 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 199 |
+
"""Input shape: Batch x Time x Channel"""
|
| 200 |
+
|
| 201 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 202 |
+
|
| 203 |
+
query_states = self.q_proj(hidden_states)
|
| 204 |
+
key_states = self.k_proj(hidden_states)
|
| 205 |
+
value_states = self.v_proj(hidden_states)
|
| 206 |
+
|
| 207 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 208 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 209 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 210 |
+
|
| 211 |
+
k_v_seq_len = key_states.shape[-2]
|
| 212 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
| 213 |
+
|
| 214 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
| 215 |
+
raise ValueError(
|
| 216 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
| 217 |
+
f" {attn_weights.size()}"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if attention_mask is not None:
|
| 221 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
| 222 |
+
raise ValueError(
|
| 223 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
| 224 |
+
)
|
| 225 |
+
attn_weights = attn_weights + attention_mask
|
| 226 |
+
|
| 227 |
+
# upcast attention to fp32
|
| 228 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 229 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 230 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 231 |
+
|
| 232 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
| 233 |
+
raise ValueError(
|
| 234 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
| 235 |
+
f" {attn_output.size()}"
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 239 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 240 |
+
|
| 241 |
+
attn_output = self.out_proj(attn_output)
|
| 242 |
+
|
| 243 |
+
return attn_output, attn_weights
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class ConnectorFlashAttention2(ConnectorAttention):
|
| 247 |
+
"""
|
| 248 |
+
ConnectorAttention flash attention module. This module inherits from `ConnectorAttention` as the weights of the module stays
|
| 249 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 250 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
+
is_causal = False
|
| 254 |
+
|
| 255 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 256 |
+
def __init__(self, *args, **kwargs):
|
| 257 |
+
super().__init__(*args, **kwargs)
|
| 258 |
+
|
| 259 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 260 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 261 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 262 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 263 |
+
|
| 264 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
| 265 |
+
def forward(
|
| 266 |
+
self,
|
| 267 |
+
hidden_states: torch.Tensor,
|
| 268 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 269 |
+
output_attentions: bool = False,
|
| 270 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 271 |
+
output_attentions = False
|
| 272 |
+
|
| 273 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 274 |
+
|
| 275 |
+
query_states = self.q_proj(hidden_states)
|
| 276 |
+
key_states = self.k_proj(hidden_states)
|
| 277 |
+
value_states = self.v_proj(hidden_states)
|
| 278 |
+
|
| 279 |
+
# Flash attention requires the input to have the shape
|
| 280 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 281 |
+
# therefore we just need to keep the original shape
|
| 282 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 283 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 284 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 285 |
+
|
| 286 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 287 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 288 |
+
query_states = query_states.transpose(1, 2)
|
| 289 |
+
key_states = key_states.transpose(1, 2)
|
| 290 |
+
value_states = value_states.transpose(1, 2)
|
| 291 |
+
|
| 292 |
+
dropout_rate = self.dropout if self.training else 0.0
|
| 293 |
+
|
| 294 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 295 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 296 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 297 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 298 |
+
# in fp32.
|
| 299 |
+
|
| 300 |
+
input_dtype = query_states.dtype
|
| 301 |
+
if input_dtype == torch.float32:
|
| 302 |
+
if torch.is_autocast_enabled():
|
| 303 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 304 |
+
# Handle the case where the model is quantized
|
| 305 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 306 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 307 |
+
else:
|
| 308 |
+
target_dtype = self.q_proj.weight.dtype
|
| 309 |
+
|
| 310 |
+
logger.warning_once(
|
| 311 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 312 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 313 |
+
f" {target_dtype}."
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
query_states = query_states.to(target_dtype)
|
| 317 |
+
key_states = key_states.to(target_dtype)
|
| 318 |
+
value_states = value_states.to(target_dtype)
|
| 319 |
+
|
| 320 |
+
attn_output = _flash_attention_forward(
|
| 321 |
+
query_states,
|
| 322 |
+
key_states,
|
| 323 |
+
value_states,
|
| 324 |
+
attention_mask,
|
| 325 |
+
q_len,
|
| 326 |
+
dropout=dropout_rate,
|
| 327 |
+
is_causal=self.is_causal,
|
| 328 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
| 332 |
+
attn_output = self.out_proj(attn_output)
|
| 333 |
+
|
| 334 |
+
if not output_attentions:
|
| 335 |
+
attn_weights = None
|
| 336 |
+
|
| 337 |
+
return attn_output, attn_weights
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
class ConnectorSdpaAttention(ConnectorAttention):
|
| 341 |
+
"""
|
| 342 |
+
Connector attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 343 |
+
`ConnectorAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 344 |
+
SDPA API.
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
is_causal = False
|
| 348 |
+
|
| 349 |
+
# Adapted from ConnectorAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
|
| 350 |
+
def forward(
|
| 351 |
+
self,
|
| 352 |
+
hidden_states: torch.Tensor,
|
| 353 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 354 |
+
output_attentions: Optional[bool] = False,
|
| 355 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 356 |
+
if output_attentions:
|
| 357 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 358 |
+
logger.warning_once(
|
| 359 |
+
"ConnectorModel is using ConnectorSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 360 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 361 |
+
)
|
| 362 |
+
return super().forward(
|
| 363 |
+
hidden_states=hidden_states,
|
| 364 |
+
attention_mask=attention_mask,
|
| 365 |
+
output_attentions=output_attentions,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 369 |
+
|
| 370 |
+
query_states = self.q_proj(hidden_states)
|
| 371 |
+
key_states = self.k_proj(hidden_states)
|
| 372 |
+
value_states = self.v_proj(hidden_states)
|
| 373 |
+
|
| 374 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 375 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 376 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 377 |
+
|
| 378 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 379 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 380 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 381 |
+
query_states = query_states.contiguous()
|
| 382 |
+
key_states = key_states.contiguous()
|
| 383 |
+
value_states = value_states.contiguous()
|
| 384 |
+
|
| 385 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 386 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 387 |
+
is_causal = True if self.is_causal and q_len > 1 else False
|
| 388 |
+
|
| 389 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 390 |
+
query_states,
|
| 391 |
+
key_states,
|
| 392 |
+
value_states,
|
| 393 |
+
attn_mask=attention_mask,
|
| 394 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 395 |
+
is_causal=is_causal,
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 399 |
+
attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
|
| 400 |
+
|
| 401 |
+
attn_output = self.out_proj(attn_output)
|
| 402 |
+
|
| 403 |
+
return attn_output, None
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
CONNECTOR_ATTENTION_CLASSES = {
|
| 407 |
+
"eager": ConnectorAttention,
|
| 408 |
+
"flash_attention_2": ConnectorFlashAttention2,
|
| 409 |
+
"sdpa": ConnectorSdpaAttention,
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Connector
|
| 414 |
+
class ConnectorMLP(nn.Module):
|
| 415 |
+
def __init__(self, config):
|
| 416 |
+
super().__init__()
|
| 417 |
+
self.config = config
|
| 418 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 419 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 420 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 421 |
+
|
| 422 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 423 |
+
hidden_states = self.fc1(hidden_states)
|
| 424 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 425 |
+
hidden_states = self.fc2(hidden_states)
|
| 426 |
+
return hidden_states
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class ConnectorEncoderLayer(nn.Module):
|
| 430 |
+
def __init__(self, config: ConnectorConfig):
|
| 431 |
+
super().__init__()
|
| 432 |
+
self.embed_dim = config.hidden_size
|
| 433 |
+
self.self_attn = CONNECTOR_ATTENTION_CLASSES[config._attn_implementation](config=config)
|
| 434 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 435 |
+
self.mlp = ConnectorMLP(config)
|
| 436 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 437 |
+
|
| 438 |
+
# Ignore copy
|
| 439 |
+
def forward(
|
| 440 |
+
self,
|
| 441 |
+
hidden_states: torch.Tensor,
|
| 442 |
+
attention_mask: torch.Tensor,
|
| 443 |
+
output_attentions: Optional[bool] = False,
|
| 444 |
+
) -> Tuple[torch.FloatTensor]:
|
| 445 |
+
"""
|
| 446 |
+
Args:
|
| 447 |
+
hidden_states (`torch.FloatTensor`):
|
| 448 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
| 449 |
+
attention_mask (`torch.FloatTensor`):
|
| 450 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
| 451 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
| 452 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 453 |
+
returned tensors for more detail.
|
| 454 |
+
"""
|
| 455 |
+
residual = hidden_states
|
| 456 |
+
|
| 457 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 458 |
+
hidden_states, attn_weights = self.self_attn(
|
| 459 |
+
hidden_states=hidden_states,
|
| 460 |
+
attention_mask=attention_mask,
|
| 461 |
+
output_attentions=output_attentions,
|
| 462 |
+
)
|
| 463 |
+
hidden_states = residual + hidden_states
|
| 464 |
+
|
| 465 |
+
residual = hidden_states
|
| 466 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 467 |
+
hidden_states = self.mlp(hidden_states)
|
| 468 |
+
hidden_states = residual + hidden_states
|
| 469 |
+
|
| 470 |
+
outputs = (hidden_states,)
|
| 471 |
+
|
| 472 |
+
if output_attentions:
|
| 473 |
+
outputs += (attn_weights,)
|
| 474 |
+
|
| 475 |
+
return outputs
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Connector
|
| 479 |
+
class ConnectorEncoder(nn.Module):
|
| 480 |
+
def __init__(self, config: ConnectorConfig):
|
| 481 |
+
super().__init__()
|
| 482 |
+
self.config = config
|
| 483 |
+
self.layers = nn.ModuleList([ConnectorEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 484 |
+
self.gradient_checkpointing = False
|
| 485 |
+
self.apply(init_weights)
|
| 486 |
+
|
| 487 |
+
def forward(self, inputs_embeds):
|
| 488 |
+
hidden_states = inputs_embeds
|
| 489 |
+
for encoder_layer in self.layers:
|
| 490 |
+
if self.gradient_checkpointing and self.training:
|
| 491 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 492 |
+
encoder_layer.__call__,
|
| 493 |
+
hidden_states,
|
| 494 |
+
None,
|
| 495 |
+
False,
|
| 496 |
+
use_reentrant=False
|
| 497 |
+
)
|
| 498 |
+
else:
|
| 499 |
+
layer_outputs = encoder_layer(
|
| 500 |
+
hidden_states,
|
| 501 |
+
None,
|
| 502 |
+
output_attentions=False,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
hidden_states = layer_outputs[0]
|
| 506 |
+
|
| 507 |
+
return hidden_states
|
src/models/connector/modeling_qwen2.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import Qwen2PreTrainedModel, Qwen2Config
|
| 4 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm, Qwen2DecoderLayer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Qwen2Connector(Qwen2PreTrainedModel):
|
| 8 |
+
def __init__(self, config: Qwen2Config):
|
| 9 |
+
super().__init__(config)
|
| 10 |
+
self.layers = nn.ModuleList(
|
| 11 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
for layer in self.layers:
|
| 15 |
+
layer.self_attn.is_causal = False
|
| 16 |
+
|
| 17 |
+
self._attn_implementation = config._attn_implementation
|
| 18 |
+
assert self._attn_implementation == 'flash_attention_2'
|
| 19 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 20 |
+
|
| 21 |
+
self.gradient_checkpointing = False
|
| 22 |
+
# Initialize weights and apply final processing
|
| 23 |
+
self.post_init()
|
| 24 |
+
|
| 25 |
+
def forward(self, inputs_embeds):
|
| 26 |
+
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device)
|
| 27 |
+
position_ids = position_ids.expand(inputs_embeds.shape[0], -1)
|
| 28 |
+
hidden_states = inputs_embeds
|
| 29 |
+
|
| 30 |
+
for encoder_layer in self.layers:
|
| 31 |
+
if self.gradient_checkpointing and self.training:
|
| 32 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 33 |
+
encoder_layer.__call__,
|
| 34 |
+
hidden_states,
|
| 35 |
+
None,
|
| 36 |
+
position_ids,
|
| 37 |
+
use_reentrant=False
|
| 38 |
+
)
|
| 39 |
+
else:
|
| 40 |
+
layer_outputs = encoder_layer(
|
| 41 |
+
hidden_states,
|
| 42 |
+
attention_mask=None,
|
| 43 |
+
position_ids=position_ids,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
hidden_states = layer_outputs[0]
|
| 47 |
+
|
| 48 |
+
hidden_states = self.norm(hidden_states)
|
| 49 |
+
|
| 50 |
+
return hidden_states
|
src/models/puffin/model.py
ADDED
|
@@ -0,0 +1,790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import torch
|
| 3 |
+
import math
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
from copy import deepcopy
|
| 7 |
+
from six.moves import zip
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from torch.autograd.function import Function
|
| 11 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 12 |
+
from mmengine.logging import print_log
|
| 13 |
+
from mmengine.model import BaseModel
|
| 14 |
+
from xtuner.utils import IGNORE_INDEX
|
| 15 |
+
from xtuner.registry import BUILDER
|
| 16 |
+
from xtuner.model.utils import guess_load_checkpoint
|
| 17 |
+
from xtuner.dataset.map_fns.template_map_fn import template_map_fn
|
| 18 |
+
from transformers.cache_utils import DynamicCache
|
| 19 |
+
from diffusers.training_utils import compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
|
| 20 |
+
|
| 21 |
+
from src.models.connector import ConnectorConfig, ConnectorEncoder
|
| 22 |
+
from src.models.stable_diffusion3.pipeline_stable_diffusion_3_dynamic import StableDiffusion3Pipeline
|
| 23 |
+
from src.datasets.utils import encode_fn, QUERY_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, INPUT_IMAGE_TOKEN_INDEX
|
| 24 |
+
|
| 25 |
+
class _ScaleGradient(Function):
|
| 26 |
+
@staticmethod
|
| 27 |
+
def forward(ctx, input, scale):
|
| 28 |
+
ctx.scale = scale
|
| 29 |
+
return input
|
| 30 |
+
|
| 31 |
+
@staticmethod
|
| 32 |
+
def backward(ctx, grad_output):
|
| 33 |
+
return grad_output * ctx.scale, None
|
| 34 |
+
|
| 35 |
+
def build_mlp(hidden_size, projector_dim, z_dim):
|
| 36 |
+
return nn.Sequential(
|
| 37 |
+
nn.Linear(hidden_size, projector_dim),
|
| 38 |
+
nn.SiLU(),
|
| 39 |
+
nn.Linear(projector_dim, z_dim),)
|
| 40 |
+
|
| 41 |
+
def pad_an_image_tensor(image, pad_value=0):
|
| 42 |
+
h, w = image.shape[-2:]
|
| 43 |
+
if h > w:
|
| 44 |
+
pad_left = (h - w) // 2
|
| 45 |
+
pad_right = h - w - pad_left
|
| 46 |
+
p2d = (pad_left, pad_right, 0, 0)
|
| 47 |
+
else:
|
| 48 |
+
pad_top = (h - w) // 2
|
| 49 |
+
pad_bottom = h - w - pad_top
|
| 50 |
+
p2d = (0, 0, pad_top, pad_bottom)
|
| 51 |
+
|
| 52 |
+
image = F.pad(image, p2d, "constant", pad_value)
|
| 53 |
+
|
| 54 |
+
return image
|
| 55 |
+
|
| 56 |
+
class Qwen2p5RadioStableDiffusion3HFDynamic(BaseModel):
|
| 57 |
+
def __init__(self,
|
| 58 |
+
llm,
|
| 59 |
+
tokenizer,
|
| 60 |
+
prompt_template,
|
| 61 |
+
visual_encoder,
|
| 62 |
+
vae,
|
| 63 |
+
transformer,
|
| 64 |
+
train_scheduler,
|
| 65 |
+
test_scheduler,
|
| 66 |
+
connector_1,
|
| 67 |
+
connector_2,
|
| 68 |
+
num_queries=64,
|
| 69 |
+
freeze_transformer=True,
|
| 70 |
+
max_length=256,
|
| 71 |
+
freeze_visual_encoder=True,
|
| 72 |
+
freeze_llm=True,
|
| 73 |
+
visual_encoder_grad_scale=0.1,
|
| 74 |
+
fold_size=2,
|
| 75 |
+
unconditional=0.1,
|
| 76 |
+
unconditional_cross_view=0.1,
|
| 77 |
+
pretrained_pth=None,
|
| 78 |
+
use_activation_checkpointing=False,
|
| 79 |
+
*args, **kwargs):
|
| 80 |
+
super().__init__()
|
| 81 |
+
|
| 82 |
+
# basic settings
|
| 83 |
+
self.max_length = max_length
|
| 84 |
+
self.fold_size = fold_size
|
| 85 |
+
self.prompt_template = prompt_template
|
| 86 |
+
self.unconditional = unconditional
|
| 87 |
+
self.unconditional_cross_view = unconditional_cross_view
|
| 88 |
+
|
| 89 |
+
# networks building
|
| 90 |
+
# understanding branch
|
| 91 |
+
self.visual_encoder = BUILDER.build(visual_encoder)
|
| 92 |
+
self.llm = BUILDER.build(llm)
|
| 93 |
+
self.tokenizer = BUILDER.build(tokenizer)
|
| 94 |
+
self.projector = build_mlp(hidden_size=self.visual_encoder.model.embed_dim*fold_size**2,
|
| 95 |
+
projector_dim=self.llm.config.hidden_size,
|
| 96 |
+
z_dim=self.llm.config.hidden_size)
|
| 97 |
+
self.image_token_id = self.tokenizer.convert_tokens_to_ids(prompt_template['IMG_CONTEXT_TOKEN'])
|
| 98 |
+
|
| 99 |
+
# generation branch
|
| 100 |
+
self.vae = BUILDER.build(vae)
|
| 101 |
+
self.vae.requires_grad_(False)
|
| 102 |
+
self.transformer = BUILDER.build(transformer)
|
| 103 |
+
self.num_queries = num_queries
|
| 104 |
+
self.connector_1 = ConnectorEncoder(ConnectorConfig(**connector_1))
|
| 105 |
+
self.connector_2 = ConnectorEncoder(ConnectorConfig(**connector_2))
|
| 106 |
+
|
| 107 |
+
self.llm2connector_1 = nn.Linear(self.llm.config.hidden_size, self.connector_1.config.hidden_size)
|
| 108 |
+
self.llm2connector_2 = nn.Linear(self.llm.config.hidden_size, self.connector_2.config.hidden_size)
|
| 109 |
+
self.projector_1 = nn.Linear(self.connector_1.config.hidden_size, self.transformer.config.pooled_projection_dim)
|
| 110 |
+
self.projector_2 = nn.Linear(self.connector_2.config.hidden_size, self.transformer.config.joint_attention_dim)
|
| 111 |
+
nn.init.zeros_(self.projector_1.weight)
|
| 112 |
+
nn.init.zeros_(self.projector_2.weight)
|
| 113 |
+
nn.init.zeros_(self.projector_1.bias)
|
| 114 |
+
nn.init.zeros_(self.projector_2.bias)
|
| 115 |
+
|
| 116 |
+
self.meta_queries = nn.Parameter(
|
| 117 |
+
torch.zeros(num_queries, self.llm.config.hidden_size))
|
| 118 |
+
nn.init.normal_(self.meta_queries, std=1 / math.sqrt(self.llm.config.hidden_size))
|
| 119 |
+
|
| 120 |
+
# networks and training initialization
|
| 121 |
+
if freeze_visual_encoder:
|
| 122 |
+
self.visual_encoder.requires_grad_(False)
|
| 123 |
+
self.freeze_visual_encoder = freeze_visual_encoder
|
| 124 |
+
if freeze_llm:
|
| 125 |
+
self.llm.requires_grad_(False)
|
| 126 |
+
self.freeze_llm = freeze_llm
|
| 127 |
+
if freeze_transformer:
|
| 128 |
+
self.transformer.requires_grad_(False)
|
| 129 |
+
self.freeze_transformer = freeze_transformer
|
| 130 |
+
|
| 131 |
+
self.visual_encoder_grad_scale = visual_encoder_grad_scale
|
| 132 |
+
self.train_scheduler = BUILDER.build(train_scheduler)
|
| 133 |
+
self.test_scheduler = BUILDER.build(test_scheduler)
|
| 134 |
+
|
| 135 |
+
self.use_activation_checkpointing = use_activation_checkpointing
|
| 136 |
+
if use_activation_checkpointing:
|
| 137 |
+
self.llm.enable_input_require_grads()
|
| 138 |
+
self.gradient_checkpointing_enable()
|
| 139 |
+
|
| 140 |
+
if pretrained_pth is not None:
|
| 141 |
+
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
|
| 142 |
+
info = self.load_state_dict(pretrained_state_dict, strict=False)
|
| 143 |
+
print_log(f'Load pretrained weight from {pretrained_pth}')
|
| 144 |
+
|
| 145 |
+
@property
|
| 146 |
+
def device(self):
|
| 147 |
+
return self.llm.device
|
| 148 |
+
|
| 149 |
+
@property
|
| 150 |
+
def dtype(self):
|
| 151 |
+
return self.llm.dtype
|
| 152 |
+
|
| 153 |
+
def gradient_checkpointing_enable(self):
|
| 154 |
+
self.activation_checkpointing_enable()
|
| 155 |
+
|
| 156 |
+
def activation_checkpointing_enable(self):
|
| 157 |
+
self.llm.gradient_checkpointing_enable()
|
| 158 |
+
self.transformer.enable_gradient_checkpointing()
|
| 159 |
+
self.connector_1.gradient_checkpointing = True
|
| 160 |
+
self.connector_2.gradient_checkpointing = True
|
| 161 |
+
|
| 162 |
+
def gradient_checkpointing_disable(self):
|
| 163 |
+
self.activation_checkpointing_disable()
|
| 164 |
+
|
| 165 |
+
def activation_checkpointing_disable(self):
|
| 166 |
+
self.llm.gradient_checkpointing_disable()
|
| 167 |
+
self.transformer.disable_gradient_checkpointing()
|
| 168 |
+
self.connector_1.gradient_checkpointing = False
|
| 169 |
+
self.connector_2.gradient_checkpointing = False
|
| 170 |
+
|
| 171 |
+
def forward(self, data, data_samples=None, mode='loss'):
|
| 172 |
+
if mode == 'loss':
|
| 173 |
+
return self.compute_loss(data_dict=data)
|
| 174 |
+
else:
|
| 175 |
+
raise NotImplementedError
|
| 176 |
+
|
| 177 |
+
def extract_visual_features(self, pixel_values):
|
| 178 |
+
pixel_values = (pixel_values + 1.0) / 2 # [0, 1]
|
| 179 |
+
height, width = pixel_values.shape[-2:]
|
| 180 |
+
summary, features = self.visual_encoder(pixel_values)
|
| 181 |
+
patch_size = int((height * width // features.shape[1]) ** 0.5)
|
| 182 |
+
height, width = height // (patch_size * self.fold_size), width // (patch_size * self.fold_size)
|
| 183 |
+
features = rearrange(features, 'b (h p w q) d -> b (h w) (p q d)',
|
| 184 |
+
h=height, w=width, p=self.fold_size, q=self.fold_size)
|
| 185 |
+
|
| 186 |
+
return features
|
| 187 |
+
|
| 188 |
+
def llm2dit(self, x):
|
| 189 |
+
x_1 = self.connector_1(self.llm2connector_1(x))
|
| 190 |
+
x_1 = self.projector_1(x_1.mean(1))
|
| 191 |
+
x_2 = self.connector_2(self.llm2connector_2(x))
|
| 192 |
+
x_2 = self.projector_2(x_2)
|
| 193 |
+
|
| 194 |
+
return x_1, x_2
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
@torch.no_grad()
|
| 198 |
+
def prepare_gen_prompts(self, texts, data_type='text2image', num_refs=None, ref_lens=None, gen_type='GENERATION_CROSS'):
|
| 199 |
+
if data_type == 'text2image':
|
| 200 |
+
prompts = [self.prompt_template['GENERATION'].format(input=text) for text in texts]
|
| 201 |
+
prompts = [self.prompt_template['INSTRUCTION'].format(input=text) for text in prompts]
|
| 202 |
+
|
| 203 |
+
elif data_type == 'image2image':
|
| 204 |
+
assert num_refs is not None and ref_lens is not None, "num_refs and ref_lens are required for image2image"
|
| 205 |
+
prompts = []
|
| 206 |
+
cnt = 0
|
| 207 |
+
for text, num_ref in zip(texts, num_refs):
|
| 208 |
+
image_tokens = ''
|
| 209 |
+
for _ in range(num_ref):
|
| 210 |
+
image_tokens += (
|
| 211 |
+
self.prompt_template['IMG_START_TOKEN'] +
|
| 212 |
+
self.prompt_template['IMG_CONTEXT_TOKEN'] * ref_lens[cnt] +
|
| 213 |
+
self.prompt_template['IMG_END_TOKEN']
|
| 214 |
+
)
|
| 215 |
+
cnt += 1
|
| 216 |
+
|
| 217 |
+
text = self.prompt_template[gen_type].format(input=text)
|
| 218 |
+
prompt = self.prompt_template['INSTRUCTION'].format(input=f'{image_tokens}\n{text}')
|
| 219 |
+
prompts.append(prompt)
|
| 220 |
+
else:
|
| 221 |
+
raise ValueError(f"Unsupported data_type: {data_type}")
|
| 222 |
+
|
| 223 |
+
return self.tokenizer(
|
| 224 |
+
prompts, add_special_tokens=True, return_tensors='pt', padding=True, padding_side='left').to(self.device)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
@torch.no_grad()
|
| 228 |
+
def prepare_und_prompts(self, conversations, data_type='image2text', image_lengths=None, input_ids_with_output=True):
|
| 229 |
+
input_ids, labels, input_lengths = [], [], []
|
| 230 |
+
|
| 231 |
+
if data_type == 'image2text':
|
| 232 |
+
assert image_lengths is not None, "`image_lengths` must be provided for image2text"
|
| 233 |
+
if isinstance(image_lengths, int):
|
| 234 |
+
image_lengths = [image_lengths] * len(conversations)
|
| 235 |
+
elif data_type == 'text2text':
|
| 236 |
+
image_lengths = [None] * len(conversations)
|
| 237 |
+
else:
|
| 238 |
+
raise ValueError(f"Unsupported data_type: {data_type}")
|
| 239 |
+
|
| 240 |
+
for conv, image_len in zip(conversations, image_lengths):
|
| 241 |
+
data_dict = template_map_fn(example=dict(conversation=deepcopy(conv)), template=self.prompt_template)
|
| 242 |
+
data_dict.update(encode_fn(data_dict,
|
| 243 |
+
tokenizer=self.tokenizer,
|
| 244 |
+
max_length=None,
|
| 245 |
+
input_ids_with_output=input_ids_with_output,
|
| 246 |
+
with_image_token=(data_type == 'image2text'),
|
| 247 |
+
image_length=image_len,
|
| 248 |
+
prompt_template=self.prompt_template))
|
| 249 |
+
|
| 250 |
+
input_ids.append(torch.tensor(data_dict['input_ids'], dtype=torch.long, device=self.device))
|
| 251 |
+
labels.append(torch.tensor(data_dict['labels'], dtype=torch.long, device=self.device))
|
| 252 |
+
input_lengths.append(len(data_dict['input_ids']))
|
| 253 |
+
|
| 254 |
+
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=0, padding_side='left')
|
| 255 |
+
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX, padding_side='left')
|
| 256 |
+
|
| 257 |
+
attention_mask = torch.zeros_like(input_ids).bool()
|
| 258 |
+
for i in range(len(input_ids)):
|
| 259 |
+
attention_mask[i, -input_lengths[i]:] = True
|
| 260 |
+
|
| 261 |
+
position_ids = torch.cumsum(attention_mask, dim=1) - 1
|
| 262 |
+
position_ids[position_ids < 0] = 0
|
| 263 |
+
|
| 264 |
+
return dict(input_ids=input_ids, attention_mask=attention_mask, labels=labels, position_ids=position_ids)
|
| 265 |
+
|
| 266 |
+
def train(self, mode=True):
|
| 267 |
+
super().train(mode=mode)
|
| 268 |
+
self.vae.train(mode=False)
|
| 269 |
+
if not mode:
|
| 270 |
+
self.gradient_checkpointing_disable()
|
| 271 |
+
|
| 272 |
+
return self
|
| 273 |
+
|
| 274 |
+
@torch.no_grad()
|
| 275 |
+
def pixels_to_latents(self, x):
|
| 276 |
+
z = self.vae.encode(x).latent_dist.sample()
|
| 277 |
+
z = (z - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 278 |
+
return z
|
| 279 |
+
|
| 280 |
+
@torch.no_grad()
|
| 281 |
+
def latents_to_pixels(self, z):
|
| 282 |
+
z = (z / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 283 |
+
x_rec = self.vae.decode(z).sample
|
| 284 |
+
return x_rec
|
| 285 |
+
|
| 286 |
+
def prepare_forward_input(self,
|
| 287 |
+
query_embeds,
|
| 288 |
+
input_ids=None,
|
| 289 |
+
image_embeds=None,
|
| 290 |
+
attention_mask=None,
|
| 291 |
+
past_key_values=None,
|
| 292 |
+
append_queries=True):
|
| 293 |
+
b, l, _ = query_embeds.shape
|
| 294 |
+
assert l > 0
|
| 295 |
+
attention_mask = attention_mask.to(device=self.device, dtype=torch.bool)
|
| 296 |
+
assert l == self.num_queries
|
| 297 |
+
|
| 298 |
+
if append_queries:
|
| 299 |
+
input_ids = torch.cat([
|
| 300 |
+
input_ids, input_ids.new_full(size=(b, l), fill_value=QUERY_TOKEN_INDEX)], dim=1)
|
| 301 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(b, l)], dim=1)
|
| 302 |
+
|
| 303 |
+
position_ids = torch.cumsum(attention_mask, dim=1) - 1
|
| 304 |
+
position_ids[position_ids < 0] = 0
|
| 305 |
+
|
| 306 |
+
# prepare context
|
| 307 |
+
if past_key_values is not None:
|
| 308 |
+
inputs_embeds = query_embeds
|
| 309 |
+
position_ids = position_ids[..., -l:]
|
| 310 |
+
else:
|
| 311 |
+
inputs_embeds = torch.zeros(*input_ids.shape, self.llm.config.hidden_size,
|
| 312 |
+
device=self.device, dtype=self.dtype)
|
| 313 |
+
if image_embeds is not None:
|
| 314 |
+
inputs_embeds[input_ids == self.image_token_id] = \
|
| 315 |
+
image_embeds.contiguous().view(-1, self.llm.config.hidden_size)
|
| 316 |
+
|
| 317 |
+
inputs_embeds[input_ids == QUERY_TOKEN_INDEX] = \
|
| 318 |
+
query_embeds.contiguous().view(-1, self.llm.config.hidden_size)
|
| 319 |
+
|
| 320 |
+
text_places = torch.logical_and(input_ids != self.image_token_id, input_ids != QUERY_TOKEN_INDEX)
|
| 321 |
+
|
| 322 |
+
inputs_embeds[text_places] = self.llm.get_input_embeddings()(input_ids[text_places])
|
| 323 |
+
|
| 324 |
+
inputs = dict(inputs_embeds=inputs_embeds,
|
| 325 |
+
attention_mask=attention_mask,
|
| 326 |
+
position_ids=position_ids,
|
| 327 |
+
past_key_values=past_key_values)
|
| 328 |
+
|
| 329 |
+
return inputs
|
| 330 |
+
|
| 331 |
+
def get_sigmas(self, timesteps, n_dim=4):
|
| 332 |
+
sigmas = self.train_scheduler.sigmas.to(device=self.device, dtype=self.dtype)
|
| 333 |
+
schedule_timesteps = self.train_scheduler.timesteps.to(self.device)
|
| 334 |
+
timesteps = timesteps.to(self.device)
|
| 335 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 336 |
+
|
| 337 |
+
sigma = sigmas[step_indices].flatten()
|
| 338 |
+
while len(sigma.shape) < n_dim:
|
| 339 |
+
sigma = sigma.unsqueeze(-1)
|
| 340 |
+
return sigma
|
| 341 |
+
|
| 342 |
+
def diff_loss(self, model_input, pooled_prompt_embeds, prompt_embeds, cond_input=None):
|
| 343 |
+
noise = [torch.randn_like(x) for x in model_input]
|
| 344 |
+
bsz = len(model_input)
|
| 345 |
+
|
| 346 |
+
u = compute_density_for_timestep_sampling(
|
| 347 |
+
weighting_scheme='none',
|
| 348 |
+
batch_size=bsz,
|
| 349 |
+
logit_mean=0.0,
|
| 350 |
+
logit_std=1.0,
|
| 351 |
+
)
|
| 352 |
+
indices = (u * self.train_scheduler.config.num_train_timesteps).long()
|
| 353 |
+
timesteps = self.train_scheduler.timesteps[indices].to(device=self.device)
|
| 354 |
+
|
| 355 |
+
# Add noise according to flow matching
|
| 356 |
+
sigmas = self.get_sigmas(timesteps, n_dim=model_input[0].ndim + 1)
|
| 357 |
+
noisy_model_input = [(1.0 - x) * y + x * z for x, y, z in zip(sigmas, model_input, noise)]
|
| 358 |
+
|
| 359 |
+
# Predict the noise residual
|
| 360 |
+
model_pred = self.transformer(
|
| 361 |
+
hidden_states=noisy_model_input,
|
| 362 |
+
cond_hidden_states=cond_input,
|
| 363 |
+
encoder_hidden_states=prompt_embeds,
|
| 364 |
+
pooled_projections=pooled_prompt_embeds,
|
| 365 |
+
timestep=timesteps,
|
| 366 |
+
return_dict=False,
|
| 367 |
+
)[0]
|
| 368 |
+
|
| 369 |
+
weighting = compute_loss_weighting_for_sd3(weighting_scheme='none', sigmas=sigmas)
|
| 370 |
+
|
| 371 |
+
# flow matching loss
|
| 372 |
+
target = [x - y for x, y in zip(noise, model_input)]
|
| 373 |
+
|
| 374 |
+
loss = [(x.float() * (y.float() - z.float()) ** 2).mean() for x, y, z in zip(weighting, model_pred, target)]
|
| 375 |
+
loss = sum(loss) / len(loss)
|
| 376 |
+
|
| 377 |
+
return loss
|
| 378 |
+
|
| 379 |
+
'''text-to-image generation (single-view)'''
|
| 380 |
+
def text2image_loss(self, data_dict):
|
| 381 |
+
pixel_values = [p.to(dtype=self.dtype, device=self.device) for p in data_dict['pixel_values']]
|
| 382 |
+
image_latents = [self.pixels_to_latents(p[None])[0] for p in pixel_values]
|
| 383 |
+
|
| 384 |
+
b = len(image_latents)
|
| 385 |
+
|
| 386 |
+
texts = ['' if random.uniform(0, 1) < self.unconditional else text
|
| 387 |
+
for text in data_dict['texts']]
|
| 388 |
+
|
| 389 |
+
text_inputs = self.prepare_gen_prompts(texts)
|
| 390 |
+
hidden_states = self.meta_queries[None].expand(b, self.num_queries, -1)
|
| 391 |
+
|
| 392 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, **text_inputs)
|
| 393 |
+
|
| 394 |
+
max_length = self.max_length + self.num_queries
|
| 395 |
+
inputs_embeds = inputs['inputs_embeds'][:, -max_length:]
|
| 396 |
+
attention_mask = inputs['attention_mask'][:, -max_length:]
|
| 397 |
+
position_ids = inputs['position_ids'][:, -max_length:]
|
| 398 |
+
|
| 399 |
+
output = self.llm.model(
|
| 400 |
+
inputs_embeds=inputs_embeds,
|
| 401 |
+
attention_mask=attention_mask,
|
| 402 |
+
position_ids=position_ids,
|
| 403 |
+
return_dict=True)
|
| 404 |
+
|
| 405 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 406 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 407 |
+
|
| 408 |
+
loss_diff = self.diff_loss(model_input=image_latents,
|
| 409 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 410 |
+
prompt_embeds=prompt_embeds)
|
| 411 |
+
|
| 412 |
+
return loss_diff
|
| 413 |
+
|
| 414 |
+
'''text-to-image generation (single-view) with camera map'''
|
| 415 |
+
def cam2image_loss(self, data_dict):
|
| 416 |
+
pixel_values = [p.to(dtype=self.dtype, device=self.device) for p in data_dict['pixel_values']]
|
| 417 |
+
image_latents = [self.pixels_to_latents(p[None])[0] for p in pixel_values]
|
| 418 |
+
b = len(image_latents)
|
| 419 |
+
# camera map as condition for the diffusion model
|
| 420 |
+
cam_values = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 421 |
+
for ref_images in data_dict['cam_values']]
|
| 422 |
+
cam_latents = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 423 |
+
for ref_images in cam_values]
|
| 424 |
+
|
| 425 |
+
texts = ['' if random.uniform(0, 1) < self.unconditional else text
|
| 426 |
+
for text in data_dict['texts']]
|
| 427 |
+
|
| 428 |
+
text_inputs = self.prepare_gen_prompts(texts)
|
| 429 |
+
hidden_states = self.meta_queries[None].expand(b, self.num_queries, -1)
|
| 430 |
+
|
| 431 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, **text_inputs)
|
| 432 |
+
|
| 433 |
+
max_length = self.max_length + self.num_queries
|
| 434 |
+
inputs_embeds = inputs['inputs_embeds'][:, -max_length:]
|
| 435 |
+
attention_mask = inputs['attention_mask'][:, -max_length:]
|
| 436 |
+
position_ids = inputs['position_ids'][:, -max_length:]
|
| 437 |
+
|
| 438 |
+
output = self.llm.model(
|
| 439 |
+
inputs_embeds=inputs_embeds,
|
| 440 |
+
attention_mask=attention_mask,
|
| 441 |
+
position_ids=position_ids,
|
| 442 |
+
return_dict=True)
|
| 443 |
+
|
| 444 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 445 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 446 |
+
|
| 447 |
+
loss_diff = self.diff_loss(model_input=image_latents,
|
| 448 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 449 |
+
prompt_embeds=prompt_embeds,
|
| 450 |
+
cond_input=cam_latents)
|
| 451 |
+
|
| 452 |
+
return loss_diff
|
| 453 |
+
|
| 454 |
+
'''image-to-image (cross-view) generation'''
|
| 455 |
+
def image2image_loss(self, data_dict):
|
| 456 |
+
# condition for the diffusion model (concat the camera map and the initial view)
|
| 457 |
+
cam_values = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 458 |
+
for ref_images in data_dict['cam_values']]
|
| 459 |
+
cam_latents = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 460 |
+
for ref_images in cam_values]
|
| 461 |
+
pixel_values_init = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 462 |
+
for ref_images in data_dict['pixel_values_init']]
|
| 463 |
+
image_latents_init = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 464 |
+
for ref_images in pixel_values_init]
|
| 465 |
+
mix_latents = [cam + img for cam, img in zip(cam_latents, image_latents_init)]
|
| 466 |
+
|
| 467 |
+
# condition embedding for querying the LLM (only initial view)
|
| 468 |
+
num_refs = [len(ref_images) for ref_images in pixel_values_init]
|
| 469 |
+
image_embeds = self.extract_visual_features(
|
| 470 |
+
torch.stack([pad_an_image_tensor(img) for ref_images in pixel_values_init for img in ref_images]))
|
| 471 |
+
|
| 472 |
+
image_embeds = self.projector(image_embeds)
|
| 473 |
+
ref_lens = [len(x) for x in image_embeds]
|
| 474 |
+
text_inputs = self.prepare_gen_prompts(data_dict['texts'], data_type='image2image',
|
| 475 |
+
num_refs=num_refs, ref_lens=ref_lens)
|
| 476 |
+
|
| 477 |
+
# input for the diffusion model
|
| 478 |
+
pixel_values = [p.to(dtype=self.dtype, device=self.device) for p in data_dict['pixel_values']]
|
| 479 |
+
image_latents = [self.pixels_to_latents(p[None])[0] for p in pixel_values]
|
| 480 |
+
|
| 481 |
+
# querying the LLM
|
| 482 |
+
b = len(image_latents)
|
| 483 |
+
hidden_states = self.meta_queries[None].expand(b, self.num_queries, -1)
|
| 484 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, image_embeds=image_embeds, **text_inputs)
|
| 485 |
+
|
| 486 |
+
max_length = self.max_length + max(num_refs) * max(ref_lens) + self.num_queries
|
| 487 |
+
inputs_embeds = inputs['inputs_embeds'][:, -max_length:]
|
| 488 |
+
attention_mask = inputs['attention_mask'][:, -max_length:]
|
| 489 |
+
position_ids = inputs['position_ids'][:, -max_length:]
|
| 490 |
+
|
| 491 |
+
output = self.llm.model(inputs_embeds=inputs_embeds,
|
| 492 |
+
attention_mask=attention_mask,
|
| 493 |
+
position_ids=position_ids,
|
| 494 |
+
return_dict=True)
|
| 495 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 496 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 497 |
+
loss_diff = self.diff_loss(model_input=image_latents,
|
| 498 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 499 |
+
prompt_embeds=prompt_embeds,
|
| 500 |
+
cond_input=mix_latents)
|
| 501 |
+
|
| 502 |
+
return loss_diff
|
| 503 |
+
|
| 504 |
+
'''image-to-text(camera) understanding, mixed base, thinking, and instruction tuning'''
|
| 505 |
+
def image2text_loss(self, data_dict):
|
| 506 |
+
pixel_values = [pad_an_image_tensor(img) for img in data_dict['pixel_values']]
|
| 507 |
+
pixel_values = torch.stack(pixel_values).to(dtype=self.dtype, device=self.device)
|
| 508 |
+
image_embeds = self.extract_visual_features(pixel_values)
|
| 509 |
+
|
| 510 |
+
if not self.freeze_visual_encoder:
|
| 511 |
+
image_embeds = _ScaleGradient.apply(image_embeds, self.visual_encoder_grad_scale)
|
| 512 |
+
|
| 513 |
+
image_embeds = self.projector(image_embeds)
|
| 514 |
+
text_inputs = self.prepare_und_prompts(conversations=data_dict['conversations'],
|
| 515 |
+
data_type='image2text',
|
| 516 |
+
image_lengths=image_embeds.shape[1])
|
| 517 |
+
|
| 518 |
+
labels, input_ids, attention_mask, position_ids = \
|
| 519 |
+
text_inputs['labels'], text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
inputs_embeds = torch.zeros(*input_ids.shape, self.llm.config.hidden_size,
|
| 523 |
+
device=self.device, dtype=self.dtype)
|
| 524 |
+
inputs_embeds[input_ids == INPUT_IMAGE_TOKEN_INDEX] = image_embeds.flatten(0, 1)
|
| 525 |
+
inputs_embeds[input_ids != INPUT_IMAGE_TOKEN_INDEX] = \
|
| 526 |
+
self.llm.get_input_embeddings()(input_ids[input_ids != INPUT_IMAGE_TOKEN_INDEX])
|
| 527 |
+
|
| 528 |
+
max_length = self.max_length + image_embeds.shape[1]
|
| 529 |
+
inputs_embeds = inputs_embeds[:, -max_length:]
|
| 530 |
+
attention_mask = attention_mask[:, -max_length:]
|
| 531 |
+
position_ids = position_ids[:, -max_length:]
|
| 532 |
+
labels = labels[:, -max_length:]
|
| 533 |
+
|
| 534 |
+
output = self.llm.model(inputs_embeds=inputs_embeds,
|
| 535 |
+
attention_mask=attention_mask,
|
| 536 |
+
position_ids=position_ids,
|
| 537 |
+
return_dict=True)
|
| 538 |
+
|
| 539 |
+
hidden_states = output.last_hidden_state[:, :-1]
|
| 540 |
+
labels = labels[:, 1:]
|
| 541 |
+
hidden_states = hidden_states[labels >= 0]
|
| 542 |
+
labels = labels[labels >= 0]
|
| 543 |
+
|
| 544 |
+
logits = self.llm.get_output_embeddings()(hidden_states)
|
| 545 |
+
loss = F.cross_entropy(input=logits, target=labels)
|
| 546 |
+
|
| 547 |
+
return loss
|
| 548 |
+
|
| 549 |
+
'''text-to-text understanding, offering the enhanced caption for the generation'''
|
| 550 |
+
def text2text_loss(self, data_dict):
|
| 551 |
+
text_inputs = self.prepare_und_prompts(conversations=data_dict['conversations'], data_type='text2text')
|
| 552 |
+
labels, input_ids, attention_mask, position_ids = \
|
| 553 |
+
text_inputs['labels'], text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 554 |
+
|
| 555 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 556 |
+
max_length = self.max_length
|
| 557 |
+
inputs_embeds = inputs_embeds[:, -max_length:]
|
| 558 |
+
attention_mask = attention_mask[:, -max_length:]
|
| 559 |
+
position_ids = position_ids[:, -max_length:]
|
| 560 |
+
labels = labels[:, -max_length:]
|
| 561 |
+
|
| 562 |
+
output = self.llm.model(inputs_embeds=inputs_embeds,
|
| 563 |
+
attention_mask=attention_mask,
|
| 564 |
+
position_ids=position_ids,
|
| 565 |
+
return_dict=True)
|
| 566 |
+
|
| 567 |
+
hidden_states = output.last_hidden_state[:, :-1]
|
| 568 |
+
labels = labels[:, 1:]
|
| 569 |
+
hidden_states = hidden_states[labels >= 0]
|
| 570 |
+
labels = labels[labels >= 0]
|
| 571 |
+
|
| 572 |
+
logits = self.llm.get_output_embeddings()(hidden_states)
|
| 573 |
+
loss = F.cross_entropy(input=logits, target=labels)
|
| 574 |
+
|
| 575 |
+
return loss
|
| 576 |
+
|
| 577 |
+
'''distribute different losses for each task'''
|
| 578 |
+
def compute_loss(self, data_dict):
|
| 579 |
+
loss_fn_map = {
|
| 580 |
+
'text2image': self.text2image_loss,
|
| 581 |
+
'cam2image': self.cam2image_loss,
|
| 582 |
+
'image2text': self.image2text_loss,
|
| 583 |
+
'text2text': self.text2text_loss,
|
| 584 |
+
'image2image': self.image2image_loss,
|
| 585 |
+
'image2text_cross_view': self.image2text_loss,
|
| 586 |
+
}
|
| 587 |
+
|
| 588 |
+
losses = {}
|
| 589 |
+
for data_type, batch_data in data_dict.items():
|
| 590 |
+
if data_type not in loss_fn_map:
|
| 591 |
+
raise ValueError(f"Unsupported data_type: {data_type}")
|
| 592 |
+
loss_fn = loss_fn_map[data_type]
|
| 593 |
+
loss = loss_fn(batch_data)
|
| 594 |
+
losses[f'loss_{data_type}'] = loss
|
| 595 |
+
return losses
|
| 596 |
+
|
| 597 |
+
@torch.no_grad()
|
| 598 |
+
def generate(self,
|
| 599 |
+
prompt,
|
| 600 |
+
cfg_prompt,
|
| 601 |
+
cam_values=None,
|
| 602 |
+
pixel_values_init=None,
|
| 603 |
+
cfg_scale=4.5,
|
| 604 |
+
num_steps=50,
|
| 605 |
+
generator=None,
|
| 606 |
+
height=512,
|
| 607 |
+
width=512,
|
| 608 |
+
max_new_tokens=512,
|
| 609 |
+
reasoning=False,
|
| 610 |
+
prompt_reasoning=None,
|
| 611 |
+
progress_bar=True):
|
| 612 |
+
assert len(prompt) == len(cfg_prompt)
|
| 613 |
+
b = len(prompt)
|
| 614 |
+
output_reasoning = [''] * b
|
| 615 |
+
|
| 616 |
+
if reasoning:
|
| 617 |
+
# enrich the prompt if required reasoning generation
|
| 618 |
+
assert prompt_reasoning is not None, \
|
| 619 |
+
"prompt_reasoning must be provided for reasoning generation"
|
| 620 |
+
if isinstance(prompt_reasoning, str):
|
| 621 |
+
prompt_reasoning = [prompt_reasoning]
|
| 622 |
+
if isinstance(prompt, str):
|
| 623 |
+
prompt = [prompt]
|
| 624 |
+
|
| 625 |
+
conversations = [[{'input': f"{p1} {p2}",}]
|
| 626 |
+
for p1, p2 in zip(prompt_reasoning, prompt)]
|
| 627 |
+
|
| 628 |
+
text_inputs = self.prepare_und_prompts(
|
| 629 |
+
conversations=conversations, data_type="text2text", input_ids_with_output=False)
|
| 630 |
+
input_ids, attention_mask, position_ids = \
|
| 631 |
+
text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 632 |
+
|
| 633 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 634 |
+
past_key_values = DynamicCache.from_legacy_cache()
|
| 635 |
+
|
| 636 |
+
output_ids = []
|
| 637 |
+
for _ in tqdm(range(max_new_tokens), disable=not progress_bar):
|
| 638 |
+
output = self.llm.model(
|
| 639 |
+
inputs_embeds=inputs_embeds,
|
| 640 |
+
attention_mask=attention_mask,
|
| 641 |
+
position_ids=position_ids,
|
| 642 |
+
past_key_values=past_key_values,
|
| 643 |
+
use_cache=True,
|
| 644 |
+
return_dict=True)
|
| 645 |
+
logits = self.llm.get_output_embeddings()(output.last_hidden_state[:, -1:])
|
| 646 |
+
input_ids = torch.argmax(logits, dim=-1) # b 1
|
| 647 |
+
if len(output_ids) > 0:
|
| 648 |
+
input_ids = torch.where(output_ids[-1] == self.tokenizer.eos_token_id,
|
| 649 |
+
output_ids[-1], input_ids)
|
| 650 |
+
output_ids.append(input_ids)
|
| 651 |
+
|
| 652 |
+
if (input_ids == self.tokenizer.eos_token_id).all():
|
| 653 |
+
break
|
| 654 |
+
|
| 655 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 656 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(b, 1)], dim=1)
|
| 657 |
+
position_ids = torch.max(position_ids, dim=1, keepdim=True).values + 1
|
| 658 |
+
past_key_values = output.past_key_values
|
| 659 |
+
|
| 660 |
+
output_ids = torch.cat(output_ids, dim=1)
|
| 661 |
+
output_reasoning = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 662 |
+
prompt = [f"{p} {o}" for p, o in zip(prompt, output_reasoning)]
|
| 663 |
+
|
| 664 |
+
if cam_values is not None:
|
| 665 |
+
# for the generation with the camera map
|
| 666 |
+
cam_values = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 667 |
+
for ref_images in cam_values]
|
| 668 |
+
cond_latents = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 669 |
+
for ref_images in cam_values]
|
| 670 |
+
text_inputs = self.prepare_gen_prompts(prompt + cfg_prompt)
|
| 671 |
+
if pixel_values_init is not None:
|
| 672 |
+
# for the generation with the camera map and initial view (cross-view generation)
|
| 673 |
+
num_refs = [len(ref_images) for ref_images in pixel_values_init]
|
| 674 |
+
pixel_values_init = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 675 |
+
for ref_images in pixel_values_init]
|
| 676 |
+
image_embeds = self.extract_visual_features(
|
| 677 |
+
torch.stack([pad_an_image_tensor(img) for ref_images in pixel_values_init for img in ref_images]))
|
| 678 |
+
image_embeds = self.projector(image_embeds)
|
| 679 |
+
|
| 680 |
+
ref_lens = [len(x) for x in image_embeds]
|
| 681 |
+
text_inputs = self.prepare_gen_prompts(prompt + cfg_prompt, data_type='image2image', num_refs=num_refs*2, ref_lens=ref_lens*2)
|
| 682 |
+
text_inputs.update(image_embeds=torch.cat([image_embeds]*2))
|
| 683 |
+
|
| 684 |
+
cond_latents_init = [[self.pixels_to_latents(img[None])[0] for img in ref_imgs]
|
| 685 |
+
for ref_imgs in pixel_values_init]
|
| 686 |
+
cond_latents = [cam + img for cam, img in zip(cond_latents, cond_latents_init)]
|
| 687 |
+
|
| 688 |
+
cond_latents = cond_latents * 2
|
| 689 |
+
else:
|
| 690 |
+
# for the text2image generation
|
| 691 |
+
text_inputs = self.prepare_gen_prompts(prompt + cfg_prompt)
|
| 692 |
+
cond_latents = None
|
| 693 |
+
|
| 694 |
+
hidden_states = self.meta_queries[None].expand(2*b, self.num_queries, -1)
|
| 695 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, **text_inputs)
|
| 696 |
+
|
| 697 |
+
output = self.llm.model(**inputs, return_dict=True)
|
| 698 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 699 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 700 |
+
|
| 701 |
+
pipeline = StableDiffusion3Pipeline(
|
| 702 |
+
transformer=self.transformer,
|
| 703 |
+
scheduler=self.test_scheduler,
|
| 704 |
+
vae=self.vae,
|
| 705 |
+
text_encoder=None,
|
| 706 |
+
tokenizer=None,
|
| 707 |
+
text_encoder_2=None,
|
| 708 |
+
tokenizer_2=None,
|
| 709 |
+
text_encoder_3=None,
|
| 710 |
+
tokenizer_3=None,
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
pipeline.set_progress_bar_config(disable=not progress_bar)
|
| 714 |
+
|
| 715 |
+
samples = pipeline(
|
| 716 |
+
height=height,
|
| 717 |
+
width=width,
|
| 718 |
+
guidance_scale=cfg_scale,
|
| 719 |
+
num_inference_steps=num_steps,
|
| 720 |
+
prompt_embeds=prompt_embeds[:b],
|
| 721 |
+
pooled_prompt_embeds=pooled_prompt_embeds[:b],
|
| 722 |
+
negative_prompt_embeds=prompt_embeds[b:],
|
| 723 |
+
negative_pooled_prompt_embeds=pooled_prompt_embeds[b:],
|
| 724 |
+
generator=generator,
|
| 725 |
+
output_type='latent',
|
| 726 |
+
cond_latents=cond_latents
|
| 727 |
+
).images.to(self.dtype)
|
| 728 |
+
|
| 729 |
+
return self.latents_to_pixels(samples), output_reasoning
|
| 730 |
+
|
| 731 |
+
@torch.no_grad()
|
| 732 |
+
def understand(self, prompt, pixel_values, max_new_tokens=512, progress_bar=True):
|
| 733 |
+
if isinstance(prompt, str):
|
| 734 |
+
prompt = [prompt]
|
| 735 |
+
if isinstance(pixel_values, torch.Tensor):
|
| 736 |
+
pixel_values = [pixel_values]
|
| 737 |
+
|
| 738 |
+
bsz = len(prompt)
|
| 739 |
+
assert len(pixel_values) == bsz
|
| 740 |
+
|
| 741 |
+
pixel_values = [pad_an_image_tensor(img) for img in pixel_values]
|
| 742 |
+
pixel_values = torch.stack(pixel_values).to(dtype=self.dtype, device=self.device)
|
| 743 |
+
image_embeds = self.extract_visual_features(pixel_values)
|
| 744 |
+
image_embeds = self.projector(image_embeds)
|
| 745 |
+
|
| 746 |
+
conversations = [[{'input': f"{DEFAULT_IMAGE_TOKEN}\n{p}",}] for p in prompt]
|
| 747 |
+
|
| 748 |
+
text_inputs = self.prepare_und_prompts(conversations=conversations, image_lengths=image_embeds.shape[1],
|
| 749 |
+
input_ids_with_output=False)
|
| 750 |
+
|
| 751 |
+
input_ids, attention_mask, position_ids = \
|
| 752 |
+
text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 753 |
+
|
| 754 |
+
inputs_embeds = torch.zeros(*input_ids.shape, self.llm.config.hidden_size,
|
| 755 |
+
device=self.device, dtype=self.dtype)
|
| 756 |
+
inputs_embeds[input_ids == INPUT_IMAGE_TOKEN_INDEX] = image_embeds.flatten(0, 1)
|
| 757 |
+
inputs_embeds[input_ids != INPUT_IMAGE_TOKEN_INDEX] = \
|
| 758 |
+
self.llm.get_input_embeddings()(input_ids[input_ids != INPUT_IMAGE_TOKEN_INDEX])
|
| 759 |
+
|
| 760 |
+
past_key_values = DynamicCache.from_legacy_cache()
|
| 761 |
+
|
| 762 |
+
output_ids = []
|
| 763 |
+
|
| 764 |
+
for _ in tqdm(range(max_new_tokens), disable=not progress_bar):
|
| 765 |
+
output = self.llm.model(
|
| 766 |
+
inputs_embeds=inputs_embeds,
|
| 767 |
+
attention_mask=attention_mask,
|
| 768 |
+
position_ids=position_ids,
|
| 769 |
+
past_key_values=past_key_values,
|
| 770 |
+
use_cache=True,
|
| 771 |
+
return_dict=True)
|
| 772 |
+
logits = self.llm.get_output_embeddings()(output.last_hidden_state[:, -1:])
|
| 773 |
+
input_ids = torch.argmax(logits, dim=-1) # b 1
|
| 774 |
+
if len(output_ids) > 0:
|
| 775 |
+
input_ids = torch.where(output_ids[-1] == self.tokenizer.eos_token_id,
|
| 776 |
+
output_ids[-1], input_ids)
|
| 777 |
+
output_ids.append(input_ids)
|
| 778 |
+
|
| 779 |
+
if (input_ids == self.tokenizer.eos_token_id).all():
|
| 780 |
+
break
|
| 781 |
+
|
| 782 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 783 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(bsz, 1)], dim=1)
|
| 784 |
+
position_ids = torch.max(position_ids, dim=1, keepdim=True).values + 1
|
| 785 |
+
past_key_values = output.past_key_values
|
| 786 |
+
|
| 787 |
+
output_ids = torch.cat(output_ids, dim=1)
|
| 788 |
+
output_text = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 789 |
+
|
| 790 |
+
return output_text
|