File size: 12,020 Bytes
0fbe2c5 2e1f1ed 0fbe2c5 5c5fbc2 0fbe2c5 20a5e39 0fbe2c5 5c5fbc2 0fbe2c5 b904ff2 0fbe2c5 deb35ad 0fbe2c5 deb35ad 0fbe2c5 cc122da 0fbe2c5 b904ff2 0fbe2c5 5c5fbc2 0fbe2c5 b904ff2 5c5fbc2 0fbe2c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import os
from typing import List, Dict, Any, Optional
import base64
import tempfile
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_google_genai import ChatGoogleGenerativeAI
import wikipediaapi
import json
from urllib.parse import urlparse
import pytesseract
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import cmath
from langchain_core.tools import tool
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_tavily import TavilySearch
import requests
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
"""
#api_key = os.getenv("OPENAI_API_KEY")
api_key = os.getenv("GEMINI_API_KEY")
#model = ChatOpenAI(model="gpt-4o-mini", api_key=api_key, temperature=0)
model = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0, api_key=api_key)
@tool
def search_wiki(query: str, max_results: int = 2) -> str:
"""
Searches Wikipedia for the given query and returns a maximum of 'max_results'
relevant article summaries, titles, and URLs.
Args:
query (str): The search query for Wikipedia.
max_results (int): The maximum number of search results to retrieve (default is 3).
Returns:
str: A JSON string containing a list of dictionaries, where each dictionary
represents a Wikipedia article with its title, summary, and URL.
Returns an empty list if no results are found or an error occurs.
"""
language_code = 'en'
headers={'User-Agent': 'LangGraphAgent/1.0 (dwrigley@opensourceconnections.com)'}
base_url = 'https://api.wikimedia.org/core/v1/wikipedia/'
endpoint = '/search/page'
url = base_url + language_code + endpoint
parameters = {'q': query, 'limit': max_results}
response = requests.get(url, headers=headers, params=parameters)
response = json.loads(response.text)
return json.dumps(response, indent=2)
tavily_search_tool = TavilySearch(
max_results=5,
topic="general",
)
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a file and return the path.
Args:
content (str): the content to save to the file
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url (str): the URL of the file to download.
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can read this file to process its contents."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def sum(a: int, b:int) -> int:
"""Sum up two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using OCR library pytesseract (if available).
Args:
image_path (str): the path to the image file.
"""
try:
# Open the image
image = Image.open(image_path)
# Extract text from the image
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
Args:
file_path (str): the path to the CSV file.
query (str): Question about the data
"""
try:
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
Args:
file_path (str): the path to the Excel file.
query (str): Question about the data
"""
try:
# Read the Excel file
df = pd.read_excel(file_path)
# Run various analyses based on the query
result = (
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
)
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
@tool
def analyze_image(image_base64: str) -> Dict[str, Any]:
"""
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
Args:
image_base64 (str): Base64 encoded image string
Returns:
Dictionary with analysis result
"""
try:
img = decode_image(image_base64)
width, height = img.size
mode = img.mode
if mode in ("RGB", "RGBA"):
arr = np.array(img)
avg_colors = arr.mean(axis=(0, 1))
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
brightness = avg_colors.mean()
color_analysis = {
"average_rgb": avg_colors.tolist(),
"brightness": brightness,
"dominant_color": dominant,
}
else:
color_analysis = {"note": f"No color analysis for mode {mode}"}
thumbnail = img.copy()
thumbnail.thumbnail((100, 100))
thumb_path = save_image(thumbnail, "thumbnails")
thumbnail_base64 = encode_image(thumb_path)
return {
"dimensions": (width, height),
"mode": mode,
"color_analysis": color_analysis,
"thumbnail": thumbnail_base64,
}
except Exception as e:
return {"error": str(e)}
@tool
def transform_image(
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
Args:
image_base64 (str): Base64 encoded input image
operation (str): Transformation operation
params (Dict[str, Any], optional): Parameters for the operation
Returns:
Dictionary with transformed image (base64)
"""
try:
img = decode_image(image_base64)
params = params or {}
if operation == "resize":
img = img.resize(
(
params.get("width", img.width // 2),
params.get("height", img.height // 2),
)
)
elif operation == "rotate":
img = img.rotate(params.get("angle", 90), expand=True)
elif operation == "crop":
img = img.crop(
(
params.get("left", 0),
params.get("top", 0),
params.get("right", img.width),
params.get("bottom", img.height),
)
)
elif operation == "flip":
if params.get("direction", "horizontal") == "horizontal":
img = img.transpose(Image.FLIP_LEFT_RIGHT)
else:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
elif operation == "adjust_brightness":
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
elif operation == "adjust_contrast":
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
elif operation == "blur":
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
elif operation == "sharpen":
img = img.filter(ImageFilter.SHARPEN)
elif operation == "grayscale":
img = img.convert("L")
else:
return {"error": f"Unknown operation: {operation}"}
result_path = save_image(img)
result_base64 = encode_image(result_path)
return {"transformed_image": result_base64}
except Exception as e:
return {"error": str(e)}
tools = [
tavily_search_tool,
search_wiki,
save_and_read_file,
transform_image,
analyze_image,
analyze_excel_file,
analyze_csv_file,
extract_text_from_image,
download_file_from_url
]
def build_graph():
"""Build the graph"""
# Bind tools to LLM
llm_with_tools = model.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test agent
if __name__ == "__main__":
question = "When was St. Thomas Aquinas born?"
# Build the graph
graph = build_graph()
# Run the graph
messages = [
SystemMessage(
content=system_prompt
),
HumanMessage(
content=question
)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print() |