Spaces:
Running
Running
File size: 10,434 Bytes
78a1bf0 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b 78a1bf0 f4fda1c fcae57e 3ad3f59 78a1bf0 f4fda1c 0f0578b 3ad3f59 78a1bf0 f4fda1c a414829 fcae57e 78a1bf0 0f0578b 78a1bf0 0f0578b fcae57e 3ad3f59 78a1bf0 0f0578b 3ad3f59 3caf047 0f0578b 3caf047 78a1bf0 fcae57e 78a1bf0 3ad3f59 78a1bf0 0f0578b 78a1bf0 3ad3f59 78a1bf0 fcae57e 0f0578b 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b a414829 78a1bf0 fcae57e a414829 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 f4fda1c 78a1bf0 0f0578b f4fda1c 78a1bf0 0f0578b f4fda1c 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b 78a1bf0 fcae57e f4fda1c fcae57e 78a1bf0 fcae57e f4fda1c fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from typing import Any, Dict, List, Optional
import weave
from presidio_analyzer import (
AnalyzerEngine,
Pattern,
PatternRecognizer,
RecognizerRegistry,
)
from presidio_anonymizer import AnonymizerEngine
from pydantic import BaseModel
from ..base import Guardrail
class PresidioEntityRecognitionResponse(BaseModel):
contains_entities: bool
detected_entities: Dict[str, List[str]]
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class PresidioEntityRecognitionSimpleResponse(BaseModel):
contains_entities: bool
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
# TODO: Add support for transformers workflow and not just Spacy
class PresidioEntityRecognitionGuardrail(Guardrail):
"""
A guardrail class for entity recognition and anonymization using Presidio.
This class extends the Guardrail base class to provide functionality for
detecting and optionally anonymizing entities in text using the Presidio
library. It leverages Presidio's AnalyzerEngine and AnonymizerEngine to
perform these tasks.
!!! example "Using PresidioEntityRecognitionGuardrail"
```python
from guardrails_genie.guardrails.entity_recognition import PresidioEntityRecognitionGuardrail
# Initialize with default entities
guardrail = PresidioEntityRecognitionGuardrail(should_anonymize=True)
# Or with specific entities
selected_entities = ["CREDIT_CARD", "US_SSN", "EMAIL_ADDRESS"]
guardrail = PresidioEntityRecognitionGuardrail(
selected_entities=selected_entities,
should_anonymize=True
)
```
Attributes:
analyzer (AnalyzerEngine): The Presidio engine used for entity analysis.
anonymizer (AnonymizerEngine): The Presidio engine used for text anonymization.
selected_entities (List[str]): A list of entity types to detect in the text.
should_anonymize (bool): A flag indicating whether detected entities should be anonymized.
language (str): The language of the text to be analyzed.
Args:
selected_entities (Optional[List[str]]): A list of entity types to detect in the text.
should_anonymize (bool): A flag indicating whether detected entities should be anonymized.
language (str): The language of the text to be analyzed.
deny_lists (Optional[Dict[str, List[str]]]): A dictionary of entity types and their
corresponding deny lists.
regex_patterns (Optional[Dict[str, List[Dict[str, str]]]]): A dictionary of entity
types and their corresponding regex patterns.
custom_recognizers (Optional[List[Any]]): A list of custom recognizers to add to the
analyzer.
show_available_entities (bool): A flag indicating whether to print available entities.
"""
@staticmethod
def get_available_entities() -> List[str]:
registry = RecognizerRegistry()
analyzer = AnalyzerEngine(registry=registry)
return [
recognizer.supported_entities[0]
for recognizer in analyzer.registry.recognizers
]
analyzer: AnalyzerEngine
anonymizer: AnonymizerEngine
selected_entities: List[str]
should_anonymize: bool
language: str
def __init__(
self,
selected_entities: Optional[List[str]] = None,
should_anonymize: bool = False,
language: str = "en",
deny_lists: Optional[Dict[str, List[str]]] = None,
regex_patterns: Optional[Dict[str, List[Dict[str, str]]]] = None,
custom_recognizers: Optional[List[Any]] = None,
show_available_entities: bool = False,
):
# If show_available_entities is True, print available entities
if show_available_entities:
available_entities = self.get_available_entities()
print("\nAvailable entities:")
print("=" * 25)
for entity in available_entities:
print(f"- {entity}")
print("=" * 25 + "\n")
# Initialize default values to all available entities
if selected_entities is None:
selected_entities = self.get_available_entities()
# Get available entities dynamically
available_entities = self.get_available_entities()
# Filter out invalid entities and warn user
invalid_entities = [e for e in selected_entities if e not in available_entities]
valid_entities = [e for e in selected_entities if e in available_entities]
if invalid_entities:
print(
f"\nWarning: The following entities are not available and will be ignored: {invalid_entities}"
)
print(f"Continuing with valid entities: {valid_entities}")
selected_entities = valid_entities
# Initialize analyzer with default recognizers
analyzer = AnalyzerEngine()
# Add custom recognizers if provided
if custom_recognizers:
for recognizer in custom_recognizers:
analyzer.registry.add_recognizer(recognizer)
# Add deny list recognizers if provided
if deny_lists:
for entity_type, tokens in deny_lists.items():
deny_list_recognizer = PatternRecognizer(
supported_entity=entity_type, deny_list=tokens
)
analyzer.registry.add_recognizer(deny_list_recognizer)
# Add regex pattern recognizers if provided
if regex_patterns:
for entity_type, patterns in regex_patterns.items():
presidio_patterns = [
Pattern(
name=pattern.get("name", f"pattern_{i}"),
regex=pattern["regex"],
score=pattern.get("score", 0.5),
)
for i, pattern in enumerate(patterns)
]
regex_recognizer = PatternRecognizer(
supported_entity=entity_type, patterns=presidio_patterns
)
analyzer.registry.add_recognizer(regex_recognizer)
# Initialize Presidio engines
anonymizer = AnonymizerEngine()
# Call parent class constructor with all fields
super().__init__(
analyzer=analyzer,
anonymizer=anonymizer,
selected_entities=selected_entities,
should_anonymize=should_anonymize,
language=language,
)
@weave.op()
def guard(
self, prompt: str, return_detected_types: bool = True, **kwargs
) -> PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
"""
Analyzes the input prompt for entity recognition using the Presidio framework.
This function utilizes the Presidio AnalyzerEngine to detect entities within the
provided text prompt. It supports custom recognizers, deny lists, and regex patterns
for entity detection. The detected entities are grouped by their types and an
explanation of the findings is generated. If anonymization is enabled, the detected
entities in the text are anonymized.
Args:
prompt (str): The text to be analyzed for entity recognition.
return_detected_types (bool): Determines the type of response. If True, the
response includes detailed information about detected entity types.
Returns:
PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
A response object containing information about whether entities were detected,
the types and instances of detected entities, an explanation of the analysis,
and optionally, the anonymized text if anonymization is enabled.
"""
# Analyze text for entities
analyzer_results = self.analyzer.analyze(
text=str(prompt), entities=self.selected_entities, language=self.language
)
# Group results by entity type
detected_entities = {}
for result in analyzer_results:
entity_type = result.entity_type
text_slice = prompt[result.start : result.end]
if entity_type not in detected_entities:
detected_entities[entity_type] = []
detected_entities[entity_type].append(text_slice)
# Create explanation
explanation_parts = []
if detected_entities:
explanation_parts.append("Found the following entities in the text:")
for entity_type, instances in detected_entities.items():
explanation_parts.append(
f"- {entity_type}: {len(instances)} instance(s)"
)
else:
explanation_parts.append("No entities detected in the text.")
# Add information about what was checked
explanation_parts.append("\nChecked for these entity types:")
for entity in self.selected_entities:
explanation_parts.append(f"- {entity}")
# Anonymize if requested
anonymized_text = None
if self.should_anonymize and detected_entities:
anonymized_result = self.anonymizer.anonymize(
text=prompt, analyzer_results=analyzer_results
)
anonymized_text = anonymized_result.text
if return_detected_types:
return PresidioEntityRecognitionResponse(
contains_entities=bool(detected_entities),
detected_entities=detected_entities,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
else:
return PresidioEntityRecognitionSimpleResponse(
contains_entities=bool(detected_entities),
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
@weave.op()
def predict(
self, prompt: str, return_detected_types: bool = True, **kwargs
) -> PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
return self.guard(prompt, return_detected_types=return_detected_types, **kwargs)
|