ash0ts commited on
Commit
fcae57e
·
1 Parent(s): 3a97187

add pii guardrails that also work for banned words guardrails

Browse files
guardrails_genie/{spacy_model.py → guardrails/banned_terms/llm_judge.py} RENAMED
File without changes
guardrails_genie/guardrails/pii/presidio_pii_guardrail.py CHANGED
@@ -1,8 +1,8 @@
1
- from typing import List, Dict, Optional, ClassVar
2
  import weave
3
  from pydantic import BaseModel
4
 
5
- from presidio_analyzer import AnalyzerEngine
6
  from presidio_anonymizer import AnonymizerEngine
7
 
8
  from ..base import Guardrail
@@ -10,18 +10,22 @@ from ..base import Guardrail
10
  class PresidioPIIGuardrailResponse(BaseModel):
11
  contains_pii: bool
12
  detected_pii_types: Dict[str, List[str]]
13
- safe_to_process: bool
 
 
 
 
14
  explanation: str
15
  anonymized_text: Optional[str] = None
16
 
17
  #TODO: Add support for transformers workflow and not just Spacy
18
  class PresidioPIIGuardrail(Guardrail):
19
- AVAILABLE_ENTITIES: ClassVar[List[str]] = [
20
- "PERSON", "EMAIL_ADDRESS", "PHONE_NUMBER", "LOCATION",
21
- "CREDIT_CARD", "CRYPTO", "DATE_TIME", "NRP", "MEDICAL_LICENSE",
22
- "URL", "US_BANK_NUMBER", "US_DRIVER_LICENSE", "US_ITIN",
23
- "US_PASSPORT", "US_SSN", "UK_NHS", "IP_ADDRESS"
24
- ]
25
 
26
  analyzer: AnalyzerEngine
27
  anonymizer: AnonymizerEngine
@@ -33,7 +37,10 @@ class PresidioPIIGuardrail(Guardrail):
33
  self,
34
  selected_entities: Optional[List[str]] = None,
35
  should_anonymize: bool = False,
36
- language: str = "en"
 
 
 
37
  ):
38
  # Initialize default values
39
  if selected_entities is None:
@@ -42,13 +49,48 @@ class PresidioPIIGuardrail(Guardrail):
42
  "LOCATION", "CREDIT_CARD", "US_SSN"
43
  ]
44
 
 
 
 
45
  # Validate selected entities
46
- invalid_entities = set(selected_entities) - set(self.AVAILABLE_ENTITIES)
47
  if invalid_entities:
48
  raise ValueError(f"Invalid entities: {invalid_entities}")
49
 
50
- # Initialize Presidio engines
51
  analyzer = AnalyzerEngine()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  anonymizer = AnonymizerEngine()
53
 
54
  # Call parent class constructor with all fields
@@ -61,9 +103,13 @@ class PresidioPIIGuardrail(Guardrail):
61
  )
62
 
63
  @weave.op()
64
- def guard(self, prompt: str, **kwargs) -> PresidioPIIGuardrailResponse:
65
  """
66
  Check if the input prompt contains any PII using Presidio.
 
 
 
 
67
  """
68
  # Analyze text for PII
69
  analyzer_results = self.analyzer.analyze(
@@ -104,10 +150,20 @@ class PresidioPIIGuardrail(Guardrail):
104
  )
105
  anonymized_text = anonymized_result.text
106
 
107
- return PresidioPIIGuardrailResponse(
108
- contains_pii=bool(detected_pii),
109
- detected_pii_types=detected_pii,
110
- safe_to_process=not bool(detected_pii),
111
- explanation="\n".join(explanation_parts),
112
- anonymized_text=anonymized_text
113
- )
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Dict, Optional, ClassVar, Any
2
  import weave
3
  from pydantic import BaseModel
4
 
5
+ from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, Pattern, PatternRecognizer
6
  from presidio_anonymizer import AnonymizerEngine
7
 
8
  from ..base import Guardrail
 
10
  class PresidioPIIGuardrailResponse(BaseModel):
11
  contains_pii: bool
12
  detected_pii_types: Dict[str, List[str]]
13
+ explanation: str
14
+ anonymized_text: Optional[str] = None
15
+
16
+ class PresidioPIIGuardrailSimpleResponse(BaseModel):
17
+ contains_pii: bool
18
  explanation: str
19
  anonymized_text: Optional[str] = None
20
 
21
  #TODO: Add support for transformers workflow and not just Spacy
22
  class PresidioPIIGuardrail(Guardrail):
23
+ @staticmethod
24
+ def get_available_entities() -> List[str]:
25
+ registry = RecognizerRegistry()
26
+ analyzer = AnalyzerEngine(registry=registry)
27
+ return [recognizer.supported_entities[0]
28
+ for recognizer in analyzer.registry.recognizers]
29
 
30
  analyzer: AnalyzerEngine
31
  anonymizer: AnonymizerEngine
 
37
  self,
38
  selected_entities: Optional[List[str]] = None,
39
  should_anonymize: bool = False,
40
+ language: str = "en",
41
+ deny_lists: Optional[Dict[str, List[str]]] = None,
42
+ regex_patterns: Optional[Dict[str, List[Dict[str, str]]]] = None,
43
+ custom_recognizers: Optional[List[Any]] = None
44
  ):
45
  # Initialize default values
46
  if selected_entities is None:
 
49
  "LOCATION", "CREDIT_CARD", "US_SSN"
50
  ]
51
 
52
+ # Get available entities dynamically
53
+ available_entities = self.get_available_entities()
54
+
55
  # Validate selected entities
56
+ invalid_entities = set(selected_entities) - set(available_entities)
57
  if invalid_entities:
58
  raise ValueError(f"Invalid entities: {invalid_entities}")
59
 
60
+ # Initialize analyzer with default recognizers
61
  analyzer = AnalyzerEngine()
62
+
63
+ # Add custom recognizers if provided
64
+ if custom_recognizers:
65
+ for recognizer in custom_recognizers:
66
+ analyzer.registry.add_recognizer(recognizer)
67
+
68
+ # Add deny list recognizers if provided
69
+ if deny_lists:
70
+ for entity_type, tokens in deny_lists.items():
71
+ deny_list_recognizer = PatternRecognizer(
72
+ supported_entity=entity_type,
73
+ deny_list=tokens
74
+ )
75
+ analyzer.registry.add_recognizer(deny_list_recognizer)
76
+
77
+ # Add regex pattern recognizers if provided
78
+ if regex_patterns:
79
+ for entity_type, patterns in regex_patterns.items():
80
+ presidio_patterns = [
81
+ Pattern(
82
+ name=pattern.get("name", f"pattern_{i}"),
83
+ regex=pattern["regex"],
84
+ score=pattern.get("score", 0.5)
85
+ ) for i, pattern in enumerate(patterns)
86
+ ]
87
+ regex_recognizer = PatternRecognizer(
88
+ supported_entity=entity_type,
89
+ patterns=presidio_patterns
90
+ )
91
+ analyzer.registry.add_recognizer(regex_recognizer)
92
+
93
+ # Initialize Presidio engines
94
  anonymizer = AnonymizerEngine()
95
 
96
  # Call parent class constructor with all fields
 
103
  )
104
 
105
  @weave.op()
106
+ def guard(self, prompt: str, return_detected_types: bool = True, **kwargs) -> PresidioPIIGuardrailResponse | PresidioPIIGuardrailSimpleResponse:
107
  """
108
  Check if the input prompt contains any PII using Presidio.
109
+
110
+ Args:
111
+ prompt: The text to analyze
112
+ return_detected_types: If True, returns detailed PII type information
113
  """
114
  # Analyze text for PII
115
  analyzer_results = self.analyzer.analyze(
 
150
  )
151
  anonymized_text = anonymized_result.text
152
 
153
+ if return_detected_types:
154
+ return PresidioPIIGuardrailResponse(
155
+ contains_pii=bool(detected_pii),
156
+ detected_pii_types=detected_pii,
157
+ explanation="\n".join(explanation_parts),
158
+ anonymized_text=anonymized_text
159
+ )
160
+ else:
161
+ return PresidioPIIGuardrailSimpleResponse(
162
+ contains_pii=bool(detected_pii),
163
+ explanation="\n".join(explanation_parts),
164
+ anonymized_text=anonymized_text
165
+ )
166
+
167
+ @weave.op()
168
+ def predict(self, prompt: str, return_detected_types: bool = True, **kwargs) -> PresidioPIIGuardrailResponse | PresidioPIIGuardrailSimpleResponse:
169
+ return self.guard(prompt, return_detected_types=return_detected_types, **kwargs)
guardrails_genie/guardrails/pii/regex_pii_guardrail.py CHANGED
@@ -10,7 +10,12 @@ from ..base import Guardrail
10
  class RegexPIIGuardrailResponse(BaseModel):
11
  contains_pii: bool
12
  detected_pii_types: Dict[str, list[str]]
13
- safe_to_process: bool
 
 
 
 
 
14
  explanation: str
15
  anonymized_text: Optional[str] = None
16
 
@@ -51,15 +56,16 @@ class RegexPIIGuardrail(Guardrail):
51
  )
52
 
53
  @weave.op()
54
- def guard(self, prompt: str, **kwargs) -> RegexPIIGuardrailResponse:
55
  """
56
  Check if the input prompt contains any PII based on the regex patterns.
57
 
58
  Args:
59
  prompt: Input text to check for PII
 
60
 
61
  Returns:
62
- RegexPIIGuardrailResponse containing PII detection results and recommendations
63
  """
64
  result = self.regex_model.check(prompt)
65
 
@@ -85,11 +91,21 @@ class RegexPIIGuardrail(Guardrail):
85
  for match in matches:
86
  replacement = f"[{pii_type.upper()}]"
87
  anonymized_text = anonymized_text.replace(match, replacement)
88
-
89
- return RegexPIIGuardrailResponse(
90
- contains_pii=not result.passed,
91
- detected_pii_types=result.matched_patterns,
92
- safe_to_process=result.passed,
93
- explanation="\n".join(explanation_parts),
94
- anonymized_text=anonymized_text
95
- )
 
 
 
 
 
 
 
 
 
 
 
10
  class RegexPIIGuardrailResponse(BaseModel):
11
  contains_pii: bool
12
  detected_pii_types: Dict[str, list[str]]
13
+ explanation: str
14
+ anonymized_text: Optional[str] = None
15
+
16
+
17
+ class RegexPIIGuardrailSimpleResponse(BaseModel):
18
+ contains_pii: bool
19
  explanation: str
20
  anonymized_text: Optional[str] = None
21
 
 
56
  )
57
 
58
  @weave.op()
59
+ def guard(self, prompt: str, return_detected_types: bool = True, **kwargs) -> RegexPIIGuardrailResponse | RegexPIIGuardrailSimpleResponse:
60
  """
61
  Check if the input prompt contains any PII based on the regex patterns.
62
 
63
  Args:
64
  prompt: Input text to check for PII
65
+ return_detected_types: If True, returns detailed PII type information
66
 
67
  Returns:
68
+ RegexPIIGuardrailResponse or RegexPIIGuardrailSimpleResponse containing PII detection results
69
  """
70
  result = self.regex_model.check(prompt)
71
 
 
91
  for match in matches:
92
  replacement = f"[{pii_type.upper()}]"
93
  anonymized_text = anonymized_text.replace(match, replacement)
94
+
95
+ if return_detected_types:
96
+ return RegexPIIGuardrailResponse(
97
+ contains_pii=not result.passed,
98
+ detected_pii_types=result.matched_patterns,
99
+ explanation="\n".join(explanation_parts),
100
+ anonymized_text=anonymized_text
101
+ )
102
+ else:
103
+ return RegexPIIGuardrailSimpleResponse(
104
+ contains_pii=not result.passed,
105
+ explanation="\n".join(explanation_parts),
106
+ anonymized_text=anonymized_text
107
+ )
108
+
109
+ @weave.op()
110
+ def predict(self, prompt: str, return_detected_types: bool = True, **kwargs) -> RegexPIIGuardrailResponse | RegexPIIGuardrailSimpleResponse:
111
+ return self.guard(prompt, return_detected_types=return_detected_types, **kwargs)
guardrails_genie/guardrails/pii/run_transformers.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from guardrails_genie.guardrails.pii.transformers_pipeline_guardrail import TransformersPipelinePIIGuardrail
2
+ import weave
3
+
4
+ def run_transformers_pipeline():
5
+ weave.init("guardrails-genie-pii-transformers-pipeline-model")
6
+
7
+ # Create the guardrail with default entities and anonymization enabled
8
+ pii_guardrail = TransformersPipelinePIIGuardrail(
9
+ selected_entities=["GIVENNAME", "SURNAME", "EMAIL", "TELEPHONENUM", "SOCIALNUM", "PHONE_NUMBER"],
10
+ should_anonymize=True,
11
+ model_name="lakshyakh93/deberta_finetuned_pii",
12
+ show_available_entities=True
13
+ )
14
+
15
+ # Check a prompt
16
+ prompt = "Please contact John Smith at john.smith@email.com or call 123-456-7890. My SSN is 123-45-6789"
17
+ result = pii_guardrail.guard(prompt, aggregate_redaction=False)
18
+ print(result)
19
+
20
+ # Result will contain:
21
+ # - contains_pii: True
22
+ # - detected_pii_types: {
23
+ # "GIVENNAME": ["John"],
24
+ # "SURNAME": ["Smith"],
25
+ # "EMAIL": ["john.smith@email.com"],
26
+ # "TELEPHONENUM": ["123-456-7890"],
27
+ # "SOCIALNUM": ["123-45-6789"]
28
+ # }
29
+ # - safe_to_process: False
30
+ # - explanation: Detailed explanation of findings
31
+ # - anonymized_text: "Please contact [redacted] [redacted] at [redacted] or call [redacted]. My SSN is [redacted]"
32
+
33
+
34
+ if __name__ == "__main__":
35
+ run_transformers_pipeline()
guardrails_genie/guardrails/pii/transformers_pipeline_guardrail.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Dict, Optional, ClassVar
2
+ from transformers import pipeline, AutoConfig
3
+ import json
4
+ from pydantic import BaseModel
5
+ from ..base import Guardrail
6
+ import weave
7
+
8
+ class TransformersPipelinePIIGuardrailResponse(BaseModel):
9
+ contains_pii: bool
10
+ detected_pii_types: Dict[str, List[str]]
11
+ explanation: str
12
+ anonymized_text: Optional[str] = None
13
+
14
+ class TransformersPipelinePIIGuardrailSimpleResponse(BaseModel):
15
+ contains_pii: bool
16
+ explanation: str
17
+ anonymized_text: Optional[str] = None
18
+
19
+ class TransformersPipelinePIIGuardrail(Guardrail):
20
+ """Generic guardrail for detecting PII using any token classification model."""
21
+
22
+ _pipeline: Optional[object] = None
23
+ selected_entities: List[str]
24
+ should_anonymize: bool
25
+ available_entities: List[str]
26
+
27
+ def __init__(
28
+ self,
29
+ model_name: str = "iiiorg/piiranha-v1-detect-personal-information",
30
+ selected_entities: Optional[List[str]] = None,
31
+ should_anonymize: bool = False,
32
+ show_available_entities: bool = True,
33
+ ):
34
+ # Load model config and extract available entities
35
+ config = AutoConfig.from_pretrained(model_name)
36
+ entities = self._extract_entities_from_config(config)
37
+
38
+ if show_available_entities:
39
+ self._print_available_entities(entities)
40
+
41
+ # Initialize default values if needed
42
+ if selected_entities is None:
43
+ selected_entities = entities # Use all available entities by default
44
+
45
+ # Filter out invalid entities and warn user
46
+ invalid_entities = [e for e in selected_entities if e not in entities]
47
+ valid_entities = [e for e in selected_entities if e in entities]
48
+
49
+ if invalid_entities:
50
+ print(f"\nWarning: The following entities are not available and will be ignored: {invalid_entities}")
51
+ print(f"Continuing with valid entities: {valid_entities}")
52
+ selected_entities = valid_entities
53
+
54
+ # Call parent class constructor
55
+ super().__init__(
56
+ selected_entities=selected_entities,
57
+ should_anonymize=should_anonymize,
58
+ available_entities=entities
59
+ )
60
+
61
+ # Initialize pipeline
62
+ self._pipeline = pipeline(
63
+ task="token-classification",
64
+ model=model_name,
65
+ aggregation_strategy="simple" # Merge same entities
66
+ )
67
+
68
+ def _extract_entities_from_config(self, config) -> List[str]:
69
+ """Extract unique entity types from the model config."""
70
+ # Get id2label mapping from config
71
+ id2label = config.id2label
72
+
73
+ # Extract unique entity types (removing B- and I- prefixes)
74
+ entities = set()
75
+ for label in id2label.values():
76
+ if label.startswith(('B-', 'I-')):
77
+ entities.add(label[2:]) # Remove prefix
78
+ elif label != 'O': # Skip the 'O' (Outside) label
79
+ entities.add(label)
80
+
81
+ return sorted(list(entities))
82
+
83
+ def _print_available_entities(self, entities: List[str]):
84
+ """Print all available entity types that can be detected by the model."""
85
+ print("\nAvailable PII entity types:")
86
+ print("=" * 25)
87
+ for entity in entities:
88
+ print(f"- {entity}")
89
+ print("=" * 25 + "\n")
90
+
91
+ def print_available_entities(self):
92
+ """Print all available entity types that can be detected by the model."""
93
+ self._print_available_entities(self.available_entities)
94
+
95
+ def _detect_pii(self, text: str) -> Dict[str, List[str]]:
96
+ """Detect PII entities in the text using the pipeline."""
97
+ results = self._pipeline(text)
98
+
99
+ # Group findings by entity type
100
+ detected_pii = {}
101
+ for entity in results:
102
+ entity_type = entity['entity_group']
103
+ if entity_type in self.selected_entities:
104
+ if entity_type not in detected_pii:
105
+ detected_pii[entity_type] = []
106
+ detected_pii[entity_type].append(entity['word'])
107
+
108
+ return detected_pii
109
+
110
+ def _anonymize_text(self, text: str, aggregate_redaction: bool = True) -> str:
111
+ """Anonymize detected PII in text using the pipeline."""
112
+ results = self._pipeline(text)
113
+
114
+ # Sort entities by start position in reverse order to avoid offset issues
115
+ entities = sorted(results, key=lambda x: x['start'], reverse=True)
116
+
117
+ # Create a mutable list of characters
118
+ chars = list(text)
119
+
120
+ # Apply redactions
121
+ for entity in entities:
122
+ if entity['entity_group'] in self.selected_entities:
123
+ start, end = entity['start'], entity['end']
124
+ replacement = ' [redacted] ' if aggregate_redaction else f" [{entity['entity_group']}] "
125
+
126
+ # Replace the entity with the redaction marker
127
+ chars[start:end] = replacement
128
+
129
+ # Join and clean up multiple spaces
130
+ result = ''.join(chars)
131
+ return ' '.join(result.split())
132
+
133
+ @weave.op()
134
+ def guard(self, prompt: str, return_detected_types: bool = True, aggregate_redaction: bool = True) -> TransformersPipelinePIIGuardrailResponse | TransformersPipelinePIIGuardrailSimpleResponse:
135
+ """Check if the input prompt contains any PII using Piiranha.
136
+
137
+ Args:
138
+ prompt: The text to analyze
139
+ return_detected_types: If True, returns detailed PII type information
140
+ aggregate_redaction: If True, uses generic [redacted] instead of entity type
141
+ """
142
+ # Detect PII
143
+ detected_pii = self._detect_pii(prompt)
144
+
145
+ # Create explanation
146
+ explanation_parts = []
147
+ if detected_pii:
148
+ explanation_parts.append("Found the following PII in the text:")
149
+ for pii_type, instances in detected_pii.items():
150
+ explanation_parts.append(f"- {pii_type}: {len(instances)} instance(s)")
151
+ else:
152
+ explanation_parts.append("No PII detected in the text.")
153
+
154
+ explanation_parts.append("\nChecked for these PII types:")
155
+ for entity in self.selected_entities:
156
+ explanation_parts.append(f"- {entity}")
157
+
158
+ # Anonymize if requested
159
+ anonymized_text = None
160
+ if self.should_anonymize and detected_pii:
161
+ anonymized_text = self._anonymize_text(prompt, aggregate_redaction)
162
+
163
+ if return_detected_types:
164
+ return TransformersPipelinePIIGuardrailResponse(
165
+ contains_pii=bool(detected_pii),
166
+ detected_pii_types=detected_pii,
167
+ explanation="\n".join(explanation_parts),
168
+ anonymized_text=anonymized_text
169
+ )
170
+ else:
171
+ return TransformersPipelinePIIGuardrailSimpleResponse(
172
+ contains_pii=bool(detected_pii),
173
+ explanation="\n".join(explanation_parts),
174
+ anonymized_text=anonymized_text
175
+ )
176
+
177
+ @weave.op()
178
+ def predict(self, prompt: str, return_detected_types: bool = True, aggregate_redaction: bool = True, **kwargs) -> TransformersPipelinePIIGuardrailResponse | TransformersPipelinePIIGuardrailSimpleResponse:
179
+ return self.guard(prompt, return_detected_types=return_detected_types, aggregate_redaction=aggregate_redaction, **kwargs)