Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,179 Bytes
7dd7d9c ec7fc1c 7dd7d9c ec7fc1c 5b3c0e4 0ba2339 ec7fc1c 1d422fe ec7fc1c 7dd7d9c ec7fc1c 0ba2339 3c49f9a 7dd7d9c ec7fc1c 05be4f7 1d422fe ec7fc1c 1d422fe 3c49f9a 2192aaf ec7fc1c 0ba2339 2767034 6aae2cc 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 ec7fc1c 857a5c4 ec7fc1c 0ba2339 05be4f7 857a5c4 1d422fe 0ba2339 ec7fc1c 0ba2339 ec7fc1c 0ba2339 857a5c4 05be4f7 ec7fc1c 05be4f7 ec7fc1c 43c2435 1d422fe 43c2435 1d422fe 43c2435 ec7fc1c 05be4f7 ec7fc1c 05be4f7 ec7fc1c 0ba2339 ec7fc1c 0ba2339 ec7fc1c 0ba2339 7dd7d9c 3fe4825 3ddd9a0 ec7fc1c da665db ec7fc1c 3c49f9a 0ba2339 7dd7d9c ec7fc1c 0ba2339 2767034 0ba2339 7dd7d9c ec7fc1c 0ba2339 7dd7d9c ec7fc1c 0ba2339 7dd7d9c ec7fc1c 0ba2339 7dd7d9c ec7fc1c 0ba2339 ec7fc1c 05be4f7 ec7fc1c 05be4f7 ec7fc1c 0d28f6f 0ba2339 7dd7d9c ec7fc1c 7dd7d9c ec7fc1c 1d422fe 0ba2339 7dd7d9c 0ba2339 7dd7d9c 05be4f7 ec7fc1c 7dd7d9c ec7fc1c 7dd7d9c ec7fc1c 0ba2339 7dd7d9c 0ba2339 7dd7d9c ec7fc1c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 ec7fc1c 7dd7d9c ec7fc1c 7dd7d9c ec7fc1c 7dd7d9c ec7fc1c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 ec7fc1c 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c ec7fc1c 05be4f7 ec7fc1c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 ec7fc1c 0ba2339 ec7fc1c 0ba2339 7dd7d9c 0ba2339 3c49f9a 7dd7d9c ec7fc1c 3c49f9a 3184f26 3c49f9a ec7fc1c 3c49f9a 52ae519 3fe4825 3c49f9a ec7fc1c 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c 3c49f9a ec7fc1c 7dd7d9c 3c49f9a 7dd7d9c ec7fc1c 7dd7d9c 0ba2339 ec7fc1c 7dd7d9c 0ba2339 ec7fc1c 0ba2339 ec7fc1c 05be4f7 ec7fc1c 05be4f7 ec7fc1c 3c49f9a 7dd7d9c 3c49f9a ec7fc1c 3c49f9a 7dd7d9c 3c49f9a ec7fc1c 3c49f9a ec7fc1c 3c49f9a ec7fc1c 3c49f9a ec7fc1c 3c49f9a ec7fc1c 3c49f9a 0ba2339 3c49f9a ec7fc1c 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c 05be4f7 ec7fc1c 7dd7d9c ec7fc1c 7dd7d9c ec7fc1c 3c49f9a 7dd7d9c 0ba2339 ec7fc1c 7dd7d9c ec7fc1c 7dd7d9c 0ba2339 7dd7d9c 0d28f6f 9acec60 8d45934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import cv2
import torch
import random
import numpy as np
import spaces
import PIL
from PIL import Image
from typing import Tuple
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
# from controlnet_aux import OpenposeDetector
import gradio as gr
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
import torch.nn.functional as F
from torchvision.transforms import Compose
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"
enable_lcm_arg = False
# download checkpoints
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
# Load face encoder
app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))
# openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
# Path to InstantID models
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# Load pipeline face ControlNetModel
controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
# controlnet-pose/canny/depth
# controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
# controlnet_pose = ControlNetModel.from_pretrained(
# controlnet_pose_model, torch_dtype=dtype
# ).to(device)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
controlnet_depth = ControlNetModel.from_pretrained(
controlnet_depth_model, torch_dtype=dtype
).to(device)
def get_depth_map(image):
image = np.array(image) / 255.0
h, w = image.shape[:2]
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0).to("cuda")
with torch.no_grad():
depth = depth_anything(image)
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_image = Image.fromarray(depth)
return depth_image
def get_canny_image(image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
controlnet_map = {
#"pose": controlnet_pose,
"canny": controlnet_canny,
"depth": controlnet_depth,
}
controlnet_map_fn = {
#"pose": openpose,
"canny": get_canny_image,
"depth": get_depth_map,
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
pipe.scheduler.config
)
# load and disable LCM
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
pipe.disable_lora()
pipe.cuda()
pipe.load_ip_adapter_instantid(face_adapter)
pipe.image_proj_model.to("cuda")
pipe.unet.to("cuda")
def toggle_lcm_ui(value):
if value:
return (
gr.update(minimum=0, maximum=100, step=1, value=5),
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
)
else:
return (
gr.update(minimum=5, maximum=100, step=1, value=30),
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5),
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def remove_tips():
return gr.update(visible=False)
def get_example():
case = [
[
"./examples/yann-lecun_resize.jpg",
None,
"a man",
"Spring Festival",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/musk_resize.jpeg",
"./examples/poses/pose2.jpg",
"a man flying in the sky in Mars",
"Mars",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/sam_resize.png",
"./examples/poses/pose4.jpg",
"a man doing a silly pose wearing a suite",
"Jungle",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
],
[
"./examples/schmidhuber_resize.png",
"./examples/poses/pose3.jpg",
"a man sit on a chair",
"Neon",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/kaifu_resize.png",
"./examples/poses/pose.jpg",
"a man",
"Vibrant Color",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
]
return case
def run_for_examples(face_file, pose_file, prompt, style, negative_prompt):
return generate_image(
face_file,
pose_file,
prompt,
negative_prompt,
style,
20, # num_steps
0.8, # identitynet_strength_ratio
0.8, # adapter_strength_ratio
#0.4, # pose_strength
0.3, # canny_strength
0.5, # depth_strength
["depth", "canny"], # controlnet_selection
5.0, # guidance_scale
42, # seed
"EulerDiscreteScheduler", # scheduler
False, # enable_LCM
True, # enable_Face_Region
)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(
style_name: str, positive: str, negative: str = ""
) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
@spaces.GPU
def generate_image(
face_image_path,
pose_image_path,
prompt,
negative_prompt,
style_name,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
#pose_strength,
canny_strength,
depth_strength,
controlnet_selection,
guidance_scale,
seed,
scheduler,
enable_LCM,
enhance_face_region,
progress=gr.Progress(track_tqdm=True),
):
if enable_LCM:
pipe.scheduler = diffusers.LCMScheduler.from_config(pipe.scheduler.config)
pipe.enable_lora()
else:
pipe.disable_lora()
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras_sigmas"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
pipe.scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs)
if face_image_path is None:
raise gr.Error(
f"Cannot find any input face image! Please upload the face image"
)
if prompt is None:
prompt = "a person"
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error(
f"Unable to detect a face in the image. Please upload a different photo with a clear face."
)
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error(
f"Cannot find any face in the reference image! Please upload another person image"
)
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
if len(controlnet_selection) > 0:
controlnet_scales = {
#"pose": pose_strength,
"canny": canny_strength,
"depth": depth_strength,
}
pipe.controlnet = MultiControlNetModel(
[controlnet_identitynet]
+ [controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
else:
pipe.controlnet = controlnet_identitynet
control_scales = float(identitynet_strength_ratio)
control_images = face_kps
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
).images
return images[0], gr.update(visible=True)
# Description
title = r"""
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
"""
description = r"""
<b>Official tool</b> for <a href='https://writtech.com' target='_blank'><b>Instant Portrait AI: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
Walone AI.<br>
How to use:<br>
1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
3. (Optional) You can select multiple ControlNet models to control the generation process. The default is to use the IdentityNet only. The ControlNet models include pose skeleton, canny, and depth. You can adjust the strength of each ControlNet model to control the generation process.
4. Enter a text prompt, as done in normal text-to-image models.
5. Click the <b>Submit</b> button to begin customization.
6. Share your customized photo with your friends and enjoy! 😊"""
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024instantid,
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2401.07519},
year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
"""
tips = r"""
### Usage tips of InstantID
1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."
2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
3. If you find that text control is not as expected, decrease Adapter strength.
4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
"""
css = """
.gradio-container {width: 85% !important}
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
# upload face image
face_file = gr.Image(
label="Upload a photo of your face", type="filepath"
)
# optional: upload a reference pose image
pose_file = gr.Image(
label="Upload a reference pose image (Optional)",
type="filepath",
)
# prompt
prompt = gr.Textbox(
label="Prompt",
info="Give simple prompt is enough to achieve good face fidelity",
placeholder="A photo of a person",
value="",
)
submit = gr.Button("Submit", variant="primary")
enable_LCM = gr.Checkbox(
label="Enable Fast Inference with LCM", value=enable_lcm_arg,
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
)
style = gr.Dropdown(
label="Style template",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
)
# strength
identitynet_strength_ratio = gr.Slider(
label="IdentityNet strength (for fidelity)",
minimum=0,
maximum=1.5,
step=0.05,
value=0.80,
)
adapter_strength_ratio = gr.Slider(
label="Image adapter strength (for detail)",
minimum=0,
maximum=1.5,
step=0.05,
value=0.80,
)
with gr.Accordion("Controlnet"):
controlnet_selection = gr.CheckboxGroup(
["canny", "depth"], label="Controlnet", value=["depth"],
info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process"
)
# pose_strength = gr.Slider(
# label="Pose strength",
# minimum=0,
# maximum=1.5,
# step=0.05,
# value=0.40,
# )
canny_strength = gr.Slider(
label="Canny strength",
minimum=0,
maximum=1.5,
step=0.05,
value=0.40,
)
depth_strength = gr.Slider(
label="Depth strength",
minimum=0,
maximum=1.5,
step=0.05,
value=0.40,
)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=5 if enable_lcm_arg else 30,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=0.0 if enable_lcm_arg else 5.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
schedulers = [
"DEISMultistepScheduler",
"HeunDiscreteScheduler",
"EulerDiscreteScheduler",
"DPMSolverMultistepScheduler",
"DPMSolverMultistepScheduler-Karras",
"DPMSolverMultistepScheduler-Karras-SDE",
]
scheduler = gr.Dropdown(
label="Schedulers",
choices=schedulers,
value="EulerDiscreteScheduler",
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
with gr.Column(scale=1):
gallery = gr.Image(label="Generated Images")
usage_tips = gr.Markdown(
label="InstantID Usage Tips", value=tips, visible=False
)
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[
face_file,
pose_file,
prompt,
negative_prompt,
style,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
#pose_strength,
canny_strength,
depth_strength,
controlnet_selection,
guidance_scale,
seed,
scheduler,
enable_LCM,
enhance_face_region,
],
outputs=[gallery, usage_tips],
)
enable_LCM.input(
fn=toggle_lcm_ui,
inputs=[enable_LCM],
outputs=[num_steps, guidance_scale],
queue=False,
)
gr.Examples(
examples=get_example(),
inputs=[face_file, pose_file, prompt, style, negative_prompt],
fn=run_for_examples,
outputs=[gallery, usage_tips],
cache_examples=True,
)
gr.Markdown(article)
demo.queue(api_open=False)
demo.launch(share=True) |