Spaces:
Running
on
Zero
Running
on
Zero
ResearcherXman
commited on
Commit
·
43c2435
1
Parent(s):
fc43999
update
Browse files
app.py
CHANGED
@@ -24,31 +24,6 @@ from controlnet_aux import OpenposeDetector
|
|
24 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
25 |
import gradio as gr
|
26 |
|
27 |
-
def get_depth_map(image):
|
28 |
-
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
29 |
-
with torch.no_grad(), torch.autocast("cuda"):
|
30 |
-
depth_map = depth_estimator(image).predicted_depth
|
31 |
-
|
32 |
-
depth_map = torch.nn.functional.interpolate(
|
33 |
-
depth_map.unsqueeze(1),
|
34 |
-
size=(1024, 1024),
|
35 |
-
mode="bicubic",
|
36 |
-
align_corners=False,
|
37 |
-
)
|
38 |
-
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
39 |
-
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
40 |
-
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
41 |
-
image = torch.cat([depth_map] * 3, dim=1)
|
42 |
-
|
43 |
-
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
44 |
-
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
45 |
-
return image
|
46 |
-
|
47 |
-
def get_canny_image(image, t1=100, t2=200):
|
48 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
49 |
-
edges = cv2.Canny(image, t1, t2)
|
50 |
-
return Image.fromarray(edges, "L")
|
51 |
-
|
52 |
# global variable
|
53 |
MAX_SEED = np.iinfo(np.int32).max
|
54 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -104,6 +79,31 @@ controlnet_depth = ControlNetModel.from_pretrained(
|
|
104 |
controlnet_depth_model, torch_dtype=dtype
|
105 |
).to(device)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
controlnet_map = {
|
108 |
"pose": controlnet_pose,
|
109 |
"canny": controlnet_canny,
|
|
|
24 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
25 |
import gradio as gr
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# global variable
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
79 |
controlnet_depth_model, torch_dtype=dtype
|
80 |
).to(device)
|
81 |
|
82 |
+
def get_depth_map(image):
|
83 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
84 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
85 |
+
depth_map = depth_estimator(image).predicted_depth
|
86 |
+
|
87 |
+
depth_map = torch.nn.functional.interpolate(
|
88 |
+
depth_map.unsqueeze(1),
|
89 |
+
size=(1024, 1024),
|
90 |
+
mode="bicubic",
|
91 |
+
align_corners=False,
|
92 |
+
)
|
93 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
94 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
95 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
96 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
97 |
+
|
98 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
99 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
100 |
+
return image
|
101 |
+
|
102 |
+
def get_canny_image(image, t1=100, t2=200):
|
103 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
104 |
+
edges = cv2.Canny(image, t1, t2)
|
105 |
+
return Image.fromarray(edges, "L")
|
106 |
+
|
107 |
controlnet_map = {
|
108 |
"pose": controlnet_pose,
|
109 |
"canny": controlnet_canny,
|