Spaces:
Running
Running
File size: 762 Bytes
8e2c54a 0f442d1 8e2c54a 222e0a9 8e2c54a 222e0a9 0f442d1 222e0a9 8e2c54a 222e0a9 8e2c54a 222e0a9 8e2c54a 0f442d1 8e2c54a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import pipeline
# Load the emotion detection pipeline
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
def predict_emotion(text):
result = emotion_pipeline(text)[0]
label = result["label"]
score = result["score"]
return f"🧠 Emotion: {label.upper()} ({score:.2f})"
# Gradio Interface
demo = gr.Interface(
fn=predict_emotion,
inputs=gr.Textbox(lines=3, placeholder="Type something emotional..."),
outputs="text",
title="🎭 LM Studios Emotion Detector",
description="Now with real emotional awareness: detects joy, anger, sadness, fear, love, and surprise.",
theme="default",
flagging_mode="never"
)
demo.launch()
|