Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
from sklearn.naive_bayes import MultinomialNB
|
4 |
+
|
5 |
+
# Training data
|
6 |
+
data = [
|
7 |
+
("I love this movie!", "positive"),
|
8 |
+
("This is terrible.", "negative"),
|
9 |
+
("What a great experience!", "positive"),
|
10 |
+
("I hate waiting in line.", "negative"),
|
11 |
+
("The weather is nice today.", "positive"),
|
12 |
+
("I'm so disappointed.", "negative"),
|
13 |
+
("It was okay, not great.", "negative"),
|
14 |
+
("Fantastic service!", "positive"),
|
15 |
+
("Worst day ever.", "negative"),
|
16 |
+
("Such a beautiful moment.", "positive"),
|
17 |
+
]
|
18 |
+
|
19 |
+
X = [sentence for sentence, label in data]
|
20 |
+
y = [label for sentence, label in data]
|
21 |
+
|
22 |
+
vectorizer = TfidfVectorizer()
|
23 |
+
X_vectorized = vectorizer.fit_transform(X)
|
24 |
+
|
25 |
+
model = MultinomialNB()
|
26 |
+
model.fit(X_vectorized, y)
|
27 |
+
|
28 |
+
# Prediction function
|
29 |
+
def predict_sentiment(text):
|
30 |
+
vector = vectorizer.transform([text])
|
31 |
+
prediction = model.predict(vector)[0]
|
32 |
+
if prediction == "positive":
|
33 |
+
return "β
POSITIVE π"
|
34 |
+
else:
|
35 |
+
return "β NEGATIVE π "
|
36 |
+
|
37 |
+
# Gradio Interface
|
38 |
+
demo = gr.Interface(
|
39 |
+
fn=predict_sentiment,
|
40 |
+
inputs=gr.Textbox(lines=3, placeholder="Type your sentence here..."),
|
41 |
+
outputs="text",
|
42 |
+
title="π¬ LM Studios Sentiment Detector",
|
43 |
+
description="Type something and see how it *feels*. This AI knows the tone of your message.",
|
44 |
+
theme="default",
|
45 |
+
flagging_mode="never",
|
46 |
+
live=False
|
47 |
+
)
|
48 |
+
|
49 |
+
demo.launch()
|