Spaces:
Running
Running
File size: 6,952 Bytes
44921ac c50c9d2 44921ac cd80277 0a85c1f cd80277 19d19d4 44921ac 19d19d4 44921ac 0a85c1f 44921ac cd80277 b6945c7 44921ac c50c9d2 cd80277 0a85c1f 44921ac 0a85c1f c50c9d2 44921ac c50c9d2 44921ac c50c9d2 44921ac c50c9d2 44921ac c50c9d2 44921ac c50c9d2 cd80277 c50c9d2 44921ac c50c9d2 44921ac c50c9d2 77c75da c50c9d2 77c75da c50c9d2 44921ac c50c9d2 44921ac 77c75da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import pandas as pd
import streamlit as st
# from annotated_text import annotated_text
from annotated_text.util import get_annotated_html
from streamlit_annotation_tools import text_labeler
from constants import (
APP_INTRO,
APP_TITLE,
EVAL_FUNCTION_INTRO,
EVAL_FUNCTION_PROPERTIES,
NER_TASK_EXPLAINER,
PREDICTION_ADDITION_INSTRUCTION,
SPAN_BASED_METRICS_EXPLANATION,
TOKEN_BASED_METRICS_EXPLANATION,
)
from evaluation_metrics import EVALUATION_METRICS
from predefined_example import EXAMPLES
from span_dataclass_converters import (
get_highlight_spans_from_ner_spans,
get_ner_spans_from_annotations,
)
@st.cache_resource
def get_examples_attributes(selected_example):
"Return example attributes so that they are not refreshed on every interaction"
return (
selected_example.text,
selected_example.gt_labels,
selected_example.gt_spans,
selected_example.predictions,
selected_example.tags,
)
if __name__ == "__main__":
st.set_page_config(layout="wide")
# st.title(APP_TITLE)
st.markdown(
f"<h1 style='text-align: center; color: grey;'>{APP_TITLE}</h1>",
unsafe_allow_html=True,
)
st.write(APP_INTRO)
explanation_tab, comparision_tab = st.tabs(["📙 Explanation", "⚖️ Comparison"])
with explanation_tab:
st.write(EVAL_FUNCTION_INTRO)
st.image("assets/eval_fnc_viz.png", caption="Evaluation Function Flow")
st.markdown(EVAL_FUNCTION_PROPERTIES)
st.markdown(NER_TASK_EXPLAINER)
st.subheader("Evaluation Metrics")
metric_names = "\n".join(
[
f"{index+1}. " + evaluation_metric.name
for index, evaluation_metric in enumerate(EVALUATION_METRICS)
]
)
st.markdown(
"The different evaluation metrics we have for the NER task are\n"
"\n"
f"{metric_names}"
)
st.markdown(
"These metrics can be broadly classified as 'Span Based' and 'Token Based' metrics."
)
st.markdown("### Span Based Metrics")
st.markdown(SPAN_BASED_METRICS_EXPLANATION)
st.markdown("### Token Based Metrics")
st.markdown(TOKEN_BASED_METRICS_EXPLANATION)
st.divider()
st.markdown(
"Now that you have read the basics of the metrics calculation, head to the comparision section to try out some examples!"
)
with comparision_tab:
# with st.container():
st.subheader("Ground Truth & Predictions") # , divider='rainbow')
selected_example = st.selectbox(
"Select an example text from the drop down below",
[example for example in EXAMPLES],
format_func=lambda ex: ex.text,
)
text, gt_labels, gt_spans, predictions, tags = get_examples_attributes(
selected_example
)
# annotated_text(
# get_highlight_spans_from_ner_spans(
# get_ner_spans_from_annotations(gt_labels), text
# )
# )
annotated_predictions = [
get_annotated_html(get_highlight_spans_from_ner_spans(ner_span, text))
for ner_span in predictions
]
predictions_df = pd.DataFrame(
{
# "ID": [f"Prediction_{index}" for index in range(len(predictions))],
"Prediction": annotated_predictions,
"ner_spans": predictions,
},
index=["Ground Truth"]
+ [f"Prediction_{index}" for index in range(len(predictions) - 1)],
)
# st.subheader("Predictions") # , divider='rainbow')
with st.expander("Click to Add Predictions"):
st.subheader("Adding predictions")
st.markdown(PREDICTION_ADDITION_INSTRUCTION)
st.write(
"Note: Only the spans of the selected label name are shown at a given instance. Click on the label to see the corresponding spans. (or view the json below)",
)
labels = text_labeler(text, gt_labels)
st.json(labels, expanded=False)
# if st.button("Add Prediction"):
# labels = text_labeler(text)
if st.button("Add!"):
spans = get_ner_spans_from_annotations(labels)
spans = sorted(spans, key=lambda span: span["start"])
predictions.append(spans)
annotated_predictions.append(
get_annotated_html(get_highlight_spans_from_ner_spans(spans, text))
)
predictions_df = pd.DataFrame(
{
# "ID": [f"Prediction_{index}" for index in range(len(predictions))],
"Prediction": annotated_predictions,
"ner_spans": predictions,
},
index=["Ground Truth"]
+ [f"Prediction_{index}" for index in range(len(predictions) - 1)],
)
print("added")
highlighted_predictions_df = predictions_df[["Prediction"]]
st.write(
highlighted_predictions_df.to_html(escape=False), unsafe_allow_html=True
)
st.divider()
### EVALUATION METRICS COMPARISION ###
st.subheader("Evaluation Metrics Comparision") # , divider='rainbow')
# metric_names = "\n".join(
# ["- " + evaluation_metric.name for evaluation_metric in EVALUATION_METRICS]
# )
st.markdown(
"The different evaluation metrics we have for the NER task are shown below, select the metrics to compare.\n"
# f"{metric_names}"
)
metrics_selection = [
(st.checkbox(evaluation_metric.name, value=True), evaluation_metric.name)
for evaluation_metric in EVALUATION_METRICS
]
metrics_to_show = list(
map(lambda x: x[1], filter(lambda x: x[0], metrics_selection))
)
with st.expander("View Predictions Details"):
st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True)
if st.button("Get Metrics!"):
for evaluation_metric in EVALUATION_METRICS:
predictions_df[evaluation_metric.name] = predictions_df.ner_spans.apply(
lambda ner_spans: evaluation_metric.get_evaluation_metric(
# metric_type=evaluation_metric_type,
gt_ner_span=gt_spans,
pred_ner_span=ner_spans,
text=text,
tags=tags,
)
)
metrics_df = predictions_df.drop(["ner_spans"], axis=1)
st.write(
metrics_df[["Prediction"] + metrics_to_show].to_html(escape=False),
unsafe_allow_html=True,
)
|