Spaces:
Running
Running
added exact span eval metric
Browse files- .gitignore +1 -0
- app.py +11 -8
- evaluation_metrics.py +84 -42
- predefined_example.py +4 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
app.py
CHANGED
@@ -4,7 +4,7 @@ from annotated_text import annotated_text
|
|
4 |
from annotated_text.util import get_annotated_html
|
5 |
from streamlit_annotation_tools import text_labeler
|
6 |
|
7 |
-
from evaluation_metrics import EVALUATION_METRICS
|
8 |
from predefined_example import EXAMPLES
|
9 |
from span_dataclass_converters import (
|
10 |
get_highlight_spans_from_ner_spans,
|
@@ -20,12 +20,13 @@ def get_examples_attributes(selected_example):
|
|
20 |
selected_example.gt_labels,
|
21 |
selected_example.gt_spans,
|
22 |
selected_example.predictions,
|
|
|
23 |
)
|
24 |
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
st.set_page_config(layout="wide")
|
28 |
-
st.title("NER
|
29 |
|
30 |
st.write(
|
31 |
"Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics."
|
@@ -40,7 +41,9 @@ if __name__ == "__main__":
|
|
40 |
format_func=lambda ex: ex.text,
|
41 |
)
|
42 |
|
43 |
-
text, gt_labels, gt_spans, predictions = get_examples_attributes(
|
|
|
|
|
44 |
|
45 |
annotated_text(
|
46 |
get_highlight_spans_from_ner_spans(
|
@@ -116,17 +119,17 @@ Add predictions to the list of predictions on which the evaluation metric will b
|
|
116 |
st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True)
|
117 |
|
118 |
if st.button("Get Metrics!"):
|
119 |
-
for
|
120 |
-
predictions_df[
|
121 |
-
lambda ner_spans: get_evaluation_metric(
|
122 |
-
metric_type=evaluation_metric_type,
|
123 |
gt_ner_span=gt_spans,
|
124 |
pred_ner_span=ner_spans,
|
125 |
text=text,
|
|
|
126 |
)
|
127 |
)
|
128 |
|
129 |
metrics_df = predictions_df.drop(["ner_spans"], axis=1)
|
130 |
|
131 |
st.write(metrics_df.to_html(escape=False), unsafe_allow_html=True)
|
132 |
-
print("compared")
|
|
|
4 |
from annotated_text.util import get_annotated_html
|
5 |
from streamlit_annotation_tools import text_labeler
|
6 |
|
7 |
+
from evaluation_metrics import EVALUATION_METRICS
|
8 |
from predefined_example import EXAMPLES
|
9 |
from span_dataclass_converters import (
|
10 |
get_highlight_spans_from_ner_spans,
|
|
|
20 |
selected_example.gt_labels,
|
21 |
selected_example.gt_spans,
|
22 |
selected_example.predictions,
|
23 |
+
selected_example.tags,
|
24 |
)
|
25 |
|
26 |
|
27 |
if __name__ == "__main__":
|
28 |
st.set_page_config(layout="wide")
|
29 |
+
st.title("NER Metrics Comparison")
|
30 |
|
31 |
st.write(
|
32 |
"Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics."
|
|
|
41 |
format_func=lambda ex: ex.text,
|
42 |
)
|
43 |
|
44 |
+
text, gt_labels, gt_spans, predictions, tags = get_examples_attributes(
|
45 |
+
selected_example
|
46 |
+
)
|
47 |
|
48 |
annotated_text(
|
49 |
get_highlight_spans_from_ner_spans(
|
|
|
119 |
st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True)
|
120 |
|
121 |
if st.button("Get Metrics!"):
|
122 |
+
for evaluation_metric in EVALUATION_METRICS:
|
123 |
+
predictions_df[evaluation_metric.name] = predictions_df.ner_spans.apply(
|
124 |
+
lambda ner_spans: evaluation_metric.get_evaluation_metric(
|
125 |
+
# metric_type=evaluation_metric_type,
|
126 |
gt_ner_span=gt_spans,
|
127 |
pred_ner_span=ner_spans,
|
128 |
text=text,
|
129 |
+
tags=tags,
|
130 |
)
|
131 |
)
|
132 |
|
133 |
metrics_df = predictions_df.drop(["ner_spans"], axis=1)
|
134 |
|
135 |
st.write(metrics_df.to_html(escape=False), unsafe_allow_html=True)
|
|
evaluation_metrics.py
CHANGED
@@ -1,49 +1,91 @@
|
|
|
|
|
|
1 |
from nervaluate import Evaluator
|
2 |
from sklearn.metrics import classification_report
|
3 |
|
4 |
from token_level_output import get_token_output_labels
|
5 |
|
6 |
-
EVALUATION_METRICS = [
|
7 |
-
"Span Based Evaluation with Partial Overlap",
|
8 |
-
"Token Based Evaluation with Micro Avg",
|
9 |
-
"Token Based Evaluation with Macro Avg",
|
10 |
-
]
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
from nervaluate import Evaluator
|
4 |
from sklearn.metrics import classification_report
|
5 |
|
6 |
from token_level_output import get_token_output_labels
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
class EvaluationMetric(ABC):
|
10 |
+
"""Base class defining the attributes & methods of an evaluation metric"""
|
11 |
+
|
12 |
+
name: str
|
13 |
+
description: str
|
14 |
+
|
15 |
+
@abstractmethod
|
16 |
+
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
|
17 |
+
pass
|
18 |
+
|
19 |
+
|
20 |
+
class PartialSpanOverlapMetric(EvaluationMetric):
|
21 |
+
def __init__(self) -> None:
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.name = "Span Based Evaluation with Partial Overlap"
|
25 |
+
self.description = ""
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
|
29 |
+
evaluator = Evaluator([gt_ner_span], [pred_ner_span], tags=tags)
|
30 |
+
return round(evaluator.evaluate()[0]["ent_type"]["f1"], 2)
|
31 |
+
|
32 |
+
|
33 |
+
class ExactSpanOverlapMetric(EvaluationMetric):
|
34 |
+
def __init__(self) -> None:
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.name = "Span Based Evaluation with Exact Overlap"
|
38 |
+
self.description = ""
|
39 |
|
40 |
+
@staticmethod
|
41 |
+
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
|
42 |
+
evaluator = Evaluator([gt_ner_span], [pred_ner_span], tags=tags)
|
43 |
+
return round(evaluator.evaluate()[0]["strict"]["f1"], 2)
|
44 |
+
|
45 |
+
|
46 |
+
class TokenMicroMetric(EvaluationMetric):
|
47 |
+
def __init__(self) -> None:
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.name = "Span Based Evaluation with Micro Average"
|
51 |
+
self.description = ""
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
|
55 |
+
return round(
|
56 |
+
classification_report(
|
57 |
+
get_token_output_labels(gt_ner_span, text),
|
58 |
+
get_token_output_labels(pred_ner_span, text),
|
59 |
+
labels=tags,
|
60 |
+
output_dict=True,
|
61 |
+
)["micro avg"]["f1-score"],
|
62 |
+
2,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
class TokenMacroMetric(EvaluationMetric):
|
67 |
+
def __init__(self) -> None:
|
68 |
+
super().__init__()
|
69 |
+
|
70 |
+
self.name = "Token Based Evaluation with Macro Average"
|
71 |
+
self.description = ""
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
|
75 |
+
return round(
|
76 |
+
classification_report(
|
77 |
+
get_token_output_labels(gt_ner_span, text),
|
78 |
+
get_token_output_labels(pred_ner_span, text),
|
79 |
+
labels=tags,
|
80 |
+
output_dict=True,
|
81 |
+
)["macro avg"]["f1-score"],
|
82 |
+
2,
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
EVALUATION_METRICS = [
|
87 |
+
PartialSpanOverlapMetric(),
|
88 |
+
ExactSpanOverlapMetric(),
|
89 |
+
TokenMicroMetric(),
|
90 |
+
TokenMacroMetric(),
|
91 |
+
]
|
predefined_example.py
CHANGED
@@ -21,6 +21,10 @@ class PredefinedExample:
|
|
21 |
def predictions(self):
|
22 |
return [self.gt_spans]
|
23 |
|
|
|
|
|
|
|
|
|
24 |
|
25 |
small_example = PredefinedExample(
|
26 |
text="The patient was diagnosed with bronchitis and was prescribed a mucolytic",
|
|
|
21 |
def predictions(self):
|
22 |
return [self.gt_spans]
|
23 |
|
24 |
+
@property
|
25 |
+
def tags(self):
|
26 |
+
return list(self.gt_labels.keys())
|
27 |
+
|
28 |
|
29 |
small_example = PredefinedExample(
|
30 |
text="The patient was diagnosed with bronchitis and was prescribed a mucolytic",
|