Spaces:
vztu
/
Runtime error

File size: 7,206 Bytes
2665db2
 
 
 
 
 
6bc03db
0c325be
2665db2
 
 
 
 
 
f318285
6bc03db
f318285
6bc03db
f318285
6bc03db
 
f318285
6bc03db
 
 
f318285
6bc03db
 
 
f318285
6bc03db
 
 
f318285
6bc03db
f318285
6bc03db
f318285
6bc03db
f318285
6bc03db
f318285
6bc03db
 
 
 
 
 
 
f318285
6bc03db
 
f318285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc03db
f318285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc03db
f318285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc03db
 
 
 
 
 
 
f318285
6bc03db
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
title: COVER
emoji: πŸƒ
colorFrom: blue
colorTo: yellow
sdk: gradio
sdk_version: 4.36.1
python_version: 3.9
app_file: app.py
pinned: false
license: mit
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# πŸ† [CVPRW 2024] [COVER](https://openaccess.thecvf.com/content/CVPR2024W/AI4Streaming/papers/He_COVER_A_Comprehensive_Video_Quality_Evaluator_CVPRW_2024_paper.pdf): A Comprehensive Video Quality Evaluator. 

πŸ† πŸ₯‡ **Winner solution for [Video Quality Assessment Challenge](https://codalab.lisn.upsaclay.fr/competitions/17340) at the 1st [AIS 2024](https://ai4streaming-workshop.github.io/) workshop @ CVPR 2024** 

Official Code for [CVPR Workshop 2024] Paper *"COVER: A Comprehensive Video Quality Evaluator"*. 
Official Code, Demo, Weights for the [Comprehensive Video Quality Evaluator (COVER)](https://openaccess.thecvf.com/content/CVPR2024W/AI4Streaming/papers/He_COVER_A_Comprehensive_Video_Quality_Evaluator_CVPRW_2024_paper.pdf).

- 29 May, 2024: We create a space for [COVER](https://huggingface.co/spaces/Sorakado/COVER) on Hugging Face.
- 09 May, 2024: We upload Code of [COVER](https://github.com/vztu/COVER).
- 12 Apr, 2024: COVER has been accepted by CVPR Workshop2024.

![visitors](https://visitor-badge.laobi.icu/badge?page_id=vztu/COVER) [![](https://img.shields.io/github/stars/vztu/COVER)](https://github.com/vztu/COVER)
[![State-of-the-Art](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/vztu/COVER)
<a href="https://huggingface.co/spaces/Sorakado/COVER"><img src="./figs/deploy-on-spaces-sm-dark.svg" alt="hugging face log"></a> 

## Introduction
- Existing UGC VQA models strive to quantify quality degradation mainly from technical aspect, with a few considering aesthetic or semantic aspects, but no model has addressed all three aspects simultaneously.
- The demand for high-resolution and high-frame-rate videos on social media platforms presents new challenges for VQA tasks, as they must ensure effectiveness while also meeting real-time requirements.

## the proposed COVER

*This inspires us to develop comprehensive and efficient model for UGC VQA task*

![Fig](./figs/approach.jpg)

### COVER

Results comparison:
|  Dataset: YT-UGC    | SROCC | KROCC | PLCC | RMSE | Run Time  |
| ----  |    ----   |   ----  |      ----     |   ----  | ---- |
| [**COVER**](https://github.com/vztu/COVER/release/Model/COVER.pth) | 0.9143 | 0.7413 | 0.9122 | 0.2519 | 79.37ms |
| TVQE (Wang *et al*, CVPRWS 2024) | 0.9150 | 0.7410 | 0.9182 | ------- | 705.30ms |
| Q-Align (Zhang *et al, CVPRWS 2024) | 0.9080 | 0.7340 | 0.9120 | ------- | 1707.06ms |
| SimpleVQA+ (Sun *et al, CVPRWS 2024) | 0.9060 | 0.7280 | 0.9110 | ------- | 245.51ms |

The run time is measured on an NVIDIA A100 GPU. A clip
of 30 frames of 4K resolution 3840Γ—2160 is used as input.

## Install

The repository can be installed via the following commands:
```shell
git clone https://github.com/vztu/COVER 
cd COVER 
pip install -e . 
mkdir pretrained_weights 
cd pretrained_weights 
wget https://github.com/vztu/COVER/release/Model/COVER.pth
cd ..
```


## Evaluation: Judge the Quality of Any Video

### Try on Demos
You can run a single command to judge the quality of the demo videos in comparison with videos in VQA datasets. 

```shell
    python evaluate_one_video.py -v ./demo/video_1.mp4
```

or 

```shell
    python evaluate_one_video.py -v ./demo/video_2.mp4
```

Or choose any video you like to predict its quality:


```shell
    python evaluate_one_video.py -v $YOUR_SPECIFIED_VIDEO_PATH$
```

### Outputs

The script can directly score the video's overall quality (considering all perspectives).

```shell
    python evaluate_one_video.py -v $YOUR_SPECIFIED_VIDEO_PATH$
```

The final output score is the sum of all perspectives.


## Evaluate on a Exsiting Video Dataset


```shell
    python evaluate_one_dataset.py -in $YOUR_SPECIFIED_DIR$ -out $OUTPUT_CSV_PATH$
```

## Evaluate on a Set of Unlabelled Videos


```shell
    python evaluate_a_set_of_videos.py -in $YOUR_SPECIFIED_DIR$ -out $OUTPUT_CSV_PATH$
```

The results are stored as `.csv` files in cover_predictions in your `OUTPUT_CSV_PATH`.

Please feel free to use COVER to pseudo-label your non-quality video datasets.


## Data Preparation

We have already converted the labels for most popular datasets you will need for Blind Video Quality Assessment,
and the download links for the **videos** are as follows:

:book: LSVQ: [Github](https://github.com/baidut/PatchVQ)

:book: KoNViD-1k: [Official Site](http://database.mmsp-kn.de/konvid-1k-database.html)

:book: LIVE-VQC: [Official Site](http://live.ece.utexas.edu/research/LIVEVQC)

:book: YouTube-UGC: [Official Site](https://media.withyoutube.com)

*(Please contact the original authors if the download links were unavailable.)*

After downloading, kindly put them under the `../datasets` or anywhere but remember to change the `data_prefix` respectively in the [config file](cover.yml).

# Training: Adapt COVER to your video quality dataset!

Now you can employ ***head-only/end-to-end transfer*** of COVER to get dataset-specific VQA prediction heads. 

```shell
    python transfer_learning.py -t $YOUR_SPECIFIED_DATASET_NAME$
```

For existing public datasets, type the following commands for respective ones:

- `python transfer_learning.py -t val-kv1k` for KoNViD-1k.
- `python transfer_learning.py -t val-ytugc` for YouTube-UGC.
- `python transfer_learning.py -t val-cvd2014` for CVD2014.
- `python transfer_learning.py -t val-livevqc` for LIVE-VQC.

As the backbone will not be updated here, the checkpoint saving process will only save the regression heads. To use it, simply replace the head weights with the official weights [COVER.pth](https://github.com/vztu/COVER/release/Model/COVER.pth).

We also support ***end-to-end*** fine-tune right now (by modifying the `num_epochs: 0` to `num_epochs: 15` in `./cover.yml`). It will require more memory cost and more storage cost for the weights (with full parameters) saved, but will result in optimal accuracy.

## Visualization

### WandB Training and Evaluation Curves

You can be monitoring your results on WandB!

## Acknowledgement

Thanks for every participant of the subjective studies!

## Citation

Should you find our work interesting and would like to cite it, please feel free to add these in your references! 

```bibtex
%AIS 2024 VQA challenge
@article{conde2024ais,
  title={AIS 2024 challenge on video quality assessment of user-generated content: Methods and results},
  author={Conde, Marcos V and Zadtootaghaj, Saman and Barman, Nabajeet and Timofte, Radu and He, Chenlong and Zheng, Qi and Zhu, Ruoxi and Tu, Zhengzhong and Wang, Haiqiang and Chen, Xiangguang and others},
  journal={arXiv preprint arXiv:2404.16205},
  year={2024}
}

%cover
@article{cover2024cpvrws,
  title={COVER: A comprehensive video quality evaluator},
  author={Chenlong, He and Qi, Zheng and Ruoxi, Zhu and Xiaoyang, Zeng and
Yibo, Fan and Zhengzhong, Tu},
  journal={In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2024}
}
```