Spaces:
vztu
/
Runtime error

vztu commited on
Commit
6bc03db
β€’
1 Parent(s): 86fcb2d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -36
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: πŸƒ
4
  colorFrom: blue
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 4.31.5
8
  app_file: app.py
9
  pinned: false
10
  license: mit
@@ -12,38 +12,43 @@ license: mit
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
 
15
- # COVER
16
 
17
- Official Code for [CVPR Workshop2024] Paper *"COVER: A Comprehensive Video Quality Evaluator"*.
18
- Official Code, Demo, Weights for the [Comprehensive Video Quality Evaluator (COVER)].
19
-
20
- # Todo:: update date, hugging face model below
21
- - xx xxx, 2024: We upload weights of [COVER](https://github.com/vztu/COVER/release/Model/COVER.pth) and [COVER++](TobeContinue) to Hugging Face models.
22
- - xx xxx, 2024: We upload Code of [COVER](https://github.com/vztu/COVER)
23
- - 12 Apr, 2024: COVER has been accepted by CVPR Workshop2024.
24
 
 
 
25
 
26
- # Todo:: update [visitors](link) below
27
- ![visitors](https://visitor-badge.laobi.icu/badge?page_id=teowu/TobeContinue) [![](https://img.shields.io/github/stars/vztu/COVER)](https://github.com/vztu/COVER)
28
- [![State-of-the-Art](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/QualityAssessment/COVER)
29
- <a href="https://colab.research.google.com/github/taskswithcode/COVER/blob/master/TWCCOVER.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
30
-
31
 
32
- # Todo:: update predicted score for YT-UGC challenge dataset specified by AIS
33
- **COVER** Pseudo-labelled Quality scores of [YT-UGC](https://www.deepmind.com/open-source/kinetics): [CSV](https://github.com/QualityAssessment/COVER/raw/master/cover_predictions/kinetics_400_1.csv)
 
34
 
 
 
 
35
 
36
- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/disentangling-aesthetic-and-technical-effects/video-quality-assessment-on-youtube-ugc)](https://paperswithcode.com/sota/video-quality-assessment-on-youtube-ugc?p=disentangling-aesthetic-and-technical-effects)
37
 
 
38
 
39
- ## Introduction
40
- # Todo:: Add Introduction here
41
 
42
- ### the proposed COVER
43
 
44
- *This inspires us to*
 
 
 
 
 
 
45
 
46
- ![Fig](figs/approach.png)
 
47
 
48
  ## Install
49
 
@@ -83,15 +88,13 @@ Or choose any video you like to predict its quality:
83
 
84
  ### Outputs
85
 
86
- #### ITU-Standarized Overall Video Quality Score
87
-
88
  The script can directly score the video's overall quality (considering all perspectives).
89
 
90
  ```shell
91
  python evaluate_one_video.py -v $YOUR_SPECIFIED_VIDEO_PATH$
92
  ```
93
 
94
- The final output score is averaged among all perspectives.
95
 
96
 
97
  ## Evaluate on a Exsiting Video Dataset
@@ -134,8 +137,6 @@ After downloading, kindly put them under the `../datasets` or anywhere but remem
134
 
135
  Now you can employ ***head-only/end-to-end transfer*** of COVER to get dataset-specific VQA prediction heads.
136
 
137
- We still recommend **head-only** transfer. As we have evaluated in the paper, this method has very similar performance with *end-to-end transfer* (usually 1%~2% difference), but will require **much less** GPU memory, as follows:
138
-
139
  ```shell
140
  python transfer_learning.py -t $YOUR_SPECIFIED_DATASET_NAME$
141
  ```
@@ -147,14 +148,10 @@ For existing public datasets, type the following commands for respective ones:
147
  - `python transfer_learning.py -t val-cvd2014` for CVD2014.
148
  - `python transfer_learning.py -t val-livevqc` for LIVE-VQC.
149
 
150
-
151
- As the backbone will not be updated here, the checkpoint saving process will only save the regression heads with only `398KB` file size (compared with `200+MB` size of the full model). To use it, simply replace the head weights with the official weights [COVER.pth](https://github.com/vztu/COVER/release/Model/COVER.pth).
152
 
153
  We also support ***end-to-end*** fine-tune right now (by modifying the `num_epochs: 0` to `num_epochs: 15` in `./cover.yml`). It will require more memory cost and more storage cost for the weights (with full parameters) saved, but will result in optimal accuracy.
154
 
155
- Fine-tuning curves by authors can be found here: [Official Curves](https://wandb.ai/timothyhwu/COVER) for reference.
156
-
157
-
158
  ## Visualization
159
 
160
  ### WandB Training and Evaluation Curves
@@ -169,9 +166,21 @@ Thanks for every participant of the subjective studies!
169
 
170
  Should you find our work interesting and would like to cite it, please feel free to add these in your references!
171
 
172
-
173
- # Todo, add bibtex of cover below
174
  ```bibtex
175
- %cover
 
 
 
 
 
 
176
 
177
- ```
 
 
 
 
 
 
 
 
 
4
  colorFrom: blue
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 4.36.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
 
15
+ # πŸ† [CVPRW 2024] [COVER](https://openaccess.thecvf.com/content/CVPR2024W/AI4Streaming/papers/He_COVER_A_Comprehensive_Video_Quality_Evaluator_CVPRW_2024_paper.pdf): A Comprehensive Video Quality Evaluator.
16
 
17
+ πŸ† πŸ₯‡ **Winner solution for [Video Quality Assessment Challenge](https://codalab.lisn.upsaclay.fr/competitions/17340) at the 1st [AIS 2024](https://ai4streaming-workshop.github.io/) workshop @ CVPR 2024**
 
 
 
 
 
 
18
 
19
+ Official Code for [CVPR Workshop 2024] Paper *"COVER: A Comprehensive Video Quality Evaluator"*.
20
+ Official Code, Demo, Weights for the [Comprehensive Video Quality Evaluator (COVER)](https://openaccess.thecvf.com/content/CVPR2024W/AI4Streaming/papers/He_COVER_A_Comprehensive_Video_Quality_Evaluator_CVPRW_2024_paper.pdf).
21
 
22
+ - 29 May, 2024: We create a space for [COVER](https://huggingface.co/spaces/Sorakado/COVER) on Hugging Face.
23
+ - 09 May, 2024: We upload Code of [COVER](https://github.com/vztu/COVER).
24
+ - 12 Apr, 2024: COVER has been accepted by CVPR Workshop2024.
 
 
25
 
26
+ ![visitors](https://visitor-badge.laobi.icu/badge?page_id=vztu/COVER) [![](https://img.shields.io/github/stars/vztu/COVER)](https://github.com/vztu/COVER)
27
+ [![State-of-the-Art](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/vztu/COVER)
28
+ <a href="https://huggingface.co/spaces/Sorakado/COVER"><img src="./figs/deploy-on-spaces-sm-dark.svg" alt="hugging face log"></a>
29
 
30
+ ## Introduction
31
+ - Existing UGC VQA models strive to quantify quality degradation mainly from technical aspect, with a few considering aesthetic or semantic aspects, but no model has addressed all three aspects simultaneously.
32
+ - The demand for high-resolution and high-frame-rate videos on social media platforms presents new challenges for VQA tasks, as they must ensure effectiveness while also meeting real-time requirements.
33
 
34
+ ## the proposed COVER
35
 
36
+ *This inspires us to develop comprehensive and efficient model for UGC VQA task*
37
 
38
+ ![Fig](./figs/approach.jpg)
 
39
 
40
+ ### COVER
41
 
42
+ Results comparison:
43
+ | Dataset: YT-UGC | SROCC | KROCC | PLCC | RMSE | Run Time |
44
+ | ---- | ---- | ---- | ---- | ---- | ---- |
45
+ | [**COVER**](https://github.com/vztu/COVER/release/Model/COVER.pth) | 0.9143 | 0.7413 | 0.9122 | 0.2519 | 79.37ms |
46
+ | TVQE (Wang *et al*, CVPRWS 2024) | 0.9150 | 0.7410 | 0.9182 | ------- | 705.30ms |
47
+ | Q-Align (Zhang *et al, CVPRWS 2024) | 0.9080 | 0.7340 | 0.9120 | ------- | 1707.06ms |
48
+ | SimpleVQA+ (Sun *et al, CVPRWS 2024) | 0.9060 | 0.7280 | 0.9110 | ------- | 245.51ms |
49
 
50
+ The run time is measured on an NVIDIA A100 GPU. A clip
51
+ of 30 frames of 4K resolution 3840Γ—2160 is used as input.
52
 
53
  ## Install
54
 
 
88
 
89
  ### Outputs
90
 
 
 
91
  The script can directly score the video's overall quality (considering all perspectives).
92
 
93
  ```shell
94
  python evaluate_one_video.py -v $YOUR_SPECIFIED_VIDEO_PATH$
95
  ```
96
 
97
+ The final output score is the sum of all perspectives.
98
 
99
 
100
  ## Evaluate on a Exsiting Video Dataset
 
137
 
138
  Now you can employ ***head-only/end-to-end transfer*** of COVER to get dataset-specific VQA prediction heads.
139
 
 
 
140
  ```shell
141
  python transfer_learning.py -t $YOUR_SPECIFIED_DATASET_NAME$
142
  ```
 
148
  - `python transfer_learning.py -t val-cvd2014` for CVD2014.
149
  - `python transfer_learning.py -t val-livevqc` for LIVE-VQC.
150
 
151
+ As the backbone will not be updated here, the checkpoint saving process will only save the regression heads. To use it, simply replace the head weights with the official weights [COVER.pth](https://github.com/vztu/COVER/release/Model/COVER.pth).
 
152
 
153
  We also support ***end-to-end*** fine-tune right now (by modifying the `num_epochs: 0` to `num_epochs: 15` in `./cover.yml`). It will require more memory cost and more storage cost for the weights (with full parameters) saved, but will result in optimal accuracy.
154
 
 
 
 
155
  ## Visualization
156
 
157
  ### WandB Training and Evaluation Curves
 
166
 
167
  Should you find our work interesting and would like to cite it, please feel free to add these in your references!
168
 
 
 
169
  ```bibtex
170
+ %AIS 2024 VQA challenge
171
+ @article{conde2024ais,
172
+ title={AIS 2024 challenge on video quality assessment of user-generated content: Methods and results},
173
+ author={Conde, Marcos V and Zadtootaghaj, Saman and Barman, Nabajeet and Timofte, Radu and He, Chenlong and Zheng, Qi and Zhu, Ruoxi and Tu, Zhengzhong and Wang, Haiqiang and Chen, Xiangguang and others},
174
+ journal={arXiv preprint arXiv:2404.16205},
175
+ year={2024}
176
+ }
177
 
178
+ %cover
179
+ @article{cover2024cpvrws,
180
+ title={COVER: A comprehensive video quality evaluator},
181
+ author={Chenlong, He and Qi, Zheng and Ruoxi, Zhu and Xiaoyang, Zeng and
182
+ Yibo, Fan and Zhengzhong, Tu},
183
+ journal={In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
184
+ year={2024}
185
+ }
186
+ ```