Spaces:
Runtime error
Runtime error
twitter iframe
#3
by
zhihuang
- opened
- app.py +2 -0
- home.py +12 -1
- text2image.py +54 -13
- tweet_eval_retrieval_twlnk.tsv +0 -0
- zeroshot.py +0 -0
app.py
CHANGED
@@ -6,6 +6,7 @@ from PIL import Image
|
|
6 |
import requests
|
7 |
import transformers
|
8 |
import text2image
|
|
|
9 |
import tokenizers
|
10 |
from io import BytesIO
|
11 |
import streamlit as st
|
@@ -24,6 +25,7 @@ st.sidebar.title("Explore our PLIP Demo")
|
|
24 |
PAGES = {
|
25 |
"Introduction": home,
|
26 |
"Text to Image": text2image,
|
|
|
27 |
}
|
28 |
|
29 |
page = st.sidebar.radio("", list(PAGES.keys()))
|
|
|
6 |
import requests
|
7 |
import transformers
|
8 |
import text2image
|
9 |
+
import zeroshot
|
10 |
import tokenizers
|
11 |
from io import BytesIO
|
12 |
import streamlit as st
|
|
|
25 |
PAGES = {
|
26 |
"Introduction": home,
|
27 |
"Text to Image": text2image,
|
28 |
+
"Image Prediction": zeroshot,
|
29 |
}
|
30 |
|
31 |
page = st.sidebar.radio("", list(PAGES.keys()))
|
home.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from pathlib import Path
|
2 |
import streamlit as st
|
|
|
3 |
|
4 |
|
5 |
def read_markdown_file(markdown_file):
|
@@ -8,4 +9,14 @@ def read_markdown_file(markdown_file):
|
|
8 |
|
9 |
def app():
|
10 |
intro_markdown = read_markdown_file("introduction.md")
|
11 |
-
st.markdown(intro_markdown, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
import streamlit as st
|
3 |
+
import streamlit.components.v1 as components
|
4 |
|
5 |
|
6 |
def read_markdown_file(markdown_file):
|
|
|
9 |
|
10 |
def app():
|
11 |
intro_markdown = read_markdown_file("introduction.md")
|
12 |
+
st.markdown(intro_markdown, unsafe_allow_html=True)
|
13 |
+
|
14 |
+
st.text('An example of twitter:')
|
15 |
+
components.html('''
|
16 |
+
<blockquote class="twitter-tweet">
|
17 |
+
<a href="https://twitter.com/xxx/status/1580753362059788288"></a>
|
18 |
+
</blockquote>
|
19 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
|
20 |
+
</script>
|
21 |
+
''',
|
22 |
+
height=600)
|
text2image.py
CHANGED
@@ -4,19 +4,17 @@ from plip_support import embed_text
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import requests
|
7 |
-
import transformers
|
8 |
import tokenizers
|
9 |
from io import BytesIO
|
10 |
-
import streamlit as st
|
11 |
-
from transformers import CLIPModel
|
12 |
-
import clip
|
13 |
import torch
|
14 |
from transformers import (
|
15 |
VisionTextDualEncoderModel,
|
16 |
AutoFeatureExtractor,
|
17 |
-
AutoTokenizer
|
|
|
|
|
18 |
)
|
19 |
-
|
20 |
|
21 |
|
22 |
def embed_texts(model, texts, processor):
|
@@ -51,7 +49,8 @@ def load_path_clip():
|
|
51 |
def app():
|
52 |
st.title('PLIP Image Search')
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
model, processor = load_path_clip()
|
57 |
|
@@ -59,16 +58,58 @@ def app():
|
|
59 |
|
60 |
query = st.text_input('Search Query', '')
|
61 |
|
62 |
-
|
63 |
if query:
|
64 |
|
65 |
text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
|
66 |
|
67 |
text_embedding = text_embedding/np.linalg.norm(text_embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
best_id = np.argmax(text_embedding.dot(image_embedding.T))
|
70 |
-
url = (plip_dataset.iloc[best_id]["imageURL"])
|
71 |
|
72 |
-
response = requests.get(url)
|
73 |
-
img = Image.open(BytesIO(response.content))
|
74 |
-
st.image(img)
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import requests
|
|
|
7 |
import tokenizers
|
8 |
from io import BytesIO
|
|
|
|
|
|
|
9 |
import torch
|
10 |
from transformers import (
|
11 |
VisionTextDualEncoderModel,
|
12 |
AutoFeatureExtractor,
|
13 |
+
AutoTokenizer,
|
14 |
+
CLIPModel,
|
15 |
+
AutoProcessor
|
16 |
)
|
17 |
+
import streamlit.components.v1 as components
|
18 |
|
19 |
|
20 |
def embed_texts(model, texts, processor):
|
|
|
49 |
def app():
|
50 |
st.title('PLIP Image Search')
|
51 |
|
52 |
+
plip_imgURL = pd.read_csv("tweet_eval_retrieval.tsv", sep="\t")
|
53 |
+
plip_weblink = pd.read_csv("tweet_eval_retrieval_twlnk.tsv", sep="\t")
|
54 |
|
55 |
model, processor = load_path_clip()
|
56 |
|
|
|
58 |
|
59 |
query = st.text_input('Search Query', '')
|
60 |
|
|
|
61 |
if query:
|
62 |
|
63 |
text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
|
64 |
|
65 |
text_embedding = text_embedding/np.linalg.norm(text_embedding)
|
66 |
+
|
67 |
+
# Sort IDs by cosine-similarity from high to low
|
68 |
+
similarity_scores = text_embedding.dot(image_embedding.T)
|
69 |
+
id_sorted = np.argsort(similarity_scores)[::-1]
|
70 |
+
|
71 |
+
|
72 |
+
best_id = id_sorted[0]
|
73 |
+
score = similarity_scores[best_id]
|
74 |
+
target_url = plip_imgURL.iloc[best_id]["imageURL"]
|
75 |
+
target_weblink = plip_weblink.iloc[best_id]["weblink"]
|
76 |
+
|
77 |
+
st.caption('Most relevant image (similarity = %.4f)' % score)
|
78 |
+
#response = requests.get(target_url)
|
79 |
+
#img = Image.open(BytesIO(response.content))
|
80 |
+
#st.image(img)
|
81 |
+
|
82 |
+
|
83 |
+
components.html('''
|
84 |
+
<blockquote class="twitter-tweet">
|
85 |
+
<a href="%s"></a>
|
86 |
+
</blockquote>
|
87 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
|
88 |
+
</script>
|
89 |
+
''' % target_weblink,
|
90 |
+
height=600)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
|
|
|
|
|
115 |
|
|
|
|
|
|
tweet_eval_retrieval_twlnk.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zeroshot.py
ADDED
File without changes
|