Spaces:
Sleeping
Sleeping
File size: 5,011 Bytes
be63200 1dc9fa7 375bd04 9b3a016 1dc9fa7 79fbe78 a850fbe 9b3a016 444d231 7ef822f 9b3a016 444d231 9b3a016 bbbffce a850fbe be63200 5df5027 be63200 a850fbe be63200 1334178 be63200 de20d93 1612952 259cbe8 9b3a016 9e53bcd 9b3a016 be63200 9b3a016 a850fbe 1612952 a850fbe 9b3a016 444d231 1334178 9b3a016 444d231 be63200 9b3a016 be63200 9b3a016 be63200 a850fbe ffc1b97 1612952 ffc1b97 a850fbe be63200 a850fbe be63200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import os
import streamlit as st
from chat_profile import ChatProfileRoleEnum
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, TextLoader
from langchain_community.vectorstores.chroma import Chroma
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
__import__("pysqlite3")
import sys
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3")
# config page
st.set_page_config(page_title="InkChatGPT", page_icon="π")
# Set up memory
msgs = StreamlitChatMessageHistory(key="langchain_messages")
def load_and_process_file(file_data):
"""
Load and process the uploaded file.
Returns a vector store containing the embedded chunks of the file.
"""
file_name = os.path.join("./", file_data.name)
with open(file_name, "wb") as f:
f.write(file_data.getvalue())
_, extension = os.path.splitext(file_name)
# Load the file using the appropriate loader
if extension == ".pdf":
loader = PyPDFLoader(file_name)
elif extension == ".docx":
loader = Docx2txtLoader(file_name)
elif extension == ".txt":
loader = TextLoader(file_name)
else:
st.error("This document format is not supported!")
return None
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings(api_key=st.session_state.api_key)
vector_store = Chroma.from_documents(chunks, embeddings)
return vector_store
def main():
"""
The main function that runs the Streamlit app.
"""
if not st.session_state.api_key:
st.info("Please add your OpenAI API key to continue.")
if len(msgs.messages) == 0:
msgs.add_ai_message(
"""
Hello, how can I help you?
You can upload a document and chat with me to ask questions related to its content.
"""
)
# Render current messages from StreamlitChatMessageHistory
for msg in msgs.messages:
st.chat_message(msg.type).write(msg.content)
# If user inputs a new prompt, generate and draw a new response
if question := st.chat_input(
placeholder="Chat with your document",
disabled=(not st.session_state.api_key),
):
st.chat_message(ChatProfileRoleEnum.Human).write(question)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are an AI chatbot having a conversation with a human."),
MessagesPlaceholder(variable_name="history"),
(ChatProfileRoleEnum.Human, f"{question}"),
]
)
llm = ChatOpenAI(
api_key=st.session_state.api_key,
temperature=0.0,
model_name="gpt-3.5-turbo",
)
chain = prompt | llm
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: msgs,
input_messages_key="question",
history_messages_key="history",
)
# Note: new messages are saved to history automatically by Langchain during run
config = {"configurable": {"session_id": "any"}}
response = chain_with_history.invoke({"question": question}, config)
st.chat_message(ChatProfileRoleEnum.AI).write(response.content)
def build_sidebar():
with st.sidebar:
st.subheader("π InkChatGPT")
openai_api_key = st.text_input(
"OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key",
)
st.session_state.api_key = openai_api_key
with st.form("my_form"):
uploaded_file = st.file_uploader(
"Select a file", type=["pdf", "docx", "txt"], key="file_uploader"
)
add_file = st.form_submit_button(
"Process File",
disabled=(not uploaded_file and not openai_api_key),
)
if (
add_file
and uploaded_file
and st.session_state.api_key.startswith("sk-")
):
with st.spinner("π Thinking..."):
vector_store = load_and_process_file(uploaded_file)
if vector_store:
msgs.add_ai_message(
f"""
File: `{uploaded_file.name}`, processed successfully!
Feel free to ask me any question.
"""
)
if __name__ == "__main__":
build_sidebar()
main()
|