Spaces:
Running
Running
Refactor app using RunnableWithMessageHistory with better Prompt tuning
Browse files- app.py +48 -88
- chat_profile.py +2 -22
app.py
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
|
4 |
-
from
|
5 |
-
from chat_profile import User, Assistant, ChatProfileRoleEnum
|
6 |
-
|
7 |
-
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, TextLoader
|
10 |
from langchain_community.vectorstores.chroma import Chroma
|
11 |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
import sys
|
15 |
-
|
16 |
-
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3")
|
17 |
-
|
18 |
st.set_page_config(page_title="InkChatGPT", page_icon="π")
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
def load_and_process_file(file_data):
|
22 |
"""
|
@@ -52,20 +51,6 @@ def load_and_process_file(file_data):
|
|
52 |
return vector_store
|
53 |
|
54 |
|
55 |
-
def initialize_chat_model(vector_store):
|
56 |
-
"""
|
57 |
-
Initialize the chat model with the given vector store.
|
58 |
-
Returns a ConversationalRetrievalChain instance.
|
59 |
-
"""
|
60 |
-
llm = ChatOpenAI(
|
61 |
-
model="gpt-3.5-turbo",
|
62 |
-
temperature=0,
|
63 |
-
openai_api_key=st.secrets.OPENAI_API_KEY,
|
64 |
-
)
|
65 |
-
retriever = vector_store.as_retriever()
|
66 |
-
return ConversationalRetrievalChain.from_llm(llm, retriever)
|
67 |
-
|
68 |
-
|
69 |
def main():
|
70 |
"""
|
71 |
The main function that runs the Streamlit app.
|
@@ -80,78 +65,51 @@ def main():
|
|
80 |
if not st.secrets.OPENAI_API_KEY:
|
81 |
st.info("Please add your OpenAI API key to continue.")
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
Assistant(message=assistant_message).build_message()
|
90 |
-
]
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
placeholder="Chat with your document",
|
94 |
disabled=(not openai_api_key),
|
95 |
):
|
96 |
-
st.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
Handles the user's question by generating a response and updating the chat history.
|
105 |
-
"""
|
106 |
-
crc = st.session_state.crc
|
107 |
-
|
108 |
-
if "history" not in st.session_state:
|
109 |
-
st.session_state["history"] = []
|
110 |
-
|
111 |
-
response = crc.run(
|
112 |
-
{
|
113 |
-
"question": question,
|
114 |
-
"chat_history": st.session_state["history"],
|
115 |
-
}
|
116 |
-
)
|
117 |
-
|
118 |
-
st.session_state["history"].append((question, response))
|
119 |
-
|
120 |
-
for msg in st.session_state.messages:
|
121 |
-
st.chat_message(msg.role).write(msg.content)
|
122 |
|
123 |
-
with st.chat_message(ChatProfileRoleEnum.Assistant):
|
124 |
-
stream_handler = StreamHandler(st.empty())
|
125 |
llm = ChatOpenAI(
|
126 |
openai_api_key=st.secrets.OPENAI_API_KEY,
|
127 |
-
|
128 |
-
|
129 |
)
|
130 |
-
response = llm.invoke(st.session_state.messages)
|
131 |
-
st.session_state.messages.append(
|
132 |
-
Assistant(message=response.content).build_message()
|
133 |
-
)
|
134 |
-
|
135 |
-
|
136 |
-
def display_chat_history():
|
137 |
-
"""
|
138 |
-
Displays the chat history in the Streamlit app.
|
139 |
-
"""
|
140 |
-
|
141 |
-
if "history" in st.session_state:
|
142 |
-
st.markdown("## Chat History")
|
143 |
-
for q, a in st.session_state["history"]:
|
144 |
-
st.markdown(f"**Question:** {q}")
|
145 |
-
st.write(a)
|
146 |
-
st.write("---")
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
if "history" in st.session_state:
|
154 |
-
del st.session_state["history"]
|
155 |
|
156 |
|
157 |
def build_sidebar():
|
@@ -170,10 +128,12 @@ def build_sidebar():
|
|
170 |
vector_store = load_and_process_file(uploaded_file)
|
171 |
|
172 |
if vector_store:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
177 |
)
|
178 |
|
179 |
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
|
4 |
+
from chat_profile import ChatProfileRoleEnum
|
|
|
|
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, TextLoader
|
7 |
from langchain_community.vectorstores.chroma import Chroma
|
8 |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
9 |
+
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
11 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
12 |
|
13 |
+
# config page
|
|
|
|
|
|
|
|
|
14 |
st.set_page_config(page_title="InkChatGPT", page_icon="π")
|
15 |
|
16 |
+
# Set up memory
|
17 |
+
msgs = StreamlitChatMessageHistory(key="langchain_messages")
|
18 |
+
|
19 |
|
20 |
def load_and_process_file(file_data):
|
21 |
"""
|
|
|
51 |
return vector_store
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def main():
|
55 |
"""
|
56 |
The main function that runs the Streamlit app.
|
|
|
65 |
if not st.secrets.OPENAI_API_KEY:
|
66 |
st.info("Please add your OpenAI API key to continue.")
|
67 |
|
68 |
+
if len(msgs.messages) == 0:
|
69 |
+
msgs.add_ai_message(
|
70 |
+
"""
|
71 |
+
Hello, how can I help you?
|
72 |
|
73 |
+
You can upload a document and chat with me to ask questions related to its content.
|
74 |
+
"""
|
75 |
+
)
|
|
|
|
|
76 |
|
77 |
+
# Render current messages from StreamlitChatMessageHistory
|
78 |
+
for msg in msgs.messages:
|
79 |
+
st.chat_message(msg.type).write(msg.content)
|
80 |
+
|
81 |
+
# If user inputs a new prompt, generate and draw a new response
|
82 |
+
if question := st.chat_input(
|
83 |
placeholder="Chat with your document",
|
84 |
disabled=(not openai_api_key),
|
85 |
):
|
86 |
+
st.chat_message(ChatProfileRoleEnum.Human).write(question)
|
87 |
+
prompt = ChatPromptTemplate.from_messages(
|
88 |
+
[
|
89 |
+
("system", "You are an AI chatbot having a conversation with a human."),
|
90 |
+
MessagesPlaceholder(variable_name="history"),
|
91 |
+
(ChatProfileRoleEnum.Human, f"{question}"),
|
92 |
+
]
|
93 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
|
|
95 |
llm = ChatOpenAI(
|
96 |
openai_api_key=st.secrets.OPENAI_API_KEY,
|
97 |
+
temperature=0.0,
|
98 |
+
model_name="gpt-3.5-turbo",
|
99 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
chain = prompt | llm
|
102 |
+
chain_with_history = RunnableWithMessageHistory(
|
103 |
+
chain,
|
104 |
+
lambda session_id: msgs,
|
105 |
+
input_messages_key="question",
|
106 |
+
history_messages_key="history",
|
107 |
+
)
|
108 |
|
109 |
+
# Note: new messages are saved to history automatically by Langchain during run
|
110 |
+
config = {"configurable": {"session_id": "any"}}
|
111 |
+
response = chain_with_history.invoke({"question": question}, config)
|
112 |
+
st.chat_message(ChatProfileRoleEnum.AI).write(response.content)
|
|
|
|
|
113 |
|
114 |
|
115 |
def build_sidebar():
|
|
|
128 |
vector_store = load_and_process_file(uploaded_file)
|
129 |
|
130 |
if vector_store:
|
131 |
+
msgs.add_ai_message(
|
132 |
+
f"""
|
133 |
+
File: `{uploaded_file.name}`, processed successfully!
|
134 |
+
|
135 |
+
Feel free to ask me any question.
|
136 |
+
"""
|
137 |
)
|
138 |
|
139 |
|
chat_profile.py
CHANGED
@@ -1,26 +1,6 @@
|
|
1 |
-
from langchain.schema import ChatMessage
|
2 |
from enum import Enum
|
3 |
|
4 |
|
5 |
class ChatProfileRoleEnum(str, Enum):
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
class ChatProfile:
|
11 |
-
def __init__(self, role: str, message: str):
|
12 |
-
self.role = role
|
13 |
-
self.message = message
|
14 |
-
|
15 |
-
def build_message(self) -> ChatMessage:
|
16 |
-
return ChatMessage(role=self.role, content=self.message)
|
17 |
-
|
18 |
-
|
19 |
-
class Assistant(ChatProfile):
|
20 |
-
def __init__(self, message: str):
|
21 |
-
super().__init__(ChatProfileRoleEnum.Assistant, message)
|
22 |
-
|
23 |
-
|
24 |
-
class User(ChatProfile):
|
25 |
-
def __init__(self, message: str):
|
26 |
-
super().__init__(ChatProfileRoleEnum.User, message)
|
|
|
|
|
1 |
from enum import Enum
|
2 |
|
3 |
|
4 |
class ChatProfileRoleEnum(str, Enum):
|
5 |
+
Human = "human"
|
6 |
+
AI = "ai"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|