Spaces:
Sleeping
Sleeping
Update backend.py
#30
by
AyushSankar13
- opened
- backend.py +113 -660
backend.py
CHANGED
|
@@ -1,683 +1,136 @@
|
|
| 1 |
-
|
| 2 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException,APIRouter, Request
|
| 3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
-
from pydantic import BaseModel
|
| 5 |
-
from typing import Optional
|
| 6 |
-
import pytesseract
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import io
|
| 9 |
-
import fitz
|
| 10 |
import base64
|
| 11 |
-
import
|
| 12 |
-
import pandas as pd
|
| 13 |
import re
|
| 14 |
-
import
|
| 15 |
-
import
|
| 16 |
-
from
|
| 17 |
-
from fastapi.responses import RedirectResponse
|
| 18 |
-
from fastapi.staticfiles import StaticFiles
|
| 19 |
-
import firebase_admin
|
| 20 |
-
from firebase_admin import credentials, firestore
|
| 21 |
-
from google.generativeai import generative_models
|
| 22 |
-
|
| 23 |
-
from api_key import GEMINI_API_KEY
|
| 24 |
-
from bert import analyze_with_clinicalBert, classify_disease_and_severity, extract_non_negated_keywords, analyze_measurements, detect_past_diseases
|
| 25 |
-
from disease_links import diseases as disease_links
|
| 26 |
-
from disease_steps import disease_next_steps
|
| 27 |
-
from disease_support import disease_doctor_specialty, disease_home_care
|
| 28 |
-
from past_reports import router as reports_router, db_fetch_reports
|
| 29 |
-
|
| 30 |
-
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 31 |
-
df = pd.read_csv("measurement.csv")
|
| 32 |
-
df.columns = df.columns.str.lower()
|
| 33 |
-
df['measurement'] = df['measurement'].str.lower()
|
| 34 |
-
|
| 35 |
-
app = FastAPI()
|
| 36 |
-
api = APIRouter(prefix="/api")
|
| 37 |
-
app.include_router(api)
|
| 38 |
-
|
| 39 |
-
EXTRACTED_TEXT_CACHE = ""
|
| 40 |
-
|
| 41 |
-
app.mount("/app", StaticFiles(directory="web", html=True), name="web")
|
| 42 |
-
app.include_router(reports_router)
|
| 43 |
-
|
| 44 |
-
app.add_middleware(
|
| 45 |
-
CORSMiddleware,
|
| 46 |
-
allow_origins=["*"],
|
| 47 |
-
allow_credentials=True,
|
| 48 |
-
allow_methods=["*"],
|
| 49 |
-
allow_headers=["*"],
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
raise ValueError("No Gemini API key found in environment or api_key.py")
|
| 60 |
-
genai.configure(api_key=gemini_api_key)
|
| 61 |
-
except Exception as e:
|
| 62 |
-
raise RuntimeError(f"Failed to configure Gemini API: {e}")
|
| 63 |
|
|
|
|
| 64 |
try:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
raise ValueError(
|
| 69 |
-
f"Firebase service account key not found. Looked for: {cred_path}. "
|
| 70 |
-
"Set FIREBASE_SERVICE_ACCOUNT_KEY_PATH or place firebase_key.json in project root."
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
cred = credentials.Certificate(cred_path)
|
| 74 |
-
firebase_admin.initialize_app(cred)
|
| 75 |
-
db = firestore.client()
|
| 76 |
-
except Exception as e:
|
| 77 |
-
raise RuntimeError(f"Failed to configure Firebase: {e}")
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# --- Pydantic Models for API Endpoints ---
|
| 81 |
-
class ChatRequest(BaseModel):
|
| 82 |
-
user_id: Optional[str] = "anonymous"
|
| 83 |
-
question: str
|
| 84 |
-
|
| 85 |
-
class ChatResponse(BaseModel):
|
| 86 |
-
answer: str
|
| 87 |
-
|
| 88 |
-
class TextRequest(BaseModel):
|
| 89 |
-
text: str
|
| 90 |
-
|
| 91 |
-
# --- System Prompt for Gemini ---
|
| 92 |
-
system_prompt_chat = """
|
| 93 |
-
*** Role: Medical Guidance Facilitator
|
| 94 |
-
*** Objective:
|
| 95 |
-
Analyze medical data, provide concise, evidence-based insights, and recommend actionable next steps for patient care. This includes suggesting local physicians or specialists within a user-specified mile radius, prioritizing in-network options when insurance information is available, and maintaining strict safety compliance with appropriate disclaimers.
|
| 96 |
-
*** Capabilities:
|
| 97 |
-
1. Report Analysis – Review and interpret findings in uploaded medical reports.
|
| 98 |
-
2. Historical Context – Compare current findings with any available previous reports.
|
| 99 |
-
3. Medical Q&A – Answer specific questions about the report using trusted medical sources.
|
| 100 |
-
4. Specialist Matching – Recommend relevant physician specialties for identified conditions.
|
| 101 |
-
5. Safety Protocols – Include a brief disclaimer encouraging users to verify information, confirm insurance coverage, and consult providers directly.
|
| 102 |
-
*** Response Structure:
|
| 103 |
-
Start with a direct answer to the user’s primary question (maximum 4 concise sentences, each on a new line).
|
| 104 |
-
If a physician/specialist is needed, recommend at least two local providers within the requested radius (include name, specialty, address, distance, and contact info).
|
| 105 |
-
If insurance details are available, indicate which physicians are in-network.
|
| 106 |
-
End with a short safety disclaimer.
|
| 107 |
-
***Input Fields:
|
| 108 |
-
Provided Document Text: {document_text}
|
| 109 |
-
User Question: {user_question}
|
| 110 |
-
Assistant Answer:
|
| 111 |
-
"""
|
| 112 |
-
|
| 113 |
-
def extract_images_from_pdf_bytes(pdf_bytes: bytes) -> list:
|
| 114 |
-
print("***Start of Code***")
|
| 115 |
-
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 116 |
-
images = []
|
| 117 |
-
for page in doc:
|
| 118 |
-
pix = page.get_pixmap()
|
| 119 |
-
buf = io.BytesIO()
|
| 120 |
-
buf.write(pix.tobytes("png"))
|
| 121 |
-
images.append(buf.getvalue())
|
| 122 |
-
return images
|
| 123 |
-
|
| 124 |
-
def clean_ocr_text(text: str) -> str:
|
| 125 |
-
text = text.replace("\x0c", " ")
|
| 126 |
-
text = text.replace("\u00a0", " ")
|
| 127 |
-
text = re.sub(r'(\d)\s*\.\s*(\d)', r'\1.\2', text)
|
| 128 |
-
text = re.sub(r'\s+', ' ', text)
|
| 129 |
-
return text.strip()
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def ocr_text_from_image(image_bytes: bytes) -> str:
|
| 133 |
-
base64_image = base64.b64encode(image_bytes).decode('utf-8')
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
'
|
| 138 |
-
}
|
| 139 |
-
|
| 140 |
-
prompt = "Could you read this document and just take all the text that is in it and just paste it back to me in text format. Open and read this document:"
|
| 141 |
-
|
| 142 |
-
response = model.generate_content(
|
| 143 |
-
[prompt, image_content]
|
| 144 |
)
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
ocr_full = ""
|
| 175 |
-
if filename.endswith(".pdf"):
|
| 176 |
-
pdf_bytes = await file.read()
|
| 177 |
-
image_bytes_list = extract_images_from_pdf_bytes(pdf_bytes)
|
| 178 |
-
else:
|
| 179 |
-
content = await file.read()
|
| 180 |
-
image_bytes_list = [content]
|
| 181 |
-
|
| 182 |
-
for img_bytes in image_bytes_list:
|
| 183 |
-
ocr_text = ocr_text_from_image(img_bytes)
|
| 184 |
-
ocr_full += ocr_text + "\n\n"
|
| 185 |
-
ocr_full = clean_ocr_text(ocr_full)
|
| 186 |
-
print(f"CALLING OCR FULL: {ocr_full}")
|
| 187 |
-
|
| 188 |
-
EXTRACTED_TEXT_CACHE = ocr_full
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
if model.lower() == "gemini":
|
| 192 |
-
return {"message": "Gemini model not available; please use BERT model."}
|
| 193 |
|
| 194 |
-
|
| 195 |
-
print(f"CALLING FOUND DISEASES: {found_diseases}")
|
| 196 |
-
past = detect_past_diseases(ocr_full)
|
| 197 |
-
print(f"CALLING PAST DISEASES: {past}")
|
| 198 |
|
| 199 |
-
for disease in found_diseases:
|
| 200 |
-
if disease in past:
|
| 201 |
-
severity = classify_disease_and_severity(disease)
|
| 202 |
-
detected_diseases.add(((f"{disease}(detected as historical condition, but still under risk.)"), severity))
|
| 203 |
-
print(f"DETECTED DISEASES(PAST): {detected_diseases}")
|
| 204 |
-
else:
|
| 205 |
-
severity = classify_disease_and_severity(disease)
|
| 206 |
-
detected_diseases.add((disease, severity))
|
| 207 |
-
print(f"DETECTED DISEASES: {detected_diseases}")
|
| 208 |
-
|
| 209 |
-
print("OCR TEXT:", ocr_text)
|
| 210 |
-
print("Detected diseases:", found_diseases)
|
| 211 |
-
ranges = analyze_measurements(ocr_full, df)
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
resolution = []
|
| 215 |
-
detected_ranges = []
|
| 216 |
-
for disease, severity in detected_diseases:
|
| 217 |
-
link = disease_links.get(disease.lower(), "https://www.webmd.com/")
|
| 218 |
-
next_steps = disease_next_steps.get(disease.lower(), ["Consult a doctor."])
|
| 219 |
-
specialist = disease_doctor_specialty.get(disease.lower(), "General Practitioner")
|
| 220 |
-
home_care = disease_home_care.get(disease.lower(), [])
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
"recommendations": next_steps,
|
| 226 |
-
"treatment_suggestions": f"Consult a specialist: {specialist}",
|
| 227 |
-
"home_care_guidance": home_care,
|
| 228 |
-
"info_link": link
|
| 229 |
-
|
| 230 |
-
})
|
| 231 |
-
|
| 232 |
-
for i in ranges:
|
| 233 |
-
condition = i[0]
|
| 234 |
-
measurement = i[1]
|
| 235 |
-
unit = i[2]
|
| 236 |
-
severity = i[3]
|
| 237 |
-
value = i[4]
|
| 238 |
-
range_value = i[5] # renamed to avoid overwriting Python's built-in "range"
|
| 239 |
-
|
| 240 |
-
link_range = disease_links.get(condition.lower(), "https://www.webmd.com/")
|
| 241 |
-
next_steps_range = disease_next_steps.get(condition.lower(), ['Consult a doctor'])
|
| 242 |
-
specialist_range = disease_doctor_specialty.get(condition.lower(), "General Practitioner")
|
| 243 |
-
home_care_range = disease_home_care.get(condition.lower(), [])
|
| 244 |
-
print(f"HELLO!: {measurement}")
|
| 245 |
-
|
| 246 |
-
condition_version = condition.upper()
|
| 247 |
-
severity_version = severity.upper()
|
| 248 |
-
|
| 249 |
-
resolution.append({
|
| 250 |
-
"findings": f"{condition_version} -- {measurement}",
|
| 251 |
-
"severity": f"{value} {unit} - {severity_version}",
|
| 252 |
-
"recommendations": next_steps_range,
|
| 253 |
-
"treatment_suggestions": f"Consult a specialist: {specialist_range}",
|
| 254 |
-
"home_care_guidance": home_care_range,
|
| 255 |
-
"info_link": link_range
|
| 256 |
-
})
|
| 257 |
-
|
| 258 |
-
print(ocr_full)
|
| 259 |
-
ranges = analyze_measurements(ocr_full, df)
|
| 260 |
-
print(analyze_measurements(ocr_full, df))
|
| 261 |
-
# print ("Ranges is being printed", ranges)
|
| 262 |
-
historical_med_data = detect_past_diseases(ocr_full)
|
| 263 |
-
print("***End of Code***")
|
| 264 |
-
|
| 265 |
-
return {
|
| 266 |
-
"ocr_text": ocr_full.strip(),
|
| 267 |
-
"Detected_Anomolies": resolution,
|
| 268 |
-
}
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
@app.post("/analyze-text")
|
| 274 |
-
async def analyze_text_endpoint(request: TextRequest):
|
| 275 |
try:
|
| 276 |
-
|
| 277 |
except Exception as e:
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
"""
|
| 292 |
-
|
|
|
|
| 293 |
"""
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
try:
|
| 299 |
-
|
| 300 |
-
docs = reports_ref.order_by('timestamp', direction=firestore.Query.DESCENDING).limit(10).stream()
|
| 301 |
-
|
| 302 |
-
history_text = ""
|
| 303 |
-
for doc in docs:
|
| 304 |
-
report_data = doc.to_dict()
|
| 305 |
-
history_text += f"Report from {report_data.get('timestamp', 'N/A')}:\n{report_data.get('ocr_text', 'No OCR text found')}\n\n"
|
| 306 |
except Exception as e:
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
response = model.generate_content(full_prompt)
|
| 317 |
-
return ChatResponse(answer=response.text)
|
| 318 |
-
except Exception as e:
|
| 319 |
-
print(f"Gemini API error: {traceback.format_exc()}")
|
| 320 |
-
raise HTTPException(status_code=500, detail=f"An error occurred during chat response generation: {e}")
|
| 321 |
-
|
| 322 |
-
@app.get("/health/")
|
| 323 |
-
def health():
|
| 324 |
-
return {"response": "ok"}
|
| 325 |
-
|
| 326 |
-
@app.on_event("startup")
|
| 327 |
-
def _log_routes():
|
| 328 |
-
from fastapi.routing import APIRoute
|
| 329 |
-
print("Mounted routes:")
|
| 330 |
-
for r in app.routes:
|
| 331 |
-
if isinstance(r, APIRoute):
|
| 332 |
-
print(" ", r.path, r.methods)
|
| 333 |
-
|
| 334 |
-
# from ast import List
|
| 335 |
-
# from fastapi import FastAPI, UploadFile, File, Form, HTTPException,APIRouter, Request
|
| 336 |
-
# from fastapi.middleware.cors import CORSMiddleware
|
| 337 |
-
# from pydantic import BaseModel
|
| 338 |
-
# from typing import Optional
|
| 339 |
-
# import pytesseract
|
| 340 |
-
# from PIL import Image
|
| 341 |
-
# import io
|
| 342 |
-
# import fitz
|
| 343 |
-
# import base64
|
| 344 |
-
# import traceback
|
| 345 |
-
# import pandas as pd
|
| 346 |
-
# import re
|
| 347 |
-
# import os
|
| 348 |
-
# import google.generativeai as genai
|
| 349 |
-
# from dotenv import load_dotenv
|
| 350 |
-
# from fastapi.responses import RedirectResponse
|
| 351 |
-
# from fastapi.staticfiles import StaticFiles
|
| 352 |
-
# import firebase_admin
|
| 353 |
-
# from firebase_admin import credentials, firestore
|
| 354 |
-
# from google.generativeai import generative_models
|
| 355 |
-
|
| 356 |
-
# from api_key import GEMINI_API_KEY
|
| 357 |
-
# from bert import analyze_with_clinicalBert, classify_disease_and_severity, extract_non_negated_keywords, analyze_measurements, detect_past_diseases
|
| 358 |
-
# from disease_links import diseases as disease_links
|
| 359 |
-
# from disease_steps import disease_next_steps
|
| 360 |
-
# from disease_support import disease_doctor_specialty, disease_home_care
|
| 361 |
-
# from past_reports import router as reports_router, db_fetch_reports
|
| 362 |
-
|
| 363 |
-
# model = genai.GenerativeModel('gemini-1.5-flash')
|
| 364 |
-
# df = pd.read_csv("measurement.csv")
|
| 365 |
-
# df.columns = df.columns.str.lower()
|
| 366 |
-
# df['measurement'] = df['measurement'].str.lower()
|
| 367 |
-
|
| 368 |
-
# disease_links = {"cholesterol": "https://www.webmd.com/cholesterol"}
|
| 369 |
-
# disease_next_steps = {"cholesterol": ["Consult a doctor for a lipid panel."]}
|
| 370 |
-
# disease_doctor_specialty = {"cholesterol": "Cardiologist"}
|
| 371 |
-
# disease_home_care = {"cholesterol": ["Maintain a healthy diet."]}
|
| 372 |
-
|
| 373 |
-
# app = FastAPI()
|
| 374 |
-
|
| 375 |
-
# api = APIRouter(prefix="/api")
|
| 376 |
-
# app.include_router(api)
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
# '''app.add_middleware(
|
| 380 |
-
# CORSMiddleware,
|
| 381 |
-
# allow_origins=[
|
| 382 |
-
# "http://localhost:8002"
|
| 383 |
-
# "http://localhost:9000"
|
| 384 |
-
# "http://localhost:5501"
|
| 385 |
-
# ],
|
| 386 |
-
# allow_credentials=True,
|
| 387 |
-
# allow_methods=["*"],
|
| 388 |
-
# allow_headers=["*"],
|
| 389 |
-
# )'''
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
# app.mount("/app", StaticFiles(directory="web", html=True), name="web")
|
| 393 |
-
# app.include_router(reports_router)
|
| 394 |
-
|
| 395 |
-
# app.add_middleware(
|
| 396 |
-
# CORSMiddleware,
|
| 397 |
-
# allow_origins=["*"],
|
| 398 |
-
# allow_credentials=True,
|
| 399 |
-
# allow_methods=["*"],
|
| 400 |
-
# allow_headers=["*"],
|
| 401 |
-
# )
|
| 402 |
-
|
| 403 |
-
# @app.get("/")
|
| 404 |
-
# def root():
|
| 405 |
-
# return RedirectResponse(url="/app/")
|
| 406 |
-
|
| 407 |
-
# EXTRACTED_TEXT_CACHE: str = ""
|
| 408 |
-
|
| 409 |
-
# try:
|
| 410 |
-
# gemini_api_key = os.environ.get("GEMINI_API_KEY", GEMINI_API_KEY)
|
| 411 |
-
# if not gemini_api_key:
|
| 412 |
-
# raise ValueError("No Gemini API key found in environment or api_key.py")
|
| 413 |
-
# genai.configure(api_key=gemini_api_key)
|
| 414 |
-
# except Exception as e:
|
| 415 |
-
# raise RuntimeError(f"Failed to configure Gemini API: {e}")
|
| 416 |
-
|
| 417 |
-
# try:
|
| 418 |
-
# cred_path = os.environ.get("FIREBASE_SERVICE_ACCOUNT_KEY_PATH", "firebase_key.json")
|
| 419 |
-
|
| 420 |
-
# if not os.path.exists(cred_path):
|
| 421 |
-
# raise ValueError(
|
| 422 |
-
# f"Firebase service account key not found. Looked for: {cred_path}. "
|
| 423 |
-
# "Set FIREBASE_SERVICE_ACCOUNT_KEY_PATH or place firebase_key.json in project root."
|
| 424 |
-
# )
|
| 425 |
-
|
| 426 |
-
# cred = credentials.Certificate(cred_path)
|
| 427 |
-
# firebase_admin.initialize_app(cred)
|
| 428 |
-
# db = firestore.client()
|
| 429 |
-
# except Exception as e:
|
| 430 |
-
# raise RuntimeError(f"Failed to configure Firebase: {e}")
|
| 431 |
-
|
| 432 |
-
# class ChatRequest(BaseModel):
|
| 433 |
-
# user_id: Optional[str] = "anonymous"
|
| 434 |
-
# question: str
|
| 435 |
-
|
| 436 |
-
# class ChatResponse(BaseModel):
|
| 437 |
-
# answer: str
|
| 438 |
-
|
| 439 |
-
# system_prompt_chat = """
|
| 440 |
-
# *** Role: Medical Guidance Facilitator
|
| 441 |
-
# *** Objective:
|
| 442 |
-
# Analyze medical data, provide concise, evidence-based insights, and recommend actionable next steps for patient care. This includes suggesting local physicians or specialists within a user-specified mile radius, prioritizing in-network options when insurance information is available, and maintaining strict safety compliance with appropriate disclaimers.
|
| 443 |
-
# *** Capabilities:
|
| 444 |
-
# 1. Report Analysis – Review and interpret findings in uploaded medical reports.
|
| 445 |
-
# 2. Historical Context – Compare current findings with any available previous reports.
|
| 446 |
-
# 3. Medical Q&A – Answer specific questions about the report using trusted medical sources.
|
| 447 |
-
# 4. Specialist Matching – Recommend relevant physician specialties for identified conditions.
|
| 448 |
-
# 5. Safety Protocols – Include a brief disclaimer encouraging users to verify information, confirm insurance coverage, and consult providers directly.
|
| 449 |
-
# *** Response Structure:
|
| 450 |
-
# Start with a direct answer to the user’s primary question (maximum 4 concise sentences, each on a new line).
|
| 451 |
-
# If a physician/specialist is needed, recommend at least two local providers within the requested radius (include name, specialty, address, distance, and contact info).
|
| 452 |
-
# If insurance details are available, indicate which physicians are in-network.
|
| 453 |
-
# End with a short safety disclaimer.
|
| 454 |
-
# ***Input Fields:
|
| 455 |
-
# Provided Document Text: {document_text}
|
| 456 |
-
# User Question: {user_question}
|
| 457 |
-
# Assistant Answer:
|
| 458 |
-
# """
|
| 459 |
-
|
| 460 |
-
# def extract_images_from_pdf_bytes(pdf_bytes: bytes) -> list:
|
| 461 |
-
# print("***Start of Code***")
|
| 462 |
-
# doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 463 |
-
# images = []
|
| 464 |
-
# for page in doc:
|
| 465 |
-
# pix = page.get_pixmap()
|
| 466 |
-
# buf = io.BytesIO()
|
| 467 |
-
# buf.write(pix.tobytes("png"))
|
| 468 |
-
# images.append(buf.getvalue())
|
| 469 |
-
# return images
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
# def clean_ocr_text(text: str) -> str:
|
| 473 |
-
# text = text.replace("\x0c", " ")
|
| 474 |
-
# text = text.replace("\u00a0", " ")
|
| 475 |
-
# text = re.sub(r'(\d)\s*\.\s*(\d)', r'\1.\2', text)
|
| 476 |
-
# text = re.sub(r'\s+', ' ', text)
|
| 477 |
-
# return text.strip()
|
| 478 |
-
|
| 479 |
-
# def ocr_text_from_image(image_bytes: bytes) -> str:
|
| 480 |
-
# base64_image = base64.b64encode(image_bytes).decode('utf-8')
|
| 481 |
-
|
| 482 |
-
# image_content = {
|
| 483 |
-
# 'mime_type': 'image/jpeg',
|
| 484 |
-
# 'data': base64_image
|
| 485 |
-
# }
|
| 486 |
-
|
| 487 |
-
# prompt = "Could you read this document and just take all the text that is in it and just paste it back to me in text format. Open and read this document:"
|
| 488 |
-
|
| 489 |
-
# response = model.generate_content(
|
| 490 |
-
# [prompt, image_content]
|
| 491 |
-
# )
|
| 492 |
-
|
| 493 |
-
# response_text = response.text
|
| 494 |
-
# print(response_text)
|
| 495 |
-
|
| 496 |
-
# return response_text
|
| 497 |
-
# def get_past_reports_from_firestore(user_id: str):
|
| 498 |
-
# try:
|
| 499 |
-
# reports_ref = db.collection('users').document(user_id).collection('reports')
|
| 500 |
-
# docs = reports_ref.order_by('timestamp', direction=firestore.Query.DESCENDING).limit(10).stream()
|
| 501 |
-
|
| 502 |
-
# history_text = ""
|
| 503 |
-
# for doc in docs:
|
| 504 |
-
# report_data = doc.to_dict()
|
| 505 |
-
# history_text += f"Report from {report_data.get('timestamp', 'N/A')}:\n{report_data.get('ocr_text', 'No OCR text found')}\n\n"
|
| 506 |
-
# except Exception as e:
|
| 507 |
-
# history_text = "No past reports found for this user."
|
| 508 |
-
# return history_text
|
| 509 |
-
|
| 510 |
-
# def get_past_reports_from_sqllite(user_id: str):
|
| 511 |
-
# try:
|
| 512 |
-
# reports = db_fetch_reports(user_id=user_id, limit=10, offset=0)
|
| 513 |
-
|
| 514 |
-
# history_text = ""
|
| 515 |
-
# for report in reports:
|
| 516 |
-
# history_text += f"Report from {report.get('report_date', 'N/A')}:\n{report.get('ocr_text', 'No OCR text found')}\n\n"
|
| 517 |
-
# except Exception as e:
|
| 518 |
-
# history_text = "No past reports found for this user."
|
| 519 |
-
# return history_text
|
| 520 |
-
|
| 521 |
-
# @app.post("/chat/", response_model=ChatResponse)
|
| 522 |
-
# async def chat_endpoint(request: ChatRequest):
|
| 523 |
-
# """
|
| 524 |
-
# Chatbot endpoint that answers questions based on the last analyzed document and user history.
|
| 525 |
-
# """
|
| 526 |
-
# print("Received chat request for user:", request.user_id)
|
| 527 |
-
# #history_text = get_past_reports_from_firestore(request.user_id)
|
| 528 |
-
# history_text = get_past_reports_from_sqllite(request.user_id)
|
| 529 |
-
|
| 530 |
-
# full_document_text = EXTRACTED_TEXT_CACHE + "\n\n" + "PAST REPORTS:\n" + history_text
|
| 531 |
-
|
| 532 |
-
# if not full_document_text:
|
| 533 |
-
# raise HTTPException(status_code=400, detail="No past reports or current data exists for this user")
|
| 534 |
-
|
| 535 |
-
|
| 536 |
|
| 537 |
-
|
| 538 |
-
# try:
|
| 539 |
-
# full_prompt = system_prompt_chat.format(
|
| 540 |
-
# document_text=full_document_text,
|
| 541 |
-
# user_question=request.question
|
| 542 |
-
# )
|
| 543 |
-
# response = model.generate_content(full_prompt)
|
| 544 |
-
# return ChatResponse(answer=response.text)
|
| 545 |
-
# except Exception as e:
|
| 546 |
-
# print(f"Gemini API error: {traceback.format_exc()}")
|
| 547 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred during chat response generation: {e}")
|
| 548 |
-
|
| 549 |
-
# @app.post("/analyze/")
|
| 550 |
-
# async def analyze(
|
| 551 |
-
# file: UploadFile = File(...),
|
| 552 |
-
# model: Optional[str] = Form("bert"),
|
| 553 |
-
# mode: Optional[str] = Form(None)
|
| 554 |
-
# ):
|
| 555 |
-
# global resolution, EXTRACTED_TEXT_CACHE
|
| 556 |
-
# if not file.filename:
|
| 557 |
-
# raise HTTPException(status_code=400, detail="No file uploaded.")
|
| 558 |
-
|
| 559 |
-
# filename = file.filename.lower()
|
| 560 |
-
# detected_diseases = set()
|
| 561 |
-
# ocr_full = ""
|
| 562 |
-
# print("Received request for file:", filename)
|
| 563 |
-
# if filename.endswith(".pdf"):
|
| 564 |
-
# pdf_bytes = await file.read()
|
| 565 |
-
# image_bytes_list = extract_images_from_pdf_bytes(pdf_bytes)
|
| 566 |
-
# else:
|
| 567 |
-
# content = await file.read()
|
| 568 |
-
# image_bytes_list = [content]
|
| 569 |
-
|
| 570 |
-
# for img_bytes in image_bytes_list:
|
| 571 |
-
# ocr_text = ocr_text_from_image(img_bytes)
|
| 572 |
-
# ocr_full += ocr_text + "\n\n"
|
| 573 |
-
# ocr_full = clean_ocr_text(ocr_full)
|
| 574 |
-
# print(f"CALLING OCR FULL: {ocr_full}")
|
| 575 |
-
|
| 576 |
-
# EXTRACTED_TEXT_CACHE = ocr_full
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
# if model.lower() == "gemini":
|
| 580 |
-
# return {"message": "Gemini model not available; please use BERT model."}
|
| 581 |
-
|
| 582 |
-
# found_diseases = extract_non_negated_keywords(ocr_full)
|
| 583 |
-
# past = detect_past_diseases(ocr_full)
|
| 584 |
-
|
| 585 |
-
# for disease in found_diseases:
|
| 586 |
-
# if disease in past:
|
| 587 |
-
# severity = classify_disease_and_severity(disease)
|
| 588 |
-
# detected_diseases.add(((f"{disease}(detected as historical condition, but still under risk.)"), severity))
|
| 589 |
-
# else:
|
| 590 |
-
# severity = classify_disease_and_severity(disease)
|
| 591 |
-
# detected_diseases.add((disease, severity))
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
# print("Detected diseases:", detected_diseases)
|
| 596 |
-
# ranges = analyze_measurements(ocr_full, df)
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
# resolution = []
|
| 600 |
-
# detected_ranges = []
|
| 601 |
-
# for disease, severity in detected_diseases:
|
| 602 |
-
# link = disease_links.get(disease.lower(), "https://www.webmd.com/")
|
| 603 |
-
# next_steps = disease_next_steps.get(disease.lower(), ["Consult a doctor."])
|
| 604 |
-
# specialist = disease_doctor_specialty.get(disease.lower(), "General Practitioner")
|
| 605 |
-
# home_care = disease_home_care.get(disease.lower(), [])
|
| 606 |
-
|
| 607 |
-
# resolution.append({
|
| 608 |
-
# "findings": disease.upper(),
|
| 609 |
-
# "severity": severity,
|
| 610 |
-
# "recommendations": next_steps,
|
| 611 |
-
# "treatment_suggestions": f"Consult a specialist: {specialist}",
|
| 612 |
-
# "home_care_guidance": home_care,
|
| 613 |
-
# "info_link": link
|
| 614 |
-
|
| 615 |
-
# })
|
| 616 |
-
|
| 617 |
-
# for i in ranges:
|
| 618 |
-
# condition = i[0]
|
| 619 |
-
# measurement = i[1]
|
| 620 |
-
# unit = i[2]
|
| 621 |
-
# severity = i[3]
|
| 622 |
-
# value = i[4]
|
| 623 |
-
# range_value = i[5] # renamed to avoid overwriting Python's built-in "range"
|
| 624 |
-
|
| 625 |
-
# link_range = disease_links.get(condition.lower(), "https://www.webmd.com/")
|
| 626 |
-
# next_steps_range = disease_next_steps.get(condition.lower(), ['Consult a doctor'])
|
| 627 |
-
# specialist_range = disease_doctor_specialty.get(condition.lower(), "General Practitioner")
|
| 628 |
-
# home_care_range = disease_home_care.get(condition.lower(), [])
|
| 629 |
-
|
| 630 |
-
# condition_version = condition.upper()
|
| 631 |
-
# severity_version = severity.upper()
|
| 632 |
-
|
| 633 |
-
# resolution.append({
|
| 634 |
-
# "findings": f"{condition_version} -- {measurement}",
|
| 635 |
-
# "severity": f"{value} {unit} - {severity_version}",
|
| 636 |
-
# "recommendations": next_steps_range,
|
| 637 |
-
# "treatment_suggestions": f"Consult a specialist: {specialist_range}",
|
| 638 |
-
# "home_care_guidance": home_care_range,
|
| 639 |
-
# "info_link": link_range
|
| 640 |
-
# })
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
# ranges = analyze_measurements(ocr_full, df)
|
| 644 |
-
# print(analyze_measurements(ocr_full, df))
|
| 645 |
-
# # print ("Ranges is being printed", ranges)
|
| 646 |
-
# historical_med_data = detect_past_diseases(ocr_full)
|
| 647 |
-
|
| 648 |
-
# return {
|
| 649 |
-
# "ocr_text": ocr_full.strip(),
|
| 650 |
-
# "Detected_Anomolies": resolution,
|
| 651 |
-
# }
|
| 652 |
-
|
| 653 |
-
# class TextRequest(BaseModel):
|
| 654 |
-
# text: str
|
| 655 |
-
|
| 656 |
-
# @app.post("/analyze-text")
|
| 657 |
-
# async def analyze_text_endpoint(request: TextRequest):
|
| 658 |
-
# try:
|
| 659 |
-
# return analyze_text(request.text)
|
| 660 |
-
# except Exception as e:
|
| 661 |
-
# print("ERROR in /analyze-text:", traceback.format_exc())
|
| 662 |
-
# raise HTTPException(status_code=500, detail=f"Error analyzing text: {str(e)}")
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
# def analyze_text(text):
|
| 666 |
-
# severity, disease = classify_disease_and_severity(text)
|
| 667 |
-
# return {
|
| 668 |
-
# "extracted_text": text,
|
| 669 |
-
# "summary": f"Detected Disease: {disease}, Severity: {severity}"
|
| 670 |
-
# }
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
# @app.get("/health/")
|
| 674 |
-
# def health():
|
| 675 |
-
# return {"response": "ok"}
|
| 676 |
-
|
| 677 |
-
# @app.on_event("startup")
|
| 678 |
-
# def _log_routes():
|
| 679 |
-
# from fastapi.routing import APIRoute
|
| 680 |
-
# print("Mounted routes:")
|
| 681 |
-
# for r in app.routes:
|
| 682 |
-
# if isinstance(r, APIRoute):
|
| 683 |
-
# print(" ", r.path, r.methods)
|
|
|
|
| 1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import base64
|
| 3 |
+
import json
|
|
|
|
| 4 |
import re
|
| 5 |
+
import asyncio
|
| 6 |
+
import functools
|
| 7 |
+
from typing import Any, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
import google.generativeai as genai
|
| 10 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 11 |
+
from fastapi.responses import JSONResponse
|
| 12 |
+
from pydantic import BaseModel
|
| 13 |
|
| 14 |
+
class AnalyzeRequest(BaseModel):
|
| 15 |
+
image_base64: str
|
| 16 |
+
prompt: str | None = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
API_KEY = None
|
| 19 |
try:
|
| 20 |
+
from api_key import GEMINI_API_KEY as API_KEY # <-- match the name in api_key.py
|
| 21 |
+
except ImportError:
|
| 22 |
+
API_KEY = os.getenv("GEMINI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
if not API_KEY:
|
| 25 |
+
raise RuntimeError(
|
| 26 |
+
"No Google API key found. Put it in api_key.py as `GEMINI_API_KEY = '...'` or set env var GEMINI_API_KEY."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
+
genai.configure(api_key=API_KEY)
|
| 30 |
+
|
| 31 |
+
generation_config = {
|
| 32 |
+
"temperature": 0.2,
|
| 33 |
+
"top_p": 0.95,
|
| 34 |
+
"top_k": 40,
|
| 35 |
+
"max_output_tokens": 2048,
|
| 36 |
+
"response_mime_type": "application/json",
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
safety_settings = [
|
| 40 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 41 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 42 |
+
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 43 |
+
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
system_prompt = """ As a highly skilled medical practitioner specializing in image analysis, you are tasked with examining medical images for a renowned hospital. Your expertise is crucial in identifying any anomalies, diseases, or health issues that may be present in the images. Your responsibilities include:
|
| 47 |
+
1. Detailed Analysis: Thoroughly analyze each image, focusing on identifying any abnormal findings that may indicate underlying medical conditions.
|
| 48 |
+
2. Finding Report: Document all observed anomalies or signs of disease. Clearly articulate these findings in a structured report format, ensuring accuracy and clarity.
|
| 49 |
+
3. Recommendations and Next Steps: Provide detailed recommendations based on your findings. Outline the necessary follow-up actions or additional tests required to confirm diagnoses or assess treatment options.
|
| 50 |
+
4. Treatment Suggestions: Offer preliminary treatment suggestions or interventions based on the identified conditions, collaborating with the healthcare team to develop comprehensive patient care plans.
|
| 51 |
+
5. Output Format: Your output should be a JSON array (list) of objects, each describing one disease or medical finding using the structure below:
|
| 52 |
+
[{"findings": "Description of the first disease or condition.", "severity": "MILD/SEVERE/CRITICAL", "recommendations": ["Follow-up test 1", "Follow-up test 2"], "treatment_suggestions": ["Treatment 1", "Treatment 2"], "home_care_guidance": ["Care tip 1", "Care tip 2"] }, { "findings": "Description of the second disease or condition.", "severity": "MILD/SEVERE/CRITICAL", "recommendations": ["Follow-up test A", "Follow-up test B"], "treatment_suggestions": ["Treatment A", "Treatment B"], "home_care_guidance": ["Care tip A", "Care tip B"] } ]
|
| 53 |
+
Important Notes: 1. Scope of Response: Only respond if the image pertains to a human health issue. 2. Clarity of Image: Ensure the image is clear and suitable for accurate analysis. 3. Disclaimer: Accompany your analysis with the disclaimer: “Consult with a doctor before making any decisions.” 4. Your Insights are Invaluable: Your insights play a crucial role in guiding clinical decisions. Please proceed with your analysis, adhering to the structured approach outlined above. """
|
| 54 |
+
|
| 55 |
+
# Initialize model
|
| 56 |
+
model = genai.GenerativeModel(model_name="gemini-2.5-flash-lite")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
async def _call_model_blocking(request_inputs, generation_cfg, safety_cfg):
|
| 62 |
+
"""Run blocking model call in threadpool (so uvicorn's event loop isn't blocked)."""
|
| 63 |
+
fn = functools.partial(
|
| 64 |
+
model.generate_content,
|
| 65 |
+
request_inputs,
|
| 66 |
+
generation_config=generation_cfg,
|
| 67 |
+
safety_settings=safety_cfg,
|
| 68 |
+
)
|
| 69 |
+
loop = asyncio.get_event_loop()
|
| 70 |
+
return await loop.run_in_executor(None, fn)
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
async def analyze_image(image_bytes: bytes, mime_type: str, prompt: Optional[str] = None) -> Any:
|
| 74 |
+
base64_img = base64.b64encode(image_bytes).decode("utf-8")
|
| 75 |
+
text_prompt = (prompt or system_prompt).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# prepare request — two messages: image inline + text prompt
|
| 78 |
+
request_inputs = [
|
| 79 |
+
{"inline_data": {"mime_type": mime_type, "data": base64_img}},
|
| 80 |
+
{"text": text_prompt},
|
| 81 |
+
]
|
| 82 |
|
|
|
|
|
|
|
| 83 |
try:
|
| 84 |
+
response = await _call_model_blocking(request_inputs, generation_config, safety_settings)
|
| 85 |
except Exception as e:
|
| 86 |
+
raise RuntimeError(f"Model call failed: {e}")
|
| 87 |
+
|
| 88 |
+
# Try to extract textual content robustly
|
| 89 |
+
text = getattr(response, "text", None)
|
| 90 |
+
if not text and isinstance(response, dict):
|
| 91 |
+
# older or alternative shapes
|
| 92 |
+
candidates = response.get("candidates") or []
|
| 93 |
+
if candidates:
|
| 94 |
+
text = candidates[0].get("content") or candidates[0].get("text")
|
| 95 |
+
if not text:
|
| 96 |
+
text = str(response)
|
| 97 |
+
|
| 98 |
+
# remove triple-backtick fences and stray code hints
|
| 99 |
+
clean = re.sub(r"```(?:json)?", "", text).strip()
|
| 100 |
+
|
| 101 |
+
# Try to parse JSON. If strict parse fails, try to extract first JSON-like block.
|
| 102 |
+
try:
|
| 103 |
+
parsed = json.loads(clean)
|
| 104 |
+
return parsed
|
| 105 |
+
except json.JSONDecodeError:
|
| 106 |
+
match = re.search(r"(\[.*\]|\{.*\})", clean, re.DOTALL)
|
| 107 |
+
if match:
|
| 108 |
+
try:
|
| 109 |
+
return json.loads(match.group(1))
|
| 110 |
+
except json.JSONDecodeError:
|
| 111 |
+
return {"raw_found_json": match.group(1)}
|
| 112 |
+
return {"raw_output": clean}
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
@app.post("/analyze")
|
| 116 |
+
async def analyze_endpoint(file: UploadFile = File(...), prompt: str = Form(None)):
|
| 117 |
"""
|
| 118 |
+
Upload an image file (field name `file`) and optional text `prompt`.
|
| 119 |
+
Returns parsed JSON (or raw model output if JSON couldn't be parsed).
|
| 120 |
"""
|
| 121 |
+
contents = await file.read() # <-- this gets the uploaded file bytes
|
| 122 |
+
mime = file.content_type or "image/png"
|
| 123 |
+
result = await analyze_image(contents, mime, prompt)
|
|
|
|
| 124 |
try:
|
| 125 |
+
result = await analyze_image(contents, mime, prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
except Exception as e:
|
| 127 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 128 |
+
return JSONResponse(content={"Detected_Anomolies": result})
|
| 129 |
+
|
| 130 |
+
@app.post("/analyze_json")
|
| 131 |
+
async def analyze_json(req: AnalyzeRequest):
|
| 132 |
+
import base64
|
| 133 |
+
image_bytes = base64.b64decode(req.image_base64)
|
| 134 |
+
result = await analyze_image(image_bytes, "image/png", req.prompt)
|
| 135 |
+
return {"result": result}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|