Spaces:
Runtime error
Runtime error
File size: 5,102 Bytes
c1b9d7d bef439a c1b9d7d bef439a c1b9d7d fcee375 c1b9d7d 5968428 c1b9d7d 46db2ba c1b9d7d 0074c68 15291b0 13b79aa 15291b0 e2e14fd fcee375 9a708c4 fcee375 15291b0 fcee375 13b79aa c1b9d7d 0074c68 507bb54 0074c68 c1b9d7d 2a22742 9a708c4 c1b9d7d bef439a c1b9d7d bef439a c1b9d7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import transformers
from transformers import (
# Text2TextGenerationPipeline,
AutoModelForSeq2SeqLM as alwm,
# TokenClassificationPipeline,
# AutoModelForTokenClassification,
AutoModelForQuestionAnswering as amqa,
AutoTokenizer as att,
# BertTokenizer,
# AlbertTokenizer,
# BertForQuestionAnswering,
# AlbertForQuestionAnswering,
# T5Config,
# T5ForConditionalGeneration,
T5TokenizerFast,
PreTrainedTokenizer,
PreTrainedModel,
ElectraTokenizer as et,
# ElectraForQuestionAnswering
)
import torch
import sentencepiece
import string
import numpy as np
from transformers import pipeline
from transformers.pipelines import AggregationStrategy
import pickle
import streamlit as st
# sq_tokenizer = att.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
# sq_model = alwm.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
# text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791."
# hftokenizer = pickle.load(open('models/hftokenizer.sav', 'rb'))
# hfmodel = pickle.load(open('models/hfmodel.sav', 'rb'))
def load_model():
hfm = pickle.load(open('hfmodel.sav','rb'))
hft = T5TokenizerFast.from_pretrained("t5-base")
tok = et.from_pretrained("mrm8488/electra-small-finetuned-squadv2")
model = pickle.load(open('electra_model.sav','rb'))
# return hfm, hft,tok, model
return hfm, hft, tok, model
hfmodel, hftokenizer, tok, model = load_model()
def run_model(input_string, **generator_args):
generator_args = {
"max_length": 256,
"num_beams": 4,
"length_penalty": 1.5,
"no_repeat_ngram_size": 3,
"early_stopping": True,
}
# tokenizer = att.from_pretrained("ThomasSimonini/t5-end2end-question-generation")
input_string = "generate questions: " + input_string + " </s>"
input_ids = hftokenizer.encode(input_string, return_tensors="pt")
res = hfmodel.generate(input_ids, **generator_args)
output = hftokenizer.batch_decode(res, skip_special_tokens=True)
output = [item.split("<sep>") for item in output]
return output
# al_tokenizer = att.from_pretrained("deepset/electra-base-squad2")
# al_model = amqa.from_pretrained("deepset/electra-base-squad2")
# al_model = pickle.load(open('models/al_model.sav', 'rb'))
# al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
def QA(question, context):
# model_name="deepset/electra-base-squad2"
nlp = pipeline("question-answering",model=model,tokenizer = tok)
format = {
'question':question,
'context':context
}
res = nlp(format)
output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
return output
# inputs = tokenizer(question, context, return_tensors="pt")
# # Run the model, the deepset way
# with torch.no_grad():
# output = model(**inputs)
# start_score = output.start_logits
# end_score = output.end_logits
# #Get the rel scores for the context, and calculate the most probable begginign using torch
# start = torch.argmax(start_score)
# end = torch.argmax(end_score)
# #cinvert tokens to strings
# # output = tokenizer.decode(input_ids[start:end+1], skip_special_tokens=True)
# predict_answer_tokens = inputs.input_ids[0, start : end + 1]
# output = tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
# output = string.capwords(output)
# return f"Q. {question} \n Ans. {output}"
# QA("What was the first C program","The first prgram written in C was Hello World")
def gen_question(inputs):
questions = run_model(inputs)
return questions
# string_query = "Hello World"
# gen_question(f"answer: {string_query} context: The first C program said {string_query} "). #The format of the query to generate questions
def read_file(filepath_name):
with open(text, "r") as infile:
contents = infile.read()
context = contents.replace("\n", " ")
return context
def create_string_for_generator(context):
gen_list = gen_question(context)
return (gen_list[0][0]).split('? ')
def creator(context):
questions = create_string_for_generator(context)
pairs = []
for ques in questions:
pair = QA(ques,context)
pairs.append(pair)
return pairs
# sentences = main_text.split('.')
# creator(sent)
|