File size: 5,102 Bytes
c1b9d7d
 
 
 
bef439a
c1b9d7d
 
bef439a
c1b9d7d
 
 
 
 
 
 
 
 
 
fcee375
c1b9d7d
 
 
5968428
c1b9d7d
 
 
 
 
46db2ba
c1b9d7d
 
 
 
0074c68
 
15291b0
13b79aa
15291b0
e2e14fd
fcee375
9a708c4
 
fcee375
15291b0
fcee375
13b79aa
c1b9d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0074c68
 
 
507bb54
 
0074c68
 
c1b9d7d
 
2a22742
9a708c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b9d7d
 
 
bef439a
 
 
 
c1b9d7d
 
 
 
 
 
 
 
 
 
 
 
bef439a
c1b9d7d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

import transformers
from transformers import (
    # Text2TextGenerationPipeline,
    AutoModelForSeq2SeqLM as alwm,
    # TokenClassificationPipeline,
    # AutoModelForTokenClassification,
    AutoModelForQuestionAnswering as amqa,
    AutoTokenizer as att,
    # BertTokenizer,
    # AlbertTokenizer,
    # BertForQuestionAnswering,
    # AlbertForQuestionAnswering,
    # T5Config,
    # T5ForConditionalGeneration, 
    T5TokenizerFast,
    PreTrainedTokenizer,
    PreTrainedModel,
    ElectraTokenizer as et,
    # ElectraForQuestionAnswering
)
import torch
import sentencepiece
import string
import numpy as np
from transformers import pipeline
from transformers.pipelines import AggregationStrategy
import pickle
import streamlit as st

# sq_tokenizer = att.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
# sq_model = alwm.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
# text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791."
# hftokenizer = pickle.load(open('models/hftokenizer.sav', 'rb'))
# hfmodel = pickle.load(open('models/hfmodel.sav', 'rb'))

def load_model():
  hfm = pickle.load(open('hfmodel.sav','rb'))
  hft = T5TokenizerFast.from_pretrained("t5-base")
  tok = et.from_pretrained("mrm8488/electra-small-finetuned-squadv2")
  model = pickle.load(open('electra_model.sav','rb'))
  # return hfm, hft,tok, model
  return hfm, hft, tok, model

hfmodel, hftokenizer, tok, model = load_model()

def run_model(input_string, **generator_args):
  generator_args = {
  "max_length": 256,
  "num_beams": 4,
  "length_penalty": 1.5,
  "no_repeat_ngram_size": 3,
  "early_stopping": True,
  }
  # tokenizer = att.from_pretrained("ThomasSimonini/t5-end2end-question-generation")
  input_string = "generate questions: " + input_string + " </s>"
  input_ids = hftokenizer.encode(input_string, return_tensors="pt")
  res = hfmodel.generate(input_ids, **generator_args)
  output = hftokenizer.batch_decode(res, skip_special_tokens=True)
  output = [item.split("<sep>") for item in output]
  return output



# al_tokenizer = att.from_pretrained("deepset/electra-base-squad2")
# al_model = amqa.from_pretrained("deepset/electra-base-squad2")
# al_model = pickle.load(open('models/al_model.sav', 'rb'))
# al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
def QA(question, context):
  # model_name="deepset/electra-base-squad2"
  nlp = pipeline("question-answering",model=model,tokenizer = tok)
  format = {
      'question':question,
      'context':context
  }
  res = nlp(format)
  output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
  return output
  # inputs = tokenizer(question, context, return_tensors="pt")
  # # Run the model, the deepset way
  # with torch.no_grad():
  #   output = model(**inputs)
  # start_score = output.start_logits
  # end_score = output.end_logits
  # #Get the rel scores for the context, and calculate the most probable begginign using torch
  # start = torch.argmax(start_score)
  # end = torch.argmax(end_score)
  # #cinvert tokens to strings
  # # output = tokenizer.decode(input_ids[start:end+1], skip_special_tokens=True)
  # predict_answer_tokens = inputs.input_ids[0, start : end + 1]
  # output = tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
  # output = string.capwords(output)
  # return f"Q. {question} \n Ans. {output}"
# QA("What was the first C program","The first prgram written in C was Hello World")

def gen_question(inputs):

 questions = run_model(inputs)

 return questions

# string_query = "Hello World"
# gen_question(f"answer: {string_query} context: The first C program said {string_query} ").  #The format of the query to generate questions


def read_file(filepath_name):
  with open(text, "r") as infile:
    contents = infile.read()
    context = contents.replace("\n", " ")
  return context

def create_string_for_generator(context):
    gen_list = gen_question(context)
    return (gen_list[0][0]).split('? ')

def creator(context):
  questions = create_string_for_generator(context)
  pairs = []
  for ques in questions:
    pair = QA(ques,context)
    pairs.append(pair)
  return pairs

# sentences = main_text.split('.')
  # creator(sent)