Spaces:
Runtime error
Runtime error
vinayakdev
commited on
Commit
·
bef439a
1
Parent(s):
d8ef29e
Happy Hugging Face!
Browse files- .DS_Store +0 -0
- generator.py +14 -17
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
generator.py
CHANGED
@@ -2,10 +2,10 @@
|
|
2 |
import transformers
|
3 |
from transformers import (
|
4 |
# Text2TextGenerationPipeline,
|
5 |
-
|
6 |
# TokenClassificationPipeline,
|
7 |
# AutoModelForTokenClassification,
|
8 |
-
|
9 |
AutoTokenizer as att,
|
10 |
# BertTokenizer,
|
11 |
# AlbertTokenizer,
|
@@ -20,7 +20,6 @@ from transformers import (
|
|
20 |
# ElectraForQuestionAnswering
|
21 |
)
|
22 |
import torch
|
23 |
-
import tensorflow
|
24 |
import string
|
25 |
import numpy as np
|
26 |
from transformers import pipeline
|
@@ -30,11 +29,9 @@ import pickle
|
|
30 |
# sq_tokenizer = att.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
31 |
# sq_model = alwm.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
32 |
# text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791."
|
33 |
-
|
34 |
-
|
35 |
-
hfmodel = alwm.from_pretrained("valhalla/t5-small-e2e-qg")
|
36 |
|
37 |
-
hftokenizer = T5TokenizerFast.from_pretrained("t5-small")
|
38 |
def run_model(input_string, **generator_args):
|
39 |
generator_args = {
|
40 |
"max_length": 256,
|
@@ -50,22 +47,20 @@ def run_model(input_string, **generator_args):
|
|
50 |
output = hftokenizer.batch_decode(res, skip_special_tokens=True)
|
51 |
output = [item.split("<sep>") for item in output]
|
52 |
return output
|
53 |
-
|
54 |
-
al_model =
|
55 |
-
|
56 |
-
# al_model = pickle.load(open('models/al_model.sav', 'rb'))
|
57 |
-
# al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
|
58 |
def QA(question, context):
|
59 |
# model_name="deepset/electra-base-squad2"
|
60 |
nlp = pipeline("question-answering",model=al_model,tokenizer=al_tokenizer)
|
61 |
format = {
|
62 |
'question':question,
|
63 |
'context':context
|
64 |
-
|
65 |
res = nlp(format)
|
66 |
output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
|
67 |
return output
|
68 |
-
# inputs = tokenizer(question, context, return_tensors="pt")
|
69 |
# # Run the model, the deepset way
|
70 |
# with torch.no_grad():
|
71 |
# output = model(**inputs)
|
@@ -83,8 +78,10 @@ def QA(question, context):
|
|
83 |
# QA("What was the first C program","The first prgram written in C was Hello World")
|
84 |
|
85 |
def gen_question(inputs):
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
# string_query = "Hello World"
|
90 |
# gen_question(f"answer: {string_query} context: The first C program said {string_query} "). #The format of the query to generate questions
|
@@ -97,7 +94,7 @@ def read_file(filepath_name):
|
|
97 |
return context
|
98 |
|
99 |
def create_string_for_generator(context):
|
100 |
-
|
101 |
return (gen_list[0][0]).split('? ')
|
102 |
|
103 |
def creator(context):
|
|
|
2 |
import transformers
|
3 |
from transformers import (
|
4 |
# Text2TextGenerationPipeline,
|
5 |
+
AutoModelForSeq2SeqLM as alwm,
|
6 |
# TokenClassificationPipeline,
|
7 |
# AutoModelForTokenClassification,
|
8 |
+
AutoModelForQuestionAnswering as amqa,
|
9 |
AutoTokenizer as att,
|
10 |
# BertTokenizer,
|
11 |
# AlbertTokenizer,
|
|
|
20 |
# ElectraForQuestionAnswering
|
21 |
)
|
22 |
import torch
|
|
|
23 |
import string
|
24 |
import numpy as np
|
25 |
from transformers import pipeline
|
|
|
29 |
# sq_tokenizer = att.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
30 |
# sq_model = alwm.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
31 |
# text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791."
|
32 |
+
hftokenizer = pickle.load(open('models/hftokenizer.sav', 'rb'))
|
33 |
+
hfmodel = pickle.load(open('models/hfmodel.sav', 'rb'))
|
|
|
34 |
|
|
|
35 |
def run_model(input_string, **generator_args):
|
36 |
generator_args = {
|
37 |
"max_length": 256,
|
|
|
47 |
output = hftokenizer.batch_decode(res, skip_special_tokens=True)
|
48 |
output = [item.split("<sep>") for item in output]
|
49 |
return output
|
50 |
+
|
51 |
+
al_model = pickle.load(open('models/al_model.sav', 'rb'))
|
52 |
+
al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
|
|
|
|
|
53 |
def QA(question, context):
|
54 |
# model_name="deepset/electra-base-squad2"
|
55 |
nlp = pipeline("question-answering",model=al_model,tokenizer=al_tokenizer)
|
56 |
format = {
|
57 |
'question':question,
|
58 |
'context':context
|
59 |
+
}
|
60 |
res = nlp(format)
|
61 |
output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
|
62 |
return output
|
63 |
+
# inputs = tokenizer(question, context, return_tensors="pt")
|
64 |
# # Run the model, the deepset way
|
65 |
# with torch.no_grad():
|
66 |
# output = model(**inputs)
|
|
|
78 |
# QA("What was the first C program","The first prgram written in C was Hello World")
|
79 |
|
80 |
def gen_question(inputs):
|
81 |
+
|
82 |
+
questions = run_model(inputs)
|
83 |
+
|
84 |
+
return questions
|
85 |
|
86 |
# string_query = "Hello World"
|
87 |
# gen_question(f"answer: {string_query} context: The first C program said {string_query} "). #The format of the query to generate questions
|
|
|
94 |
return context
|
95 |
|
96 |
def create_string_for_generator(context):
|
97 |
+
gen_list = gen_question(context)
|
98 |
return (gen_list[0][0]).split('? ')
|
99 |
|
100 |
def creator(context):
|