Spaces:
vilarin
/
Running on Zero

File size: 4,447 Bytes
725e3cd
ef187eb
 
725e3cd
0cffd40
ef187eb
11fa80e
63b6eaf
2b0f02c
11fa80e
0cffd40
8b1e96d
725e3cd
8b1e96d
ec35e66
 
 
 
4efab5c
 
 
ec35e66
 
4efab5c
 
 
 
 
 
 
 
8b1e96d
275bb26
725e3cd
 
ce19625
8b1e96d
 
 
275bb26
ce19625
 
f4107e3
725e3cd
ce19625
725e3cd
 
9b38787
3a2b9b2
725e3cd
8b1e96d
ce19625
11fa80e
ce19625
 
 
 
 
 
 
 
 
 
0cffd40
 
8b3ca8d
725e3cd
 
 
 
8b3ca8d
 
0cffd40
8b1e96d
0cffd40
4efab5c
725e3cd
 
8b1e96d
0cffd40
725e3cd
8b1e96d
725e3cd
ce19625
 
 
 
 
 
 
 
 
725e3cd
ce19625
 
 
 
 
 
 
 
 
 
 
 
 
 
725e3cd
ce19625
 
 
 
 
 
725e3cd
ce19625
8b3ca8d
 
f4107e3
8b3ca8d
 
fe16630
8b3ca8d
8b1e96d
 
ce19625
8b1e96d
 
 
ce19625
8b1e96d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import spaces
import gradio as gr
import torch
from diffusers import FluxPipeline
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
from translatepy import Translator

translator = Translator()

# Constants
model = "Shakker-Labs/AWPortrait-FL"

CSS = """
.gradio-container {
  max-width: 690px !important;
}
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""


# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
    pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
    pipe.to("cuda")



# Function 
@spaces.GPU()
def generate_image(
    prompt,
    negative="low quality",
    width=768,
    height=1024,
    scale=3.5,
    steps=24):
    
    prompt = str(translator.translate(prompt, 'English'))
    negative_prompt = str(translator.translate(negative, 'English'))

    print(f'prompt:{prompt}')
    
    image = pipe(
        prompt, 
        negative_prompt=negative, 
        width=width,
        height=height,
        guidance_scale=scale,
        num_inference_steps=steps,
    )
    print(image.images[0])
    return image.images[0]


examples = [
    "close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck. The garment,hugging the skin with subtle luxury,complements the Caucasian model's understated makeup,embodying minimalist elegance. Behind,a pale gray backdrop extends,its fine texture shimmering subtly in the dim light,artfully balancing the composition and focusing attention on the subject. In a palette of black,gray,and skin tones,simplicity intertwines with profundity,as every detail whispers untold stories.",
    "upper body portrait of 1girl wear a black color turtleneck sweater,A proud and confident expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background",
    "upper body portrait of 1girl wear (red color turtleneck sweater:1),A proud and confident smile expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background",
    "upper body portrait of 1girl wear suit with tie,A proud and confident smile expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background"
]


# Gradio Interface

with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
    gr.HTML("<h1><center>Flux</center></h1>")
    gr.HTML("<p><center><a href='https://huggingface.co/Shakker-Labs/AWPortrait-FL'>Shakker-Labs/AWPortrait-FL</a></center></p>")
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(label='Enter Your Prompt(multilingual)', scale=6)
            submit = gr.Button(scale=1, variant='primary')
    img = gr.Image(label='Flux Generated Image')
    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            negative = gr.Textbox(label="Negative prompt", value="low quality")
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=1280,
                step=8,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=1280,
                step=8,
                value=1024,
            )
        with gr.Row():
            scale = gr.Slider(
                label="Guidance Scale",
                minimum=0,
                maximum=50,
                step=0.1,
                value=3.5,
            )
            steps = gr.Slider(
                label="Steps",
                minimum=1,
                maximum=50,
                step=1,
                value=24,
            )            
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=img,
        fn=generate_image,
        cache_examples="lazy",
    )

    prompt.submit(fn=generate_image,
                 inputs=[prompt, negative, width, height, scale, steps],
                 outputs=img,
                 )
    submit.click(fn=generate_image,
                 inputs=[prompt, negative, width, height, scale, steps],
                 outputs=img,
                 )
    
demo.queue().launch()