Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,447 Bytes
725e3cd ef187eb 725e3cd 0cffd40 ef187eb 11fa80e 63b6eaf 2b0f02c 11fa80e 0cffd40 8b1e96d 725e3cd 8b1e96d ec35e66 4efab5c ec35e66 4efab5c 8b1e96d 275bb26 725e3cd ce19625 8b1e96d 275bb26 ce19625 f4107e3 725e3cd ce19625 725e3cd 9b38787 3a2b9b2 725e3cd 8b1e96d ce19625 11fa80e ce19625 0cffd40 8b3ca8d 725e3cd 8b3ca8d 0cffd40 8b1e96d 0cffd40 4efab5c 725e3cd 8b1e96d 0cffd40 725e3cd 8b1e96d 725e3cd ce19625 725e3cd ce19625 725e3cd ce19625 725e3cd ce19625 8b3ca8d f4107e3 8b3ca8d fe16630 8b3ca8d 8b1e96d ce19625 8b1e96d ce19625 8b1e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import spaces
import gradio as gr
import torch
from diffusers import FluxPipeline
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
from translatepy import Translator
translator = Translator()
# Constants
model = "Shakker-Labs/AWPortrait-FL"
CSS = """
.gradio-container {
max-width: 690px !important;
}
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Function
@spaces.GPU()
def generate_image(
prompt,
negative="low quality",
width=768,
height=1024,
scale=3.5,
steps=24):
prompt = str(translator.translate(prompt, 'English'))
negative_prompt = str(translator.translate(negative, 'English'))
print(f'prompt:{prompt}')
image = pipe(
prompt,
negative_prompt=negative,
width=width,
height=height,
guidance_scale=scale,
num_inference_steps=steps,
)
print(image.images[0])
return image.images[0]
examples = [
"close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck. The garment,hugging the skin with subtle luxury,complements the Caucasian model's understated makeup,embodying minimalist elegance. Behind,a pale gray backdrop extends,its fine texture shimmering subtly in the dim light,artfully balancing the composition and focusing attention on the subject. In a palette of black,gray,and skin tones,simplicity intertwines with profundity,as every detail whispers untold stories.",
"upper body portrait of 1girl wear a black color turtleneck sweater,A proud and confident expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background",
"upper body portrait of 1girl wear (red color turtleneck sweater:1),A proud and confident smile expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background",
"upper body portrait of 1girl wear suit with tie,A proud and confident smile expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background"
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
gr.HTML("<h1><center>Flux</center></h1>")
gr.HTML("<p><center><a href='https://huggingface.co/Shakker-Labs/AWPortrait-FL'>Shakker-Labs/AWPortrait-FL</a></center></p>")
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label='Enter Your Prompt(multilingual)', scale=6)
submit = gr.Button(scale=1, variant='primary')
img = gr.Image(label='Flux Generated Image')
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
negative = gr.Textbox(label="Negative prompt", value="low quality")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
step=8,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
with gr.Row():
scale = gr.Slider(
label="Guidance Scale",
minimum=0,
maximum=50,
step=0.1,
value=3.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=24,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=img,
fn=generate_image,
cache_examples="lazy",
)
prompt.submit(fn=generate_image,
inputs=[prompt, negative, width, height, scale, steps],
outputs=img,
)
submit.click(fn=generate_image,
inputs=[prompt, negative, width, height, scale, steps],
outputs=img,
)
demo.queue().launch() |