Spaces:
vilarin
/
Running on Zero

vilarin commited on
Commit
725e3cd
·
verified ·
1 Parent(s): 275bb26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -27
app.py CHANGED
@@ -1,8 +1,8 @@
 
1
  import gradio as gr
2
  import torch
3
- from diffusers import StableDiffusionXLPipeline, AutoencoderKL
4
  from huggingface_hub import hf_hub_download
5
- import spaces
6
  from PIL import Image
7
  import requests
8
  from translatepy import Translator
@@ -10,8 +10,7 @@ from translatepy import Translator
10
  translator = Translator()
11
 
12
  # Constants
13
- model = "Corcelio/openvision"
14
- vae_model = "madebyollin/sdxl-vae-fp16-fix"
15
 
16
  CSS = """
17
  .gradio-container {
@@ -29,15 +28,11 @@ JS = """function () {
29
  }
30
  }"""
31
 
32
- # Load VAE component
33
- vae = AutoencoderKL.from_pretrained(
34
- vae_model,
35
- torch_dtype=torch.float16
36
- )
37
 
38
  # Ensure model and scheduler are initialized in GPU-enabled function
39
  if torch.cuda.is_available():
40
- pipe = StableDiffusionXLPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16).to("cuda")
 
41
 
42
 
43
 
@@ -46,12 +41,13 @@ if torch.cuda.is_available():
46
  def generate_image(
47
  prompt,
48
  negative="low quality",
49
- width=1024,
50
  height=1024,
51
- scale=1.5,
52
- steps=30):
53
 
54
  prompt = str(translator.translate(prompt, 'English'))
 
55
 
56
  print(f'prompt:{prompt}')
57
 
@@ -68,26 +64,23 @@ def generate_image(
68
 
69
 
70
  examples = [
71
- "a cat eating a piece of cheese",
72
- "a ROBOT riding a BLUE horse on Mars, photorealistic",
73
- "Ironman VS Hulk, ultrarealistic",
74
- "a CUTE robot artist painting on an easel",
75
- "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
76
- "An alien holding sign board contain word 'Flash', futuristic, neonpunk",
77
- "Kids going to school, Anime style"
78
  ]
79
 
80
 
81
  # Gradio Interface
82
 
83
  with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
84
- gr.HTML("<h1><center>OpenVision</center></h1>")
85
- gr.HTML("<p><center><a href='https://huggingface.co/Corcelio/openvision'>OpenVision</a> text-to-image generation</center><br><center>Multi-Languages. Midjourney Aesthetic for All Your Images</center></p>")
86
  with gr.Group():
87
  with gr.Row():
88
- prompt = gr.Textbox(label='Enter Your Prompt', scale=6)
89
  submit = gr.Button(scale=1, variant='primary')
90
- img = gr.Image(label='OpenVision Generated Image')
91
  with gr.Accordion("Advanced Options", open=False):
92
  with gr.Row():
93
  negative = gr.Textbox(label="Negative prompt", value="low quality")
@@ -97,7 +90,7 @@ with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
97
  minimum=512,
98
  maximum=1280,
99
  step=8,
100
- value=1024,
101
  )
102
  height = gr.Slider(
103
  label="Height",
@@ -112,14 +105,14 @@ with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
112
  minimum=0,
113
  maximum=50,
114
  step=0.1,
115
- value=1.5,
116
  )
117
  steps = gr.Slider(
118
  label="Steps",
119
  minimum=1,
120
  maximum=50,
121
  step=1,
122
- value=30,
123
  )
124
  gr.Examples(
125
  examples=examples,
 
1
+ import spaces
2
  import gradio as gr
3
  import torch
4
+ from diffusers import FluxPipeline
5
  from huggingface_hub import hf_hub_download
 
6
  from PIL import Image
7
  import requests
8
  from translatepy import Translator
 
10
  translator = Translator()
11
 
12
  # Constants
13
+ model = "Shakker-Labs/AWPortrait-FL"
 
14
 
15
  CSS = """
16
  .gradio-container {
 
28
  }
29
  }"""
30
 
 
 
 
 
 
31
 
32
  # Ensure model and scheduler are initialized in GPU-enabled function
33
  if torch.cuda.is_available():
34
+ pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
35
+ pipe.to("cuda")
36
 
37
 
38
 
 
41
  def generate_image(
42
  prompt,
43
  negative="low quality",
44
+ width=768,
45
  height=1024,
46
+ scale=3.5,
47
+ steps=24):
48
 
49
  prompt = str(translator.translate(prompt, 'English'))
50
+ negative_prompt = str(translator.translate(negative, 'English'))
51
 
52
  print(f'prompt:{prompt}')
53
 
 
64
 
65
 
66
  examples = [
67
+ "close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck. The garment,hugging the skin with subtle luxury,complements the Caucasian model's understated makeup,embodying minimalist elegance. Behind,a pale gray backdrop extends,its fine texture shimmering subtly in the dim light,artfully balancing the composition and focusing attention on the subject. In a palette of black,gray,and skin tones,simplicity intertwines with profundity,as every detail whispers untold stories.",
68
+ "upper body portrait of 1girl wear a black color turtleneck sweater,A proud and confident expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background",
69
+ "upper body portrait of 1girl wear (red color turtleneck sweater:1),A proud and confident smile expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background",
70
+ "upper body portrait of 1girl wear suit with tie,A proud and confident smile expression,long hair,look at viewers,studio fashion portrait,studio light,pure white background"
 
 
 
71
  ]
72
 
73
 
74
  # Gradio Interface
75
 
76
  with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
77
+ gr.HTML("<h1><center>Flux</center></h1>")
78
+ gr.HTML("<p><center><a href='https://huggingface.co/Shakker-Labs/AWPortrait-FL'>Shakker-Labs/AWPortrait-FL</a></center></p>")
79
  with gr.Group():
80
  with gr.Row():
81
+ prompt = gr.Textbox(label='Enter Your Prompt(multilingual)', scale=6)
82
  submit = gr.Button(scale=1, variant='primary')
83
+ img = gr.Image(label='Flux Generated Image')
84
  with gr.Accordion("Advanced Options", open=False):
85
  with gr.Row():
86
  negative = gr.Textbox(label="Negative prompt", value="low quality")
 
90
  minimum=512,
91
  maximum=1280,
92
  step=8,
93
+ value=768,
94
  )
95
  height = gr.Slider(
96
  label="Height",
 
105
  minimum=0,
106
  maximum=50,
107
  step=0.1,
108
+ value=3.5,
109
  )
110
  steps = gr.Slider(
111
  label="Steps",
112
  minimum=1,
113
  maximum=50,
114
  step=1,
115
+ value=24,
116
  )
117
  gr.Examples(
118
  examples=examples,