File size: 3,827 Bytes
783d533
 
9984001
 
783d533
 
 
9984001
 
 
783d533
9984001
783d533
 
 
9984001
 
 
 
 
 
783d533
 
9984001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783d533
9984001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import re
import nltk
from difflib import Differ
from icecream import ic
from app.webui.patch import model_load,num_tokens_in_string,one_chunk_initial_translation, one_chunk_reflect_on_translation, one_chunk_improve_translation
from app.webui.patch import calculate_chunk_size, multichunk_initial_translation, multichunk_reflect_on_translation, multichunk_improve_translation

from llama_index.core.node_parser import SentenceSplitter


nltk.download('punkt', quiet=True)

def tokenize(text):
    # Use nltk to tokenize the text
    words = nltk.word_tokenize(text)
    # Check if the text contains spaces
    if ' ' in text:
        # Create a list of words and spaces
        tokens = []
        for word in words:
            tokens.append(word)
            if not word.startswith("'") and not word.endswith("'"):  # Avoid adding space after punctuation
                tokens.append(' ')  # Add space after each word
        return tokens[:-1]  # Remove the last space
    else:
        return words


def diff_texts(text1, text2):
    tokens1 = tokenize(text1)
    tokens2 = tokenize(text2)

    d = Differ()
    diff_result = list(d.compare(tokens1, tokens2))

    highlighted_text = []
    for token in diff_result:
        word = token[2:]
        category = None
        if token[0] == '+':
            category = 'added'
        elif token[0] == '-':
            category = 'removed'
        elif token[0] == '?':
            continue  # Ignore the hints line

        highlighted_text.append((word, category))

    return highlighted_text

#modified from src.translaation-agent.utils.tranlsate
def translator(

        source_lang,

        target_lang,

        source_text,

        country,

        max_tokens=1000,

):
    """Translate the source_text from source_lang to target_lang."""
    num_tokens_in_text = num_tokens_in_string(source_text)

    ic(num_tokens_in_text)

    if num_tokens_in_text < max_tokens:
        ic("Translating text as single chunk")

        #Note: use yield from B() if put yield in function B()
        init_translation = one_chunk_initial_translation(
            source_lang, target_lang, source_text
        )


        reflection = one_chunk_reflect_on_translation(
            source_lang, target_lang, source_text, init_translation, country
        )

        final_translation = one_chunk_improve_translation(
            source_lang, target_lang, source_text, init_translation, reflection
        )

        return init_translation, reflection, final_translation

    else:
        ic("Translating text as multiple chunks")

        token_size = calculate_chunk_size(
            token_count=num_tokens_in_text, token_limit=max_tokens
        )

        ic(token_size)

        #using sentence splitter
        text_parser = SentenceSplitter(
           chunk_size=token_size,
        )

        source_text_chunks = text_parser.split_text(source_text)

        translation_1_chunks = multichunk_initial_translation(
            source_lang, target_lang, source_text_chunks
        )

        init_translation = "".join(translation_1_chunks)

        reflection_chunks = multichunk_reflect_on_translation(
            source_lang,
            target_lang,
            source_text_chunks,
            translation_1_chunks,
            country,
        )

        reflection = "".join(reflection_chunks)

        translation_2_chunks = multichunk_improve_translation(
            source_lang,
            target_lang,
            source_text_chunks,
            translation_1_chunks,
            reflection_chunks,
        )

        final_translation = "".join(translation_2_chunks)

        return init_translation, reflection, final_translation