Spaces:
Running
Running
Upload 6 files
Browse files- app/webui/README.md +0 -0
- app/webui/app.py +147 -0
- app/webui/patch.py +131 -0
- app/webui/process.py +136 -0
- src/translation_agent/__init__.py +1 -0
- src/translation_agent/utils.py +687 -0
app/webui/README.md
ADDED
File without changes
|
app/webui/app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
from process import model_load, lang_detector, diff_texts, translator, read_doc
|
4 |
+
from llama_index.core import SimpleDirectoryReader
|
5 |
+
|
6 |
+
def huanik(
|
7 |
+
endpoint,
|
8 |
+
model,
|
9 |
+
api_key,
|
10 |
+
source_lang,
|
11 |
+
target_lang,
|
12 |
+
source_text,
|
13 |
+
country,
|
14 |
+
max_tokens,
|
15 |
+
context_window,
|
16 |
+
num_output,
|
17 |
+
):
|
18 |
+
|
19 |
+
if not source_text or source_lang == target_lang:
|
20 |
+
raise gr.Error("Please check that the content or options are entered correctly.")
|
21 |
+
|
22 |
+
try:
|
23 |
+
model_load(endpoint, model, api_key, context_window, num_output)
|
24 |
+
except Exception as e:
|
25 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
26 |
+
|
27 |
+
source_text = re.sub(r'\n+', '\n', source_text)
|
28 |
+
|
29 |
+
init_translation, reflect_translation, final_translation = translator(
|
30 |
+
source_lang=source_lang,
|
31 |
+
target_lang=target_lang,
|
32 |
+
source_text=source_text,
|
33 |
+
country=country,
|
34 |
+
max_tokens=max_tokens,
|
35 |
+
)
|
36 |
+
|
37 |
+
final_diff = gr.HighlightedText(
|
38 |
+
diff_texts(init_translation, final_translation),
|
39 |
+
label="Diff translation",
|
40 |
+
combine_adjacent=True,
|
41 |
+
show_legend=True,
|
42 |
+
visible=True,
|
43 |
+
color_map={"removed": "red", "added": "green"})
|
44 |
+
|
45 |
+
return init_translation, reflect_translation, final_translation, final_diff
|
46 |
+
|
47 |
+
def update_model(endpoint):
|
48 |
+
endpoint_model_map = {
|
49 |
+
"Groq": "llama3-70b-8192",
|
50 |
+
"OpenAI": "gpt-4o",
|
51 |
+
"Cohere": "command-r",
|
52 |
+
"TogetherAI": "Qwen/Qwen2-72B-Instruct",
|
53 |
+
"Ollama": "llama3",
|
54 |
+
"Huggingface": "mistralai/Mistral-7B-Instruct-v0.3"
|
55 |
+
}
|
56 |
+
return gr.update(value=endpoint_model_map[endpoint])
|
57 |
+
|
58 |
+
def read_doc(file):
|
59 |
+
docs = SimpleDirectoryReader(input_files=file).load_data()
|
60 |
+
return docs
|
61 |
+
|
62 |
+
TITLE = """
|
63 |
+
<h1><a href="https://github.com/andrewyng/translation-agent">Translation-Agent</a> webUI</h1>
|
64 |
+
"""
|
65 |
+
|
66 |
+
CSS = """
|
67 |
+
h1 {
|
68 |
+
text-align: center;
|
69 |
+
display: block;
|
70 |
+
height: 10vh;
|
71 |
+
align-content: center;
|
72 |
+
}
|
73 |
+
footer {
|
74 |
+
visibility: hidden;
|
75 |
+
}
|
76 |
+
"""
|
77 |
+
|
78 |
+
with gr.Blocks(theme="soft", css=CSS) as demo:
|
79 |
+
gr.Markdown(TITLE)
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column(scale=1):
|
82 |
+
endpoint = gr.Dropdown(
|
83 |
+
label="Endpoint",
|
84 |
+
choices=["Groq","OpenAI","Cohere","TogetherAI","Ollama","Huggingface"],
|
85 |
+
value="Groq",
|
86 |
+
)
|
87 |
+
model = gr.Textbox(label="Model", value="llama3-70b-8192", )
|
88 |
+
api_key = gr.Textbox(label="API_KEY", type="password", )
|
89 |
+
source_lang = gr.Textbox(
|
90 |
+
label="Source Lang(Auto-Detect)",
|
91 |
+
value="English",
|
92 |
+
)
|
93 |
+
target_lang = gr.Textbox(
|
94 |
+
label="Target Lang",
|
95 |
+
value="Spanish",
|
96 |
+
)
|
97 |
+
country = gr.Textbox(label="Country", value="Argentina", max_lines=1)
|
98 |
+
with gr.Accordion("Advanced Options", open=False):
|
99 |
+
max_tokens = gr.Slider(
|
100 |
+
label="Max tokens Per Chunk",
|
101 |
+
minimum=512,
|
102 |
+
maximum=2046,
|
103 |
+
value=1000,
|
104 |
+
step=8,
|
105 |
+
)
|
106 |
+
context_window = gr.Slider(
|
107 |
+
label="Context Window",
|
108 |
+
minimum=512,
|
109 |
+
maximum=8192,
|
110 |
+
value=4096,
|
111 |
+
step=8,
|
112 |
+
)
|
113 |
+
num_output = gr.Slider(
|
114 |
+
label="Output Num",
|
115 |
+
minimum=256,
|
116 |
+
maximum=8192,
|
117 |
+
value=512,
|
118 |
+
step=8,
|
119 |
+
)
|
120 |
+
with gr.Column(scale=4):
|
121 |
+
source_text = gr.Textbox(
|
122 |
+
label="Source Text",
|
123 |
+
value="How we live is so different from how we ought to live that he who studies "+\
|
124 |
+
"what ought to be done rather than what is done will learn the way to his downfall "+\
|
125 |
+
"rather than to his preservation.",
|
126 |
+
lines=5,
|
127 |
+
)
|
128 |
+
with gr.Tab("Final"):
|
129 |
+
output_final = gr.Textbox(label="FInal Translation", lines=3, show_copy_button=True)
|
130 |
+
with gr.Tab("Initial"):
|
131 |
+
output_init = gr.Textbox(label="Init Translation", lines=3, show_copy_button=True)
|
132 |
+
with gr.Tab("Reflection"):
|
133 |
+
output_reflect = gr.Textbox(label="Reflection", lines=3, show_copy_button=True)
|
134 |
+
with gr.Tab("Diff"):
|
135 |
+
output_diff = gr.HighlightedText(visible = False)
|
136 |
+
with gr.Row():
|
137 |
+
submit = gr.Button(value="Submit")
|
138 |
+
upload = gr.UploadButton("Upload")
|
139 |
+
clear = gr.ClearButton([source_text, output_init, output_reflect, output_final])
|
140 |
+
|
141 |
+
endpoint.change(fn=update_model, inputs=[endpoint], outputs=[model])
|
142 |
+
source_text.change(lang_detector, source_text, source_lang)
|
143 |
+
submit.click(fn=huanik, inputs=[endpoint, model, api_key, source_lang, target_lang, source_text, country, max_tokens, context_window, num_output], outputs=[output_init, output_reflect, output_final, output_diff])
|
144 |
+
upload.upload(fn=read_doc, inputs = upload, outputs = source_text)
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
demo.queue(api_open=False).launch(show_api=False, share=False)
|
app/webui/patch.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# a monkey patch to use llama-index completion
|
2 |
+
from typing import Union, Callable
|
3 |
+
from functools import wraps
|
4 |
+
from src.translation_agent.utils import *
|
5 |
+
|
6 |
+
|
7 |
+
from llama_index.llms.groq import Groq
|
8 |
+
from llama_index.llms.cohere import Cohere
|
9 |
+
from llama_index.llms.openai import OpenAI
|
10 |
+
from llama_index.llms.together import TogetherLLM
|
11 |
+
from llama_index.llms.ollama import Ollama
|
12 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
13 |
+
|
14 |
+
from llama_index.core import Settings
|
15 |
+
from llama_index.core.llms import ChatMessage
|
16 |
+
|
17 |
+
|
18 |
+
# Add your LLMs here
|
19 |
+
|
20 |
+
def model_load(
|
21 |
+
endpoint: str,
|
22 |
+
model: str,
|
23 |
+
api_key: str = None,
|
24 |
+
context_window: int = 4096,
|
25 |
+
num_output: int = 512,
|
26 |
+
):
|
27 |
+
if endpoint == "Groq":
|
28 |
+
llm = Groq(
|
29 |
+
model=model,
|
30 |
+
api_key=api_key,
|
31 |
+
)
|
32 |
+
elif endpoint == "Cohere":
|
33 |
+
llm = Cohere(
|
34 |
+
model=model,
|
35 |
+
api_key=api_key,
|
36 |
+
)
|
37 |
+
elif endpoint == "OpenAI":
|
38 |
+
llm = OpenAI(
|
39 |
+
model=model,
|
40 |
+
api_key=api_key,
|
41 |
+
)
|
42 |
+
elif endpoint == "TogetherAI":
|
43 |
+
llm = TogetherLLM(
|
44 |
+
model=model,
|
45 |
+
api_key=api_key,
|
46 |
+
)
|
47 |
+
elif endpoint == "ollama":
|
48 |
+
llm = Ollama(
|
49 |
+
model=model,
|
50 |
+
request_timeout=120.0)
|
51 |
+
elif endpoint == "Huggingface":
|
52 |
+
llm = HuggingFaceInferenceAPI(
|
53 |
+
model_name=model,
|
54 |
+
token=api_key,
|
55 |
+
task="text-generation",
|
56 |
+
)
|
57 |
+
Settings.llm = llm
|
58 |
+
# maximum input size to the LLM
|
59 |
+
Settings.context_window = context_window
|
60 |
+
|
61 |
+
# number of tokens reserved for text generation.
|
62 |
+
Settings.num_output = num_output
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def completion_wrapper(func: Callable) -> Callable:
|
67 |
+
@wraps(func)
|
68 |
+
def wrapper(
|
69 |
+
prompt: str,
|
70 |
+
system_message: str = "You are a helpful assistant.",
|
71 |
+
temperature: float = 0.3,
|
72 |
+
json_mode: bool = False,
|
73 |
+
) -> Union[str, dict]:
|
74 |
+
"""
|
75 |
+
Generate a completion using the OpenAI API.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
prompt (str): The user's prompt or query.
|
79 |
+
system_message (str, optional): The system message to set the context for the assistant.
|
80 |
+
Defaults to "You are a helpful assistant.".
|
81 |
+
temperature (float, optional): The sampling temperature for controlling the randomness of the generated text.
|
82 |
+
Defaults to 0.3.
|
83 |
+
json_mode (bool, optional): Whether to return the response in JSON format.
|
84 |
+
Defaults to False.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
Union[str, dict]: The generated completion.
|
88 |
+
If json_mode is True, returns the complete API response as a dictionary.
|
89 |
+
If json_mode is False, returns the generated text as a string.
|
90 |
+
"""
|
91 |
+
llm = Settings.llm
|
92 |
+
if llm.class_name() == "HuggingFaceInferenceAPI":
|
93 |
+
llm.system_prompt = system_message
|
94 |
+
messages = [
|
95 |
+
ChatMessage(
|
96 |
+
role="user", content=prompt),
|
97 |
+
]
|
98 |
+
response = llm.chat(
|
99 |
+
messages=messages,
|
100 |
+
temperature=temperature,
|
101 |
+
top_p=1,
|
102 |
+
)
|
103 |
+
return response.message.content
|
104 |
+
else:
|
105 |
+
messages = [
|
106 |
+
ChatMessage(
|
107 |
+
role="system", content=system_message),
|
108 |
+
ChatMessage(
|
109 |
+
role="user", content=prompt),
|
110 |
+
]
|
111 |
+
|
112 |
+
if json_mode:
|
113 |
+
response = llm.chat(
|
114 |
+
temperature=temperature,
|
115 |
+
top_p=1,
|
116 |
+
response_format={"type": "json_object"},
|
117 |
+
messages=messages,
|
118 |
+
)
|
119 |
+
return response.message.content
|
120 |
+
else:
|
121 |
+
response = llm.chat(
|
122 |
+
temperature=temperature,
|
123 |
+
top_p=1,
|
124 |
+
messages=messages,
|
125 |
+
)
|
126 |
+
return response.message.content
|
127 |
+
|
128 |
+
return wrapper
|
129 |
+
|
130 |
+
openai_completion = get_completion
|
131 |
+
get_completion = completion_wrapper(openai_completion)
|
app/webui/process.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from polyglot.detect import Detector
|
2 |
+
from polyglot.text import Text
|
3 |
+
from difflib import Differ
|
4 |
+
from icecream import ic
|
5 |
+
from patch import *
|
6 |
+
from llama_index.core.node_parser import SentenceSplitter
|
7 |
+
|
8 |
+
def lang_detector(text):
|
9 |
+
min_chars = 5
|
10 |
+
if len(text) < min_chars:
|
11 |
+
return "Input text too short"
|
12 |
+
try:
|
13 |
+
detector = Detector(text).language
|
14 |
+
lang_info = str(detector)
|
15 |
+
code = re.search(r"name: (\w+)", lang_info).group(1)
|
16 |
+
return code
|
17 |
+
except Exception as e:
|
18 |
+
return f"ERROR:{str(e)}"
|
19 |
+
|
20 |
+
def tokenize(text):
|
21 |
+
# Use polyglot to tokenize the text
|
22 |
+
polyglot_text = Text(text)
|
23 |
+
words = polyglot_text.words
|
24 |
+
|
25 |
+
# Check if the text contains spaces
|
26 |
+
if ' ' in text:
|
27 |
+
# Create a list of words and spaces
|
28 |
+
tokens = []
|
29 |
+
for word in words:
|
30 |
+
tokens.append(word)
|
31 |
+
tokens.append(' ') # Add space after each word
|
32 |
+
return tokens[:-1] # Remove the last space
|
33 |
+
else:
|
34 |
+
return words
|
35 |
+
|
36 |
+
|
37 |
+
def diff_texts(text1, text2):
|
38 |
+
tokens1 = tokenize(text1)
|
39 |
+
tokens2 = tokenize(text2)
|
40 |
+
|
41 |
+
d = Differ()
|
42 |
+
diff_result = list(d.compare(tokens1, tokens2))
|
43 |
+
|
44 |
+
highlighted_text = []
|
45 |
+
for token in diff_result:
|
46 |
+
word = token[2:]
|
47 |
+
category = None
|
48 |
+
if token[0] == '+':
|
49 |
+
category = 'added'
|
50 |
+
elif token[0] == '-':
|
51 |
+
category = 'removed'
|
52 |
+
elif token[0] == '?':
|
53 |
+
continue # Ignore the hints line
|
54 |
+
|
55 |
+
highlighted_text.append((word, category))
|
56 |
+
|
57 |
+
return highlighted_text
|
58 |
+
|
59 |
+
#modified from src.translaation-agent.utils.tranlsate
|
60 |
+
def translator(
|
61 |
+
source_lang,
|
62 |
+
target_lang,
|
63 |
+
source_text,
|
64 |
+
country,
|
65 |
+
max_tokens=MAX_TOKENS_PER_CHUNK
|
66 |
+
):
|
67 |
+
"""Translate the source_text from source_lang to target_lang."""
|
68 |
+
num_tokens_in_text = num_tokens_in_string(source_text)
|
69 |
+
|
70 |
+
ic(num_tokens_in_text)
|
71 |
+
|
72 |
+
if num_tokens_in_text < max_tokens:
|
73 |
+
ic("Translating text as single chunk")
|
74 |
+
|
75 |
+
#Note: use yield from B() if put yield in function B()
|
76 |
+
init_translation = one_chunk_initial_translation(
|
77 |
+
source_lang, target_lang, source_text
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
reflection = one_chunk_reflect_on_translation(
|
82 |
+
source_lang, target_lang, source_text, init_translation, country
|
83 |
+
)
|
84 |
+
|
85 |
+
final_translation = one_chunk_improve_translation(
|
86 |
+
source_lang, target_lang, source_text, init_translation, reflection
|
87 |
+
)
|
88 |
+
|
89 |
+
return init_translation, reflection, final_translation
|
90 |
+
|
91 |
+
else:
|
92 |
+
ic("Translating text as multiple chunks")
|
93 |
+
|
94 |
+
token_size = calculate_chunk_size(
|
95 |
+
token_count=num_tokens_in_text, token_limit=max_tokens
|
96 |
+
)
|
97 |
+
|
98 |
+
ic(token_size)
|
99 |
+
|
100 |
+
#using sentence splitter
|
101 |
+
text_parser = SentenceSplitter(
|
102 |
+
chunk_size=token_size,
|
103 |
+
)
|
104 |
+
|
105 |
+
source_text_chunks = text_parser.split_text(source_text)
|
106 |
+
|
107 |
+
translation_1_chunks = multichunk_initial_translation(
|
108 |
+
source_lang, target_lang, source_text_chunks
|
109 |
+
)
|
110 |
+
|
111 |
+
init_translation = "".join(translation_1_chunks)
|
112 |
+
|
113 |
+
reflection_chunks = multichunk_reflect_on_translation(
|
114 |
+
source_lang,
|
115 |
+
target_lang,
|
116 |
+
source_text_chunks,
|
117 |
+
translation_1_chunks,
|
118 |
+
country,
|
119 |
+
)
|
120 |
+
|
121 |
+
reflection = "".join(reflection_chunks)
|
122 |
+
|
123 |
+
translation_2_chunks = multichunk_improve_translation(
|
124 |
+
source_lang,
|
125 |
+
target_lang,
|
126 |
+
source_text_chunks,
|
127 |
+
translation_1_chunks,
|
128 |
+
reflection_chunks,
|
129 |
+
)
|
130 |
+
|
131 |
+
final_translation = "".join(translation_2_chunks)
|
132 |
+
|
133 |
+
return init_translation, reflection, final_translation
|
134 |
+
|
135 |
+
|
136 |
+
|
src/translation_agent/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .utils import translate
|
src/translation_agent/utils.py
ADDED
@@ -0,0 +1,687 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
import openai
|
6 |
+
import tiktoken
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from icecream import ic
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
|
11 |
+
|
12 |
+
load_dotenv() # read local .env file
|
13 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
14 |
+
|
15 |
+
MAX_TOKENS_PER_CHUNK = (
|
16 |
+
1000 # if text is more than this many tokens, we'll break it up into
|
17 |
+
)
|
18 |
+
# discrete chunks to translate one chunk at a time
|
19 |
+
|
20 |
+
|
21 |
+
def get_completion(
|
22 |
+
prompt: str,
|
23 |
+
system_message: str = "You are a helpful assistant.",
|
24 |
+
model: str = "gpt-4-turbo",
|
25 |
+
temperature: float = 0.3,
|
26 |
+
json_mode: bool = False,
|
27 |
+
) -> Union[str, dict]:
|
28 |
+
"""
|
29 |
+
Generate a completion using the OpenAI API.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
prompt (str): The user's prompt or query.
|
33 |
+
system_message (str, optional): The system message to set the context for the assistant.
|
34 |
+
Defaults to "You are a helpful assistant.".
|
35 |
+
model (str, optional): The name of the OpenAI model to use for generating the completion.
|
36 |
+
Defaults to "gpt-4-turbo".
|
37 |
+
temperature (float, optional): The sampling temperature for controlling the randomness of the generated text.
|
38 |
+
Defaults to 0.3.
|
39 |
+
json_mode (bool, optional): Whether to return the response in JSON format.
|
40 |
+
Defaults to False.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
Union[str, dict]: The generated completion.
|
44 |
+
If json_mode is True, returns the complete API response as a dictionary.
|
45 |
+
If json_mode is False, returns the generated text as a string.
|
46 |
+
"""
|
47 |
+
|
48 |
+
if json_mode:
|
49 |
+
response = client.chat.completions.create(
|
50 |
+
model=model,
|
51 |
+
temperature=temperature,
|
52 |
+
top_p=1,
|
53 |
+
response_format={"type": "json_object"},
|
54 |
+
messages=[
|
55 |
+
{"role": "system", "content": system_message},
|
56 |
+
{"role": "user", "content": prompt},
|
57 |
+
],
|
58 |
+
)
|
59 |
+
return response.choices[0].message.content
|
60 |
+
else:
|
61 |
+
response = client.chat.completions.create(
|
62 |
+
model=model,
|
63 |
+
temperature=temperature,
|
64 |
+
top_p=1,
|
65 |
+
messages=[
|
66 |
+
{"role": "system", "content": system_message},
|
67 |
+
{"role": "user", "content": prompt},
|
68 |
+
],
|
69 |
+
)
|
70 |
+
return response.choices[0].message.content
|
71 |
+
|
72 |
+
|
73 |
+
def one_chunk_initial_translation(
|
74 |
+
source_lang: str, target_lang: str, source_text: str
|
75 |
+
) -> str:
|
76 |
+
"""
|
77 |
+
Translate the entire text as one chunk using an LLM.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
source_lang (str): The source language of the text.
|
81 |
+
target_lang (str): The target language for translation.
|
82 |
+
source_text (str): The text to be translated.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
str: The translated text.
|
86 |
+
"""
|
87 |
+
|
88 |
+
system_message = f"You are an expert linguist, specializing in translation from {source_lang} to {target_lang}."
|
89 |
+
|
90 |
+
translation_prompt = f"""This is an {source_lang} to {target_lang} translation, please provide the {target_lang} translation for this text. \
|
91 |
+
Do not provide any explanations or text apart from the translation.
|
92 |
+
{source_lang}: {source_text}
|
93 |
+
|
94 |
+
{target_lang}:"""
|
95 |
+
|
96 |
+
prompt = translation_prompt.format(source_text=source_text)
|
97 |
+
|
98 |
+
translation = get_completion(prompt, system_message=system_message)
|
99 |
+
|
100 |
+
return translation
|
101 |
+
|
102 |
+
|
103 |
+
def one_chunk_reflect_on_translation(
|
104 |
+
source_lang: str,
|
105 |
+
target_lang: str,
|
106 |
+
source_text: str,
|
107 |
+
translation_1: str,
|
108 |
+
country: str = "",
|
109 |
+
) -> str:
|
110 |
+
"""
|
111 |
+
Use an LLM to reflect on the translation, treating the entire text as one chunk.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
source_lang (str): The source language of the text.
|
115 |
+
target_lang (str): The target language of the translation.
|
116 |
+
source_text (str): The original text in the source language.
|
117 |
+
translation_1 (str): The initial translation of the source text.
|
118 |
+
country (str): Country specified for target language.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
str: The LLM's reflection on the translation, providing constructive criticism and suggestions for improvement.
|
122 |
+
"""
|
123 |
+
|
124 |
+
system_message = f"You are an expert linguist specializing in translation from {source_lang} to {target_lang}. \
|
125 |
+
You will be provided with a source text and its translation and your goal is to improve the translation."
|
126 |
+
|
127 |
+
if country != "":
|
128 |
+
reflection_prompt = f"""Your task is to carefully read a source text and a translation from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions to improve the translation. \
|
129 |
+
The final style and tone of the translation should match the style of {target_lang} colloquially spoken in {country}.
|
130 |
+
|
131 |
+
The source text and initial translation, delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT> and <TRANSLATION></TRANSLATION>, are as follows:
|
132 |
+
|
133 |
+
<SOURCE_TEXT>
|
134 |
+
{source_text}
|
135 |
+
</SOURCE_TEXT>
|
136 |
+
|
137 |
+
<TRANSLATION>
|
138 |
+
{translation_1}
|
139 |
+
</TRANSLATION>
|
140 |
+
|
141 |
+
When writing suggestions, pay attention to whether there are ways to improve the translation's \n\
|
142 |
+
(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\
|
143 |
+
(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\
|
144 |
+
(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\
|
145 |
+
(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\
|
146 |
+
|
147 |
+
Write a list of specific, helpful and constructive suggestions for improving the translation.
|
148 |
+
Each suggestion should address one specific part of the translation.
|
149 |
+
Output only the suggestions and nothing else."""
|
150 |
+
|
151 |
+
else:
|
152 |
+
reflection_prompt = f"""Your task is to carefully read a source text and a translation from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions to improve the translation. \
|
153 |
+
|
154 |
+
The source text and initial translation, delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT> and <TRANSLATION></TRANSLATION>, are as follows:
|
155 |
+
|
156 |
+
<SOURCE_TEXT>
|
157 |
+
{source_text}
|
158 |
+
</SOURCE_TEXT>
|
159 |
+
|
160 |
+
<TRANSLATION>
|
161 |
+
{translation_1}
|
162 |
+
</TRANSLATION>
|
163 |
+
|
164 |
+
When writing suggestions, pay attention to whether there are ways to improve the translation's \n\
|
165 |
+
(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\
|
166 |
+
(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\
|
167 |
+
(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\
|
168 |
+
(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\
|
169 |
+
|
170 |
+
Write a list of specific, helpful and constructive suggestions for improving the translation.
|
171 |
+
Each suggestion should address one specific part of the translation.
|
172 |
+
Output only the suggestions and nothing else."""
|
173 |
+
|
174 |
+
prompt = reflection_prompt.format(
|
175 |
+
source_lang=source_lang,
|
176 |
+
target_lang=target_lang,
|
177 |
+
source_text=source_text,
|
178 |
+
translation_1=translation_1,
|
179 |
+
)
|
180 |
+
reflection = get_completion(prompt, system_message=system_message)
|
181 |
+
return reflection
|
182 |
+
|
183 |
+
|
184 |
+
def one_chunk_improve_translation(
|
185 |
+
source_lang: str,
|
186 |
+
target_lang: str,
|
187 |
+
source_text: str,
|
188 |
+
translation_1: str,
|
189 |
+
reflection: str,
|
190 |
+
) -> str:
|
191 |
+
"""
|
192 |
+
Use the reflection to improve the translation, treating the entire text as one chunk.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
source_lang (str): The source language of the text.
|
196 |
+
target_lang (str): The target language for the translation.
|
197 |
+
source_text (str): The original text in the source language.
|
198 |
+
translation_1 (str): The initial translation of the source text.
|
199 |
+
reflection (str): Expert suggestions and constructive criticism for improving the translation.
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
str: The improved translation based on the expert suggestions.
|
203 |
+
"""
|
204 |
+
|
205 |
+
system_message = f"You are an expert linguist, specializing in translation editing from {source_lang} to {target_lang}."
|
206 |
+
|
207 |
+
prompt = f"""Your task is to carefully read, then edit, a translation from {source_lang} to {target_lang}, taking into
|
208 |
+
account a list of expert suggestions and constructive criticisms.
|
209 |
+
|
210 |
+
The source text, the initial translation, and the expert linguist suggestions are delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT>, <TRANSLATION></TRANSLATION> and <EXPERT_SUGGESTIONS></EXPERT_SUGGESTIONS> \
|
211 |
+
as follows:
|
212 |
+
|
213 |
+
<SOURCE_TEXT>
|
214 |
+
{source_text}
|
215 |
+
</SOURCE_TEXT>
|
216 |
+
|
217 |
+
<TRANSLATION>
|
218 |
+
{translation_1}
|
219 |
+
</TRANSLATION>
|
220 |
+
|
221 |
+
<EXPERT_SUGGESTIONS>
|
222 |
+
{reflection}
|
223 |
+
</EXPERT_SUGGESTIONS>
|
224 |
+
|
225 |
+
Please take into account the expert suggestions when editing the translation. Edit the translation by ensuring:
|
226 |
+
|
227 |
+
(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),
|
228 |
+
(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules and ensuring there are no unnecessary repetitions), \
|
229 |
+
(iii) style (by ensuring the translations reflect the style of the source text)
|
230 |
+
(iv) terminology (inappropriate for context, inconsistent use), or
|
231 |
+
(v) other errors.
|
232 |
+
|
233 |
+
Output only the new translation and nothing else."""
|
234 |
+
|
235 |
+
translation_2 = get_completion(prompt, system_message)
|
236 |
+
|
237 |
+
return translation_2
|
238 |
+
|
239 |
+
|
240 |
+
def one_chunk_translate_text(
|
241 |
+
source_lang: str, target_lang: str, source_text: str, country: str = ""
|
242 |
+
) -> str:
|
243 |
+
"""
|
244 |
+
Translate a single chunk of text from the source language to the target language.
|
245 |
+
|
246 |
+
This function performs a two-step translation process:
|
247 |
+
1. Get an initial translation of the source text.
|
248 |
+
2. Reflect on the initial translation and generate an improved translation.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
source_lang (str): The source language of the text.
|
252 |
+
target_lang (str): The target language for the translation.
|
253 |
+
source_text (str): The text to be translated.
|
254 |
+
country (str): Country specified for target language.
|
255 |
+
Returns:
|
256 |
+
str: The improved translation of the source text.
|
257 |
+
"""
|
258 |
+
translation_1 = one_chunk_initial_translation(
|
259 |
+
source_lang, target_lang, source_text
|
260 |
+
)
|
261 |
+
|
262 |
+
reflection = one_chunk_reflect_on_translation(
|
263 |
+
source_lang, target_lang, source_text, translation_1, country
|
264 |
+
)
|
265 |
+
translation_2 = one_chunk_improve_translation(
|
266 |
+
source_lang, target_lang, source_text, translation_1, reflection
|
267 |
+
)
|
268 |
+
|
269 |
+
return translation_2
|
270 |
+
|
271 |
+
|
272 |
+
def num_tokens_in_string(
|
273 |
+
input_str: str, encoding_name: str = "cl100k_base"
|
274 |
+
) -> int:
|
275 |
+
"""
|
276 |
+
Calculate the number of tokens in a given string using a specified encoding.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
str (str): The input string to be tokenized.
|
280 |
+
encoding_name (str, optional): The name of the encoding to use. Defaults to "cl100k_base",
|
281 |
+
which is the most commonly used encoder (used by GPT-4).
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
int: The number of tokens in the input string.
|
285 |
+
|
286 |
+
Example:
|
287 |
+
>>> text = "Hello, how are you?"
|
288 |
+
>>> num_tokens = num_tokens_in_string(text)
|
289 |
+
>>> print(num_tokens)
|
290 |
+
5
|
291 |
+
"""
|
292 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
293 |
+
num_tokens = len(encoding.encode(input_str))
|
294 |
+
return num_tokens
|
295 |
+
|
296 |
+
|
297 |
+
def multichunk_initial_translation(
|
298 |
+
source_lang: str, target_lang: str, source_text_chunks: List[str]
|
299 |
+
) -> List[str]:
|
300 |
+
"""
|
301 |
+
Translate a text in multiple chunks from the source language to the target language.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
source_lang (str): The source language of the text.
|
305 |
+
target_lang (str): The target language for translation.
|
306 |
+
source_text_chunks (List[str]): A list of text chunks to be translated.
|
307 |
+
|
308 |
+
Returns:
|
309 |
+
List[str]: A list of translated text chunks.
|
310 |
+
"""
|
311 |
+
|
312 |
+
system_message = f"You are an expert linguist, specializing in translation from {source_lang} to {target_lang}."
|
313 |
+
|
314 |
+
translation_prompt = """Your task is provide a professional translation from {source_lang} to {target_lang} of PART of a text.
|
315 |
+
|
316 |
+
The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>. Translate only the part within the source text
|
317 |
+
delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS>. You can use the rest of the source text as context, but do not translate any
|
318 |
+
of the other text. Do not output anything other than the translation of the indicated part of the text.
|
319 |
+
|
320 |
+
<SOURCE_TEXT>
|
321 |
+
{tagged_text}
|
322 |
+
</SOURCE_TEXT>
|
323 |
+
|
324 |
+
To reiterate, you should translate only this part of the text, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:
|
325 |
+
<TRANSLATE_THIS>
|
326 |
+
{chunk_to_translate}
|
327 |
+
</TRANSLATE_THIS>
|
328 |
+
|
329 |
+
Output only the translation of the portion you are asked to translate, and nothing else.
|
330 |
+
"""
|
331 |
+
|
332 |
+
translation_chunks = []
|
333 |
+
for i in range(len(source_text_chunks)):
|
334 |
+
# Will translate chunk i
|
335 |
+
tagged_text = (
|
336 |
+
"".join(source_text_chunks[0:i])
|
337 |
+
+ "<TRANSLATE_THIS>"
|
338 |
+
+ source_text_chunks[i]
|
339 |
+
+ "</TRANSLATE_THIS>"
|
340 |
+
+ "".join(source_text_chunks[i + 1 :])
|
341 |
+
)
|
342 |
+
|
343 |
+
prompt = translation_prompt.format(
|
344 |
+
source_lang=source_lang,
|
345 |
+
target_lang=target_lang,
|
346 |
+
tagged_text=tagged_text,
|
347 |
+
chunk_to_translate=source_text_chunks[i],
|
348 |
+
)
|
349 |
+
|
350 |
+
translation = get_completion(prompt, system_message=system_message)
|
351 |
+
translation_chunks.append(translation)
|
352 |
+
|
353 |
+
return translation_chunks
|
354 |
+
|
355 |
+
|
356 |
+
def multichunk_reflect_on_translation(
|
357 |
+
source_lang: str,
|
358 |
+
target_lang: str,
|
359 |
+
source_text_chunks: List[str],
|
360 |
+
translation_1_chunks: List[str],
|
361 |
+
country: str = "",
|
362 |
+
) -> List[str]:
|
363 |
+
"""
|
364 |
+
Provides constructive criticism and suggestions for improving a partial translation.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
source_lang (str): The source language of the text.
|
368 |
+
target_lang (str): The target language of the translation.
|
369 |
+
source_text_chunks (List[str]): The source text divided into chunks.
|
370 |
+
translation_1_chunks (List[str]): The translated chunks corresponding to the source text chunks.
|
371 |
+
country (str): Country specified for target language.
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
List[str]: A list of reflections containing suggestions for improving each translated chunk.
|
375 |
+
"""
|
376 |
+
|
377 |
+
system_message = f"You are an expert linguist specializing in translation from {source_lang} to {target_lang}. \
|
378 |
+
You will be provided with a source text and its translation and your goal is to improve the translation."
|
379 |
+
|
380 |
+
if country != "":
|
381 |
+
reflection_prompt = """Your task is to carefully read a source text and part of a translation of that text from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions for improving the translation.
|
382 |
+
The final style and tone of the translation should match the style of {target_lang} colloquially spoken in {country}.
|
383 |
+
|
384 |
+
The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>, and the part that has been translated
|
385 |
+
is delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS> within the source text. You can use the rest of the source text
|
386 |
+
as context for critiquing the translated part.
|
387 |
+
|
388 |
+
<SOURCE_TEXT>
|
389 |
+
{tagged_text}
|
390 |
+
</SOURCE_TEXT>
|
391 |
+
|
392 |
+
To reiterate, only part of the text is being translated, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:
|
393 |
+
<TRANSLATE_THIS>
|
394 |
+
{chunk_to_translate}
|
395 |
+
</TRANSLATE_THIS>
|
396 |
+
|
397 |
+
The translation of the indicated part, delimited below by <TRANSLATION> and </TRANSLATION>, is as follows:
|
398 |
+
<TRANSLATION>
|
399 |
+
{translation_1_chunk}
|
400 |
+
</TRANSLATION>
|
401 |
+
|
402 |
+
When writing suggestions, pay attention to whether there are ways to improve the translation's:\n\
|
403 |
+
(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\
|
404 |
+
(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\
|
405 |
+
(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\
|
406 |
+
(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\
|
407 |
+
|
408 |
+
Write a list of specific, helpful and constructive suggestions for improving the translation.
|
409 |
+
Each suggestion should address one specific part of the translation.
|
410 |
+
Output only the suggestions and nothing else."""
|
411 |
+
|
412 |
+
else:
|
413 |
+
reflection_prompt = """Your task is to carefully read a source text and part of a translation of that text from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions for improving the translation.
|
414 |
+
|
415 |
+
The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>, and the part that has been translated
|
416 |
+
is delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS> within the source text. You can use the rest of the source text
|
417 |
+
as context for critiquing the translated part.
|
418 |
+
|
419 |
+
<SOURCE_TEXT>
|
420 |
+
{tagged_text}
|
421 |
+
</SOURCE_TEXT>
|
422 |
+
|
423 |
+
To reiterate, only part of the text is being translated, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:
|
424 |
+
<TRANSLATE_THIS>
|
425 |
+
{chunk_to_translate}
|
426 |
+
</TRANSLATE_THIS>
|
427 |
+
|
428 |
+
The translation of the indicated part, delimited below by <TRANSLATION> and </TRANSLATION>, is as follows:
|
429 |
+
<TRANSLATION>
|
430 |
+
{translation_1_chunk}
|
431 |
+
</TRANSLATION>
|
432 |
+
|
433 |
+
When writing suggestions, pay attention to whether there are ways to improve the translation's:\n\
|
434 |
+
(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\
|
435 |
+
(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\
|
436 |
+
(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\
|
437 |
+
(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\
|
438 |
+
|
439 |
+
Write a list of specific, helpful and constructive suggestions for improving the translation.
|
440 |
+
Each suggestion should address one specific part of the translation.
|
441 |
+
Output only the suggestions and nothing else."""
|
442 |
+
|
443 |
+
reflection_chunks = []
|
444 |
+
for i in range(len(source_text_chunks)):
|
445 |
+
# Will translate chunk i
|
446 |
+
tagged_text = (
|
447 |
+
"".join(source_text_chunks[0:i])
|
448 |
+
+ "<TRANSLATE_THIS>"
|
449 |
+
+ source_text_chunks[i]
|
450 |
+
+ "</TRANSLATE_THIS>"
|
451 |
+
+ "".join(source_text_chunks[i + 1 :])
|
452 |
+
)
|
453 |
+
if country != "":
|
454 |
+
prompt = reflection_prompt.format(
|
455 |
+
source_lang=source_lang,
|
456 |
+
target_lang=target_lang,
|
457 |
+
tagged_text=tagged_text,
|
458 |
+
chunk_to_translate=source_text_chunks[i],
|
459 |
+
translation_1_chunk=translation_1_chunks[i],
|
460 |
+
country=country,
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
prompt = reflection_prompt.format(
|
464 |
+
source_lang=source_lang,
|
465 |
+
target_lang=target_lang,
|
466 |
+
tagged_text=tagged_text,
|
467 |
+
chunk_to_translate=source_text_chunks[i],
|
468 |
+
translation_1_chunk=translation_1_chunks[i],
|
469 |
+
)
|
470 |
+
|
471 |
+
reflection = get_completion(prompt, system_message=system_message)
|
472 |
+
reflection_chunks.append(reflection)
|
473 |
+
|
474 |
+
return reflection_chunks
|
475 |
+
|
476 |
+
|
477 |
+
def multichunk_improve_translation(
|
478 |
+
source_lang: str,
|
479 |
+
target_lang: str,
|
480 |
+
source_text_chunks: List[str],
|
481 |
+
translation_1_chunks: List[str],
|
482 |
+
reflection_chunks: List[str],
|
483 |
+
) -> List[str]:
|
484 |
+
"""
|
485 |
+
Improves the translation of a text from source language to target language by considering expert suggestions.
|
486 |
+
|
487 |
+
Args:
|
488 |
+
source_lang (str): The source language of the text.
|
489 |
+
target_lang (str): The target language for translation.
|
490 |
+
source_text_chunks (List[str]): The source text divided into chunks.
|
491 |
+
translation_1_chunks (List[str]): The initial translation of each chunk.
|
492 |
+
reflection_chunks (List[str]): Expert suggestions for improving each translated chunk.
|
493 |
+
|
494 |
+
Returns:
|
495 |
+
List[str]: The improved translation of each chunk.
|
496 |
+
"""
|
497 |
+
|
498 |
+
system_message = f"You are an expert linguist, specializing in translation editing from {source_lang} to {target_lang}."
|
499 |
+
|
500 |
+
improvement_prompt = """Your task is to carefully read, then improve, a translation from {source_lang} to {target_lang}, taking into
|
501 |
+
account a set of expert suggestions and constructive criticisms. Below, the source text, initial translation, and expert suggestions are provided.
|
502 |
+
|
503 |
+
The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>, and the part that has been translated
|
504 |
+
is delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS> within the source text. You can use the rest of the source text
|
505 |
+
as context, but need to provide a translation only of the part indicated by <TRANSLATE_THIS> and </TRANSLATE_THIS>.
|
506 |
+
|
507 |
+
<SOURCE_TEXT>
|
508 |
+
{tagged_text}
|
509 |
+
</SOURCE_TEXT>
|
510 |
+
|
511 |
+
To reiterate, only part of the text is being translated, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:
|
512 |
+
<TRANSLATE_THIS>
|
513 |
+
{chunk_to_translate}
|
514 |
+
</TRANSLATE_THIS>
|
515 |
+
|
516 |
+
The translation of the indicated part, delimited below by <TRANSLATION> and </TRANSLATION>, is as follows:
|
517 |
+
<TRANSLATION>
|
518 |
+
{translation_1_chunk}
|
519 |
+
</TRANSLATION>
|
520 |
+
|
521 |
+
The expert translations of the indicated part, delimited below by <EXPERT_SUGGESTIONS> and </EXPERT_SUGGESTIONS>, is as follows:
|
522 |
+
<EXPERT_SUGGESTIONS>
|
523 |
+
{reflection_chunk}
|
524 |
+
</EXPERT_SUGGESTIONS>
|
525 |
+
|
526 |
+
Taking into account the expert suggestions rewrite the translation to improve it, paying attention
|
527 |
+
to whether there are ways to improve the translation's
|
528 |
+
|
529 |
+
(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),
|
530 |
+
(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules and ensuring there are no unnecessary repetitions), \
|
531 |
+
(iii) style (by ensuring the translations reflect the style of the source text)
|
532 |
+
(iv) terminology (inappropriate for context, inconsistent use), or
|
533 |
+
(v) other errors.
|
534 |
+
|
535 |
+
Output only the new translation of the indicated part and nothing else."""
|
536 |
+
|
537 |
+
translation_2_chunks = []
|
538 |
+
for i in range(len(source_text_chunks)):
|
539 |
+
# Will translate chunk i
|
540 |
+
tagged_text = (
|
541 |
+
"".join(source_text_chunks[0:i])
|
542 |
+
+ "<TRANSLATE_THIS>"
|
543 |
+
+ source_text_chunks[i]
|
544 |
+
+ "</TRANSLATE_THIS>"
|
545 |
+
+ "".join(source_text_chunks[i + 1 :])
|
546 |
+
)
|
547 |
+
|
548 |
+
prompt = improvement_prompt.format(
|
549 |
+
source_lang=source_lang,
|
550 |
+
target_lang=target_lang,
|
551 |
+
tagged_text=tagged_text,
|
552 |
+
chunk_to_translate=source_text_chunks[i],
|
553 |
+
translation_1_chunk=translation_1_chunks[i],
|
554 |
+
reflection_chunk=reflection_chunks[i],
|
555 |
+
)
|
556 |
+
|
557 |
+
translation_2 = get_completion(prompt, system_message=system_message)
|
558 |
+
translation_2_chunks.append(translation_2)
|
559 |
+
|
560 |
+
return translation_2_chunks
|
561 |
+
|
562 |
+
|
563 |
+
def multichunk_translation(
|
564 |
+
source_lang, target_lang, source_text_chunks, country: str = ""
|
565 |
+
):
|
566 |
+
"""
|
567 |
+
Improves the translation of multiple text chunks based on the initial translation and reflection.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
source_lang (str): The source language of the text chunks.
|
571 |
+
target_lang (str): The target language for translation.
|
572 |
+
source_text_chunks (List[str]): The list of source text chunks to be translated.
|
573 |
+
translation_1_chunks (List[str]): The list of initial translations for each source text chunk.
|
574 |
+
reflection_chunks (List[str]): The list of reflections on the initial translations.
|
575 |
+
country (str): Country specified for target language
|
576 |
+
Returns:
|
577 |
+
List[str]: The list of improved translations for each source text chunk.
|
578 |
+
"""
|
579 |
+
|
580 |
+
translation_1_chunks = multichunk_initial_translation(
|
581 |
+
source_lang, target_lang, source_text_chunks
|
582 |
+
)
|
583 |
+
|
584 |
+
reflection_chunks = multichunk_reflect_on_translation(
|
585 |
+
source_lang,
|
586 |
+
target_lang,
|
587 |
+
source_text_chunks,
|
588 |
+
translation_1_chunks,
|
589 |
+
country,
|
590 |
+
)
|
591 |
+
|
592 |
+
translation_2_chunks = multichunk_improve_translation(
|
593 |
+
source_lang,
|
594 |
+
target_lang,
|
595 |
+
source_text_chunks,
|
596 |
+
translation_1_chunks,
|
597 |
+
reflection_chunks,
|
598 |
+
)
|
599 |
+
|
600 |
+
return translation_2_chunks
|
601 |
+
|
602 |
+
|
603 |
+
def calculate_chunk_size(token_count: int, token_limit: int) -> int:
|
604 |
+
"""
|
605 |
+
Calculate the chunk size based on the token count and token limit.
|
606 |
+
|
607 |
+
Args:
|
608 |
+
token_count (int): The total number of tokens.
|
609 |
+
token_limit (int): The maximum number of tokens allowed per chunk.
|
610 |
+
|
611 |
+
Returns:
|
612 |
+
int: The calculated chunk size.
|
613 |
+
|
614 |
+
Description:
|
615 |
+
This function calculates the chunk size based on the given token count and token limit.
|
616 |
+
If the token count is less than or equal to the token limit, the function returns the token count as the chunk size.
|
617 |
+
Otherwise, it calculates the number of chunks needed to accommodate all the tokens within the token limit.
|
618 |
+
The chunk size is determined by dividing the token limit by the number of chunks.
|
619 |
+
If there are remaining tokens after dividing the token count by the token limit,
|
620 |
+
the chunk size is adjusted by adding the remaining tokens divided by the number of chunks.
|
621 |
+
|
622 |
+
Example:
|
623 |
+
>>> calculate_chunk_size(1000, 500)
|
624 |
+
500
|
625 |
+
>>> calculate_chunk_size(1530, 500)
|
626 |
+
389
|
627 |
+
>>> calculate_chunk_size(2242, 500)
|
628 |
+
496
|
629 |
+
"""
|
630 |
+
|
631 |
+
if token_count <= token_limit:
|
632 |
+
return token_count
|
633 |
+
|
634 |
+
num_chunks = (token_count + token_limit - 1) // token_limit
|
635 |
+
chunk_size = token_count // num_chunks
|
636 |
+
|
637 |
+
remaining_tokens = token_count % token_limit
|
638 |
+
if remaining_tokens > 0:
|
639 |
+
chunk_size += remaining_tokens // num_chunks
|
640 |
+
|
641 |
+
return chunk_size
|
642 |
+
|
643 |
+
|
644 |
+
def translate(
|
645 |
+
source_lang,
|
646 |
+
target_lang,
|
647 |
+
source_text,
|
648 |
+
country,
|
649 |
+
max_tokens=MAX_TOKENS_PER_CHUNK,
|
650 |
+
):
|
651 |
+
"""Translate the source_text from source_lang to target_lang."""
|
652 |
+
|
653 |
+
num_tokens_in_text = num_tokens_in_string(source_text)
|
654 |
+
|
655 |
+
ic(num_tokens_in_text)
|
656 |
+
|
657 |
+
if num_tokens_in_text < max_tokens:
|
658 |
+
ic("Translating text as single chunk")
|
659 |
+
|
660 |
+
final_translation = one_chunk_translate_text(
|
661 |
+
source_lang, target_lang, source_text, country
|
662 |
+
)
|
663 |
+
|
664 |
+
return final_translation
|
665 |
+
|
666 |
+
else:
|
667 |
+
ic("Translating text as multiple chunks")
|
668 |
+
|
669 |
+
token_size = calculate_chunk_size(
|
670 |
+
token_count=num_tokens_in_text, token_limit=max_tokens
|
671 |
+
)
|
672 |
+
|
673 |
+
ic(token_size)
|
674 |
+
|
675 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
676 |
+
model_name="gpt-4",
|
677 |
+
chunk_size=token_size,
|
678 |
+
chunk_overlap=0,
|
679 |
+
)
|
680 |
+
|
681 |
+
source_text_chunks = text_splitter.split_text(source_text)
|
682 |
+
|
683 |
+
translation_2_chunks = multichunk_translation(
|
684 |
+
source_lang, target_lang, source_text_chunks, country
|
685 |
+
)
|
686 |
+
|
687 |
+
return "".join(translation_2_chunks)
|