File size: 7,065 Bytes
93d3903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import jiwer
_MODEL = None
_TOKENIZER = None
def bytelen(string):
"""Return the length of `string` in utf-8 bytes"""
return len(bytes(string, encoding='utf-8', errors='ignore'))
def take_bytes(words: list[str], n_bytes: int) -> tuple[list[str], list[str]]:
"""
Take `n_bytes` of words from a list of words `words`
Arguments:
words: A list of words
n_bytes: max size of words to take (in bytes)
Returns:
A tuple (head, tail) where `head` is max n_bytes,
`tail` is the remaining words
"""
current_n_bytes = 0
for i, word in enumerate(words):
if current_n_bytes + bytelen(word) > n_bytes:
return words[:i-1], words[i-1:]
current_n_bytes += bytelen(word) + 1 # add 1 to account for space between words
return words, []
def split(text, max_len, offset=0):
"""Split `text` in chunks of at most `max_len` UTF-8 bytes"""
words = text.split(' ')
chunks = []
if offset:
chunk, words = take_bytes(words, offset)
chunks.append(' '.join(chunk))
while words:
chunk, words = take_bytes(words, max_len)
chunks.append(' '.join(chunk))
return chunks
class TextMerger:
"""Class for merging texts."""
EMPTY = '🗌'
SPACE = '_'
def __init__(self, original: str, char_level=False):
"""
Arguments:
original: The original text.
"""
self.char_level = char_level
self.word_level = not char_level
self.original = self._process_incoming(original)
self.original_padded = self._pad_between_words(self.original)
self.candidates = [[] for _ in self.original_padded]
self.candidate_texts = []
self.alignments = []
def _pad_between_words(self, string: str) -> list[str]:
"""
Insert `EMPTY` constant between words in `string`.
Used for aligning suggested insertions.
Example:
'Hello world' -> [EMPTY, 'Hello', EMPTY, 'world', EMPTY]
"""
words = string.split(' ')
padded = [self.EMPTY]
for word in words:
padded.append(word)
padded.append(self.EMPTY)
return padded
def _process_incoming(self, text):
if self.char_level:
return ' '.join(text.replace(' ', self.SPACE))
return text.replace('\n', '\n ')
def _process_outgoing(self, words: list[str]):
if self.char_level:
return ''.join(words).replace(self.SPACE, ' ')
return ' '.join(words).replace('\n ', '\n')
def add_candidate_texts(self, texts: list[str]):
for text in texts:
self.add_candidate_text(text)
def add_candidate_text(self, text: str):
"""
Add `text` as a candidate correction of `original`
"""
# Bookkeeping
self.candidate_texts.append(text)
text = self._process_incoming(text)
jiwer_result = jiwer.process_words(
self.original,
text,
reference_transform = jiwer.Compose([jiwer.ReduceToListOfListOfWords()]),
hypothesis_transform = jiwer.Compose([jiwer.ReduceToListOfListOfWords()]))
self.alignments.append(jiwer_result)
# Work through the jiwer results and fill in the candidates list
text = jiwer_result.hypotheses[0] #text.split(' ')
for chunk in jiwer_result.alignments[0]:
x0, x1 = chunk.ref_start_idx, chunk.ref_end_idx
y0, y1 = chunk.hyp_start_idx, chunk.hyp_end_idx
if chunk.type == 'substitute':
# Append the suggested substitution to the candidate list
for i in range(x1-x0):
self.candidates[2*(x0+i)+1].extend(text[y0+i:y0+i+1])
# Insert the suggested insertion as a suggestion to
# the `EMPTY` item between words in the original
elif chunk.type == 'insert':
if self.char_level:
self.candidates[2*x0].append(''.join(text[y0:y1]))
else:
self.candidates[2*x0].append(' '.join(text[y0:y1]))
# This word is suggested to be deleted, append EMPTY as a candidate
elif chunk.type == 'delete':
for i in range(x1-x0):
self.candidates[2*(x0+i)+1].append(self.EMPTY)
def combine(self) -> str:
"""
Combine the current candidate texts
"""
out = []
for original, candidates in zip(self.original_padded, self.candidates):
correction_candidate = self._best_candidate(candidates, original)
out.append(correction_candidate)
out = [word for word in out if word != self.EMPTY]
return self._process_outgoing(out)
def _best_candidate(self, candidates, original):
"""
Return the best candidate out of `candidates`
Uses majority vote to determine the best candidate.
Example: best_candidate(['Hello', 'Hello', 'Hallå']) -> 'Hello'
"""
if len(candidates) < self._majority():
return original
if len(set(candidates)) == 1:
return candidates[0]
if self.word_level:
tm = TextMerger(original, char_level=True)
tm.add_candidate_texts(candidates)
return tm.combine()
else:
candidate, n_votes = max(((candidate, candidates.count(candidate)) for candidate in candidates), key=lambda x: x[1])
return candidate if n_votes >= self._majority() else original
def _majority(self):
return 1 + len(self.candidate_texts) // 2
def process(text: str, n_candidates: int = 1):
if n_candidates == 1:
splits = split(text, 127)
return ' '.join(generate(splits))
combiner = TextMerger(text)
splits = [split(text, 127, 127 * i // n_candidates) for i in range(n_candidates)]
outputs = [generate(lines) for lines in splits]
for output in outputs:
combiner.add_candidate_text(' '.join(output))
return combiner.combine()
def generate(texts):
inputs = _TOKENIZER(texts, padding=True, truncation=True, return_tensors='pt')
output_ids = _MODEL.generate(**inputs)
return _TOKENIZER.batch_decode(output_ids, skip_special_tokens=True)
def diff(old: str, new: str):
"""Display the difference between old and new"""
result = jiwer.process_characters(old, new)
output = ''
for chunk in result.alignments[0]:
old_chars = ''.join(old[chunk.ref_start_idx:chunk.ref_end_idx])
new_chars = ''.join(new[chunk.hyp_start_idx:chunk.hyp_end_idx])
if chunk.type == 'equal':
output += old_chars
continue
if old_chars and not old_chars.isspace():
output += f':red[~~{old_chars.strip()}~~]'
output += f':green[{new_chars}]'
return output
def set_model(model, tokenizer):
global _MODEL, _TOKENIZER
_MODEL = model
_TOKENIZER = tokenizer
|