Upload 3 files
Browse files- app.py +89 -0
- post_ocr.py +218 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
+
import post_ocr
|
4 |
+
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
return T5ForConditionalGeneration.from_pretrained('viklofg/swedish-ocr-correction')
|
10 |
+
model = load_model()
|
11 |
+
|
12 |
+
|
13 |
+
# Load tokenizer
|
14 |
+
@st.cache_resource
|
15 |
+
def load_tokenizer():
|
16 |
+
return AutoTokenizer.from_pretrained('google/byt5-small')
|
17 |
+
tokenizer = load_tokenizer()
|
18 |
+
|
19 |
+
|
20 |
+
# Set model and tokenizer
|
21 |
+
post_ocr.set_model(model, tokenizer)
|
22 |
+
|
23 |
+
|
24 |
+
# Title
|
25 |
+
st.title(':memo: Swedish OCR correction')
|
26 |
+
# Input and output areas
|
27 |
+
tab1, tab2 = st.tabs(["Text input", "From file"])
|
28 |
+
|
29 |
+
|
30 |
+
def clean_inputs():
|
31 |
+
st.session_state.inputs = {'tab1': None, 'tab2': None}
|
32 |
+
|
33 |
+
if 'inputs' not in st.session_state:
|
34 |
+
clean_inputs()
|
35 |
+
|
36 |
+
|
37 |
+
def clean_outputs():
|
38 |
+
st.session_state.outputs = {'tab1': None, 'tab2': None}
|
39 |
+
|
40 |
+
if 'outputs' not in st.session_state:
|
41 |
+
clean_outputs()
|
42 |
+
|
43 |
+
|
44 |
+
# Sidebar (settings and stuff)
|
45 |
+
with st.sidebar:
|
46 |
+
st.header('Settings')
|
47 |
+
n_candidates = st.number_input('Overlap', help='A higher value may lead to better quality, but takes longer time', value=1, min_value=1, max_value=7, step=2, on_change=clean_inputs)
|
48 |
+
|
49 |
+
st.header('Output')
|
50 |
+
show_changes = st.toggle('Show changes')
|
51 |
+
|
52 |
+
|
53 |
+
def handle_input(input_, id_):
|
54 |
+
|
55 |
+
with st.container(border=True):
|
56 |
+
st.caption('Output')
|
57 |
+
|
58 |
+
# Only update the output if the input has been updated
|
59 |
+
if input_ and st.session_state.inputs[id_] != input_:
|
60 |
+
st.session_state.inputs[id_] = input_
|
61 |
+
with st.spinner('Generating...'):
|
62 |
+
output = post_ocr.process(input_, n_candidates)
|
63 |
+
st.session_state.outputs[id_] = output
|
64 |
+
|
65 |
+
# Display output
|
66 |
+
output = st.session_state.outputs[id_]
|
67 |
+
if output is not None:
|
68 |
+
st.write(post_ocr.diff(input_, output) if show_changes else output)
|
69 |
+
|
70 |
+
|
71 |
+
# Manual entry tab
|
72 |
+
with tab1:
|
73 |
+
typed_input = st.text_area('Input OCR', placeholder='Enter OCR generated text', label_visibility='collapsed')
|
74 |
+
handle_input(typed_input, 'tab1')
|
75 |
+
|
76 |
+
|
77 |
+
# File upload tab
|
78 |
+
with tab2:
|
79 |
+
uploaded_file = st.file_uploader('Choose a file', type='.txt')
|
80 |
+
|
81 |
+
if uploaded_file is not None:
|
82 |
+
text = uploaded_file.getvalue().decode('utf-8')
|
83 |
+
|
84 |
+
# Display file content
|
85 |
+
with st.container(border=True):
|
86 |
+
st.caption(f'File content')
|
87 |
+
st.write(text)
|
88 |
+
|
89 |
+
handle_input(text, 'tab2')
|
post_ocr.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jiwer
|
2 |
+
|
3 |
+
|
4 |
+
_MODEL = None
|
5 |
+
_TOKENIZER = None
|
6 |
+
|
7 |
+
|
8 |
+
def bytelen(string):
|
9 |
+
"""Return the length of `string` in utf-8 bytes"""
|
10 |
+
return len(bytes(string, encoding='utf-8', errors='ignore'))
|
11 |
+
|
12 |
+
|
13 |
+
def take_bytes(words: list[str], n_bytes: int) -> tuple[list[str], list[str]]:
|
14 |
+
"""
|
15 |
+
Take `n_bytes` of words from a list of words `words`
|
16 |
+
|
17 |
+
Arguments:
|
18 |
+
words: A list of words
|
19 |
+
n_bytes: max size of words to take (in bytes)
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
A tuple (head, tail) where `head` is max n_bytes,
|
23 |
+
`tail` is the remaining words
|
24 |
+
"""
|
25 |
+
current_n_bytes = 0
|
26 |
+
for i, word in enumerate(words):
|
27 |
+
if current_n_bytes + bytelen(word) > n_bytes:
|
28 |
+
return words[:i-1], words[i-1:]
|
29 |
+
current_n_bytes += bytelen(word) + 1 # add 1 to account for space between words
|
30 |
+
return words, []
|
31 |
+
|
32 |
+
|
33 |
+
def split(text, max_len, offset=0):
|
34 |
+
"""Split `text` in chunks of at most `max_len` UTF-8 bytes"""
|
35 |
+
words = text.split(' ')
|
36 |
+
chunks = []
|
37 |
+
|
38 |
+
if offset:
|
39 |
+
chunk, words = take_bytes(words, offset)
|
40 |
+
chunks.append(' '.join(chunk))
|
41 |
+
|
42 |
+
while words:
|
43 |
+
chunk, words = take_bytes(words, max_len)
|
44 |
+
chunks.append(' '.join(chunk))
|
45 |
+
|
46 |
+
return chunks
|
47 |
+
|
48 |
+
|
49 |
+
class TextMerger:
|
50 |
+
"""Class for merging texts."""
|
51 |
+
|
52 |
+
EMPTY = '🗌'
|
53 |
+
SPACE = '_'
|
54 |
+
|
55 |
+
def __init__(self, original: str, char_level=False):
|
56 |
+
"""
|
57 |
+
Arguments:
|
58 |
+
original: The original text.
|
59 |
+
"""
|
60 |
+
|
61 |
+
self.char_level = char_level
|
62 |
+
self.word_level = not char_level
|
63 |
+
self.original = self._process_incoming(original)
|
64 |
+
self.original_padded = self._pad_between_words(self.original)
|
65 |
+
self.candidates = [[] for _ in self.original_padded]
|
66 |
+
self.candidate_texts = []
|
67 |
+
self.alignments = []
|
68 |
+
|
69 |
+
def _pad_between_words(self, string: str) -> list[str]:
|
70 |
+
"""
|
71 |
+
Insert `EMPTY` constant between words in `string`.
|
72 |
+
Used for aligning suggested insertions.
|
73 |
+
|
74 |
+
Example:
|
75 |
+
'Hello world' -> [EMPTY, 'Hello', EMPTY, 'world', EMPTY]
|
76 |
+
"""
|
77 |
+
words = string.split(' ')
|
78 |
+
padded = [self.EMPTY]
|
79 |
+
for word in words:
|
80 |
+
padded.append(word)
|
81 |
+
padded.append(self.EMPTY)
|
82 |
+
return padded
|
83 |
+
|
84 |
+
def _process_incoming(self, text):
|
85 |
+
if self.char_level:
|
86 |
+
return ' '.join(text.replace(' ', self.SPACE))
|
87 |
+
return text.replace('\n', '\n ')
|
88 |
+
|
89 |
+
def _process_outgoing(self, words: list[str]):
|
90 |
+
if self.char_level:
|
91 |
+
return ''.join(words).replace(self.SPACE, ' ')
|
92 |
+
return ' '.join(words).replace('\n ', '\n')
|
93 |
+
|
94 |
+
def add_candidate_texts(self, texts: list[str]):
|
95 |
+
for text in texts:
|
96 |
+
self.add_candidate_text(text)
|
97 |
+
|
98 |
+
def add_candidate_text(self, text: str):
|
99 |
+
"""
|
100 |
+
Add `text` as a candidate correction of `original`
|
101 |
+
"""
|
102 |
+
# Bookkeeping
|
103 |
+
self.candidate_texts.append(text)
|
104 |
+
text = self._process_incoming(text)
|
105 |
+
jiwer_result = jiwer.process_words(
|
106 |
+
self.original,
|
107 |
+
text,
|
108 |
+
reference_transform = jiwer.Compose([jiwer.ReduceToListOfListOfWords()]),
|
109 |
+
hypothesis_transform = jiwer.Compose([jiwer.ReduceToListOfListOfWords()]))
|
110 |
+
|
111 |
+
self.alignments.append(jiwer_result)
|
112 |
+
|
113 |
+
# Work through the jiwer results and fill in the candidates list
|
114 |
+
text = jiwer_result.hypotheses[0] #text.split(' ')
|
115 |
+
for chunk in jiwer_result.alignments[0]:
|
116 |
+
x0, x1 = chunk.ref_start_idx, chunk.ref_end_idx
|
117 |
+
y0, y1 = chunk.hyp_start_idx, chunk.hyp_end_idx
|
118 |
+
|
119 |
+
if chunk.type == 'substitute':
|
120 |
+
# Append the suggested substitution to the candidate list
|
121 |
+
for i in range(x1-x0):
|
122 |
+
self.candidates[2*(x0+i)+1].extend(text[y0+i:y0+i+1])
|
123 |
+
|
124 |
+
# Insert the suggested insertion as a suggestion to
|
125 |
+
# the `EMPTY` item between words in the original
|
126 |
+
elif chunk.type == 'insert':
|
127 |
+
if self.char_level:
|
128 |
+
self.candidates[2*x0].append(''.join(text[y0:y1]))
|
129 |
+
else:
|
130 |
+
self.candidates[2*x0].append(' '.join(text[y0:y1]))
|
131 |
+
|
132 |
+
# This word is suggested to be deleted, append EMPTY as a candidate
|
133 |
+
elif chunk.type == 'delete':
|
134 |
+
for i in range(x1-x0):
|
135 |
+
self.candidates[2*(x0+i)+1].append(self.EMPTY)
|
136 |
+
|
137 |
+
|
138 |
+
def combine(self) -> str:
|
139 |
+
"""
|
140 |
+
Combine the current candidate texts
|
141 |
+
"""
|
142 |
+
out = []
|
143 |
+
for original, candidates in zip(self.original_padded, self.candidates):
|
144 |
+
correction_candidate = self._best_candidate(candidates, original)
|
145 |
+
out.append(correction_candidate)
|
146 |
+
out = [word for word in out if word != self.EMPTY]
|
147 |
+
return self._process_outgoing(out)
|
148 |
+
|
149 |
+
|
150 |
+
def _best_candidate(self, candidates, original):
|
151 |
+
"""
|
152 |
+
Return the best candidate out of `candidates`
|
153 |
+
|
154 |
+
Uses majority vote to determine the best candidate.
|
155 |
+
Example: best_candidate(['Hello', 'Hello', 'Hallå']) -> 'Hello'
|
156 |
+
"""
|
157 |
+
if len(candidates) < self._majority():
|
158 |
+
return original
|
159 |
+
|
160 |
+
if len(set(candidates)) == 1:
|
161 |
+
return candidates[0]
|
162 |
+
|
163 |
+
if self.word_level:
|
164 |
+
tm = TextMerger(original, char_level=True)
|
165 |
+
tm.add_candidate_texts(candidates)
|
166 |
+
return tm.combine()
|
167 |
+
|
168 |
+
else:
|
169 |
+
candidate, n_votes = max(((candidate, candidates.count(candidate)) for candidate in candidates), key=lambda x: x[1])
|
170 |
+
return candidate if n_votes >= self._majority() else original
|
171 |
+
|
172 |
+
def _majority(self):
|
173 |
+
return 1 + len(self.candidate_texts) // 2
|
174 |
+
|
175 |
+
|
176 |
+
def process(text: str, n_candidates: int = 1):
|
177 |
+
|
178 |
+
if n_candidates == 1:
|
179 |
+
splits = split(text, 127)
|
180 |
+
return ' '.join(generate(splits))
|
181 |
+
|
182 |
+
combiner = TextMerger(text)
|
183 |
+
splits = [split(text, 127, 127 * i // n_candidates) for i in range(n_candidates)]
|
184 |
+
outputs = [generate(lines) for lines in splits]
|
185 |
+
for output in outputs:
|
186 |
+
combiner.add_candidate_text(' '.join(output))
|
187 |
+
return combiner.combine()
|
188 |
+
|
189 |
+
|
190 |
+
def generate(texts):
|
191 |
+
inputs = _TOKENIZER(texts, padding=True, truncation=True, return_tensors='pt')
|
192 |
+
output_ids = _MODEL.generate(**inputs)
|
193 |
+
return _TOKENIZER.batch_decode(output_ids, skip_special_tokens=True)
|
194 |
+
|
195 |
+
|
196 |
+
def diff(old: str, new: str):
|
197 |
+
"""Display the difference between old and new"""
|
198 |
+
result = jiwer.process_characters(old, new)
|
199 |
+
output = ''
|
200 |
+
for chunk in result.alignments[0]:
|
201 |
+
old_chars = ''.join(old[chunk.ref_start_idx:chunk.ref_end_idx])
|
202 |
+
new_chars = ''.join(new[chunk.hyp_start_idx:chunk.hyp_end_idx])
|
203 |
+
|
204 |
+
if chunk.type == 'equal':
|
205 |
+
output += old_chars
|
206 |
+
continue
|
207 |
+
|
208 |
+
if old_chars and not old_chars.isspace():
|
209 |
+
output += f':red[~~{old_chars.strip()}~~]'
|
210 |
+
|
211 |
+
output += f':green[{new_chars}]'
|
212 |
+
return output
|
213 |
+
|
214 |
+
|
215 |
+
def set_model(model, tokenizer):
|
216 |
+
global _MODEL, _TOKENIZER
|
217 |
+
_MODEL = model
|
218 |
+
_TOKENIZER = tokenizer
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
jiwer
|