Spaces:
Running
Running
add-support-for-new-vidore-result-format
#2
by
tonywu71
- opened
- data/model_handler.py +34 -17
- ruff.toml +7 -0
data/model_handler.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
from typing import Dict
|
4 |
-
|
5 |
import pandas as pd
|
6 |
-
from
|
|
|
|
|
7 |
|
8 |
BLOCKLIST = ["impactframes"]
|
9 |
|
|
|
10 |
class ModelHandler:
|
11 |
def __init__(self, model_infos_path="model_infos.json"):
|
12 |
self.api = HfApi()
|
@@ -23,26 +26,40 @@ class ModelHandler:
|
|
23 |
with open(self.model_infos_path, "w") as f:
|
24 |
json.dump(self.model_infos, f)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
27 |
models = self.api.list_models(filter="vidore")
|
28 |
repositories = [model.modelId for model in models] # type: ignore
|
29 |
|
30 |
for repo_id in repositories:
|
31 |
-
org_name = repo_id.split(
|
32 |
if org_name in BLOCKLIST:
|
33 |
continue
|
34 |
-
|
35 |
-
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json') or f == 'results.json']
|
36 |
|
37 |
-
|
|
|
38 |
if len(files) == 0:
|
39 |
continue
|
40 |
else:
|
41 |
for file in files:
|
42 |
-
if file.endswith(
|
43 |
-
model_name = repo_id.replace(
|
44 |
else:
|
45 |
-
model_name = file.split(
|
46 |
|
47 |
if model_name not in self.model_infos:
|
48 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
@@ -53,15 +70,15 @@ class ModelHandler:
|
|
53 |
with open(result_path) as f:
|
54 |
results = json.load(f)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
|
59 |
self.model_infos[model_name] = {"meta": meta, "results": results}
|
60 |
except Exception as e:
|
61 |
print(f"Error loading {model_name} - {e}")
|
62 |
continue
|
63 |
|
64 |
-
#self._save_model_infos()
|
65 |
|
66 |
model_res = {}
|
67 |
if len(self.model_infos) > 0:
|
@@ -69,7 +86,7 @@ class ModelHandler:
|
|
69 |
res = self.model_infos[model]["results"]
|
70 |
dataset_res = {}
|
71 |
for dataset in res.keys():
|
72 |
-
#for each keyword check if it is in the dataset name if not continue
|
73 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
74 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
75 |
continue
|
@@ -77,9 +94,9 @@ class ModelHandler:
|
|
77 |
dataset_nickname = get_datasets_nickname(dataset)
|
78 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
79 |
model_res[model] = dataset_res
|
80 |
-
|
81 |
df = pd.DataFrame(model_res).T
|
82 |
-
|
83 |
return df
|
84 |
return pd.DataFrame()
|
85 |
|
@@ -104,7 +121,7 @@ class ModelHandler:
|
|
104 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
105 |
df.sort_values("Average", ascending=False, inplace=True)
|
106 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
107 |
-
#multiply values by 100 if they are floats and round to 1 decimal place
|
108 |
for col in df.columns:
|
109 |
if df[col].dtype == "float64":
|
110 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from typing import Any, Dict, Tuple
|
4 |
+
|
5 |
import pandas as pd
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
7 |
+
|
8 |
+
from .dataset_handler import VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
9 |
|
10 |
BLOCKLIST = ["impactframes"]
|
11 |
|
12 |
+
|
13 |
class ModelHandler:
|
14 |
def __init__(self, model_infos_path="model_infos.json"):
|
15 |
self.api = HfApi()
|
|
|
26 |
with open(self.model_infos_path, "w") as f:
|
27 |
json.dump(self.model_infos, f)
|
28 |
|
29 |
+
def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
|
30 |
+
return "metadata" in results and "metrics" in results
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def convert_new_vidore_results_format(results: Dict[str, Any]) -> Tuple[str, str, Dict[str, Any]]:
|
34 |
+
if "metadata" not in results:
|
35 |
+
raise KeyError("results does not contain a 'metadata' key.")
|
36 |
+
if "metrics" not in results:
|
37 |
+
raise KeyError("results does not contain a 'metrics' key.")
|
38 |
+
|
39 |
+
metadata = results["metadata"]
|
40 |
+
metrics = results["metrics"]
|
41 |
+
|
42 |
+
return metadata["timestamp"], metadata["vidore_benchmark_hash"], metrics
|
43 |
+
|
44 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
45 |
models = self.api.list_models(filter="vidore")
|
46 |
repositories = [model.modelId for model in models] # type: ignore
|
47 |
|
48 |
for repo_id in repositories:
|
49 |
+
org_name = repo_id.split("/")[0]
|
50 |
if org_name in BLOCKLIST:
|
51 |
continue
|
|
|
|
|
52 |
|
53 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
54 |
+
|
55 |
if len(files) == 0:
|
56 |
continue
|
57 |
else:
|
58 |
for file in files:
|
59 |
+
if file.endswith("results.json"):
|
60 |
+
model_name = repo_id.replace("/", "_")
|
61 |
else:
|
62 |
+
model_name = file.split("_metrics.json")[0]
|
63 |
|
64 |
if model_name not in self.model_infos:
|
65 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
|
|
70 |
with open(result_path) as f:
|
71 |
results = json.load(f)
|
72 |
|
73 |
+
if self._are_results_in_new_vidore_format(results):
|
74 |
+
timestamp, vidore_hash, results = self.convert_new_vidore_results_format(results)
|
75 |
|
76 |
self.model_infos[model_name] = {"meta": meta, "results": results}
|
77 |
except Exception as e:
|
78 |
print(f"Error loading {model_name} - {e}")
|
79 |
continue
|
80 |
|
81 |
+
# self._save_model_infos()
|
82 |
|
83 |
model_res = {}
|
84 |
if len(self.model_infos) > 0:
|
|
|
86 |
res = self.model_infos[model]["results"]
|
87 |
dataset_res = {}
|
88 |
for dataset in res.keys():
|
89 |
+
# for each keyword check if it is in the dataset name if not continue
|
90 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
91 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
92 |
continue
|
|
|
94 |
dataset_nickname = get_datasets_nickname(dataset)
|
95 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
96 |
model_res[model] = dataset_res
|
97 |
+
|
98 |
df = pd.DataFrame(model_res).T
|
99 |
+
|
100 |
return df
|
101 |
return pd.DataFrame()
|
102 |
|
|
|
121 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
122 |
df.sort_values("Average", ascending=False, inplace=True)
|
123 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
124 |
+
# multiply values by 100 if they are floats and round to 1 decimal place
|
125 |
for col in df.columns:
|
126 |
if df[col].dtype == "float64":
|
127 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
ruff.toml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
line-length = 120
|
2 |
+
|
3 |
+
[lint]
|
4 |
+
select = ["E", "F", "W", "I", "N"]
|
5 |
+
|
6 |
+
[lint.per-file-ignores]
|
7 |
+
"__init__.py" = ["F401"]
|