File size: 44,641 Bytes
371bfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a163762
371bfd9
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
import argparse
import datetime
import logging
import inspect
import math
import os
from typing import Optional, Union, Tuple, List, Callable, Dict
from omegaconf import OmegaConf

import torch
import torch.nn.functional as F
import torch.utils.checkpoint

import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer

from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.data.dataset import TuneAVideoDataset
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.util import save_videos_grid, ddim_inversion
from einops import rearrange

import cv2
import abc
import ptp_utils
import seq_aligner
import shutil
from torch.optim.adam import Adam
from PIL import Image
import numpy as np
import decord
decord.bridge.set_bridge('torch')

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

logger = get_logger(__name__, log_level="INFO")


def main(
    pretrained_model_path: str,
    output_dir: str,
    train_data: Dict,
    validation_data: Dict,
    validation_steps: int = 100,
    trainable_modules: Tuple[str] = (
        "attn1.to_q",
        "attn2.to_q",
        "attn_temp",
    ),
    train_batch_size: int = 1,
    max_train_steps: int = 500,
    learning_rate: float = 3e-5,
    scale_lr: bool = False,
    lr_scheduler: str = "constant",
    lr_warmup_steps: int = 0,
    adam_beta1: float = 0.9,
    adam_beta2: float = 0.999,
    adam_weight_decay: float = 1e-2,
    adam_epsilon: float = 1e-08,
    max_grad_norm: float = 1.0,
    gradient_accumulation_steps: int = 1,
    gradient_checkpointing: bool = True,
    checkpointing_steps: int = 500,
    resume_from_checkpoint: Optional[str] = None,
    mixed_precision: Optional[str] = "fp16",
    use_8bit_adam: bool = False,
    enable_xformers_memory_efficient_attention: bool = True,
    seed: Optional[int] = None,
    # pretrained_model_path: str,
    # image_path: str = None,
    # prompt: str = None,
    prompts: Tuple[str] = None,
    eq_params: Dict = None,
    save_name: str = None,
    is_word_swap: bool = None,
    blend_word: Tuple[str] = None,
    cross_replace_steps: float = 0.2,
    self_replace_steps: float = 0.5,
    video_len: int = 8,
    fast: bool = False,
    mixed_precision_p2p: str = 'fp32',
):
    *_, config = inspect.getargvalues(inspect.currentframe())

    accelerator = Accelerator(
        gradient_accumulation_steps=gradient_accumulation_steps,
        mixed_precision=mixed_precision,
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if seed is not None:
        set_seed(seed)

    # Handle the output folder creation
    if accelerator.is_main_process:
        # now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
        # output_dir = os.path.join(output_dir, now)
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(f"{output_dir}/samples", exist_ok=True)
        os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
        OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))

    # Load scheduler, tokenizer and models.
    noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
    vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
    unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")

    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    unet.requires_grad_(False)
    for name, module in unet.named_modules():
        if name.endswith(tuple(trainable_modules)):
            for params in module.parameters():
                params.requires_grad = True

    if enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    if gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if scale_lr:
        learning_rate = (
            learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    if use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    optimizer = optimizer_cls(
        unet.parameters(),
        lr=learning_rate,
        betas=(adam_beta1, adam_beta2),
        weight_decay=adam_weight_decay,
        eps=adam_epsilon,
    )

    # Get the training dataset
    train_dataset = TuneAVideoDataset(**train_data)

    # Preprocessing the dataset
    train_dataset.prompt_ids = tokenizer(
        train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids[0]

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=train_batch_size
    )

    # Get the validation pipeline
    validation_pipeline = TuneAVideoPipeline(
        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
        scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
    )
    validation_pipeline.enable_vae_slicing()
    ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
    ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)

    # Scheduler
    lr_scheduler = get_scheduler(
        lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
        num_training_steps=max_train_steps * gradient_accumulation_steps,
    )

    # Prepare everything with our `accelerator`.
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move text_encode and vae to gpu and cast to weight_dtype
    text_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
    # Afterwards we recalculate our number of training epochs
    num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("text2video-fine-tune")

    # Train!
    total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if resume_from_checkpoint:
        if resume_from_checkpoint != "latest":
            path = os.path.basename(resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(output_dir, path))
        global_step = int(path.split("-")[1])

        first_epoch = global_step // num_update_steps_per_epoch
        resume_step = global_step % num_update_steps_per_epoch

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")

    for epoch in range(first_epoch, num_train_epochs):
        unet.train()
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            # Skip steps until we reach the resumed step
            if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

            with accelerator.accumulate(unet):
                # Convert videos to latent space
                pixel_values = batch["pixel_values"].to(weight_dtype)
                video_length = pixel_values.shape[1]
                pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
                latents = vae.encode(pixel_values).latent_dist.sample()
                latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
                latents = latents * 0.18215

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each video
                timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
                encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]

                # Get the target for loss depending on the prediction type
                if noise_scheduler.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")

                # Predict the noise residual and compute loss
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
                train_loss += avg_loss.item() / gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if global_step % checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                if global_step % validation_steps == 0:
                    if accelerator.is_main_process:
                        samples = []
                        generator = torch.Generator(device=latents.device)
                        generator.manual_seed(seed)

                        ddim_inv_latent = None
                        if validation_data.use_inv_latent:
                            inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt")
                            ddim_inv_latent = ddim_inversion(
                                validation_pipeline, ddim_inv_scheduler, video_latent=latents,
                                num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype)
                            torch.save(ddim_inv_latent, inv_latents_path)

                        for idx, prompt in enumerate(validation_data.prompts):
                            sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
                                                         **validation_data).videos
                            save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif")
                            samples.append(sample)
                        samples = torch.concat(samples)
                        save_path = f"{output_dir}/samples/sample-{global_step}.gif"
                        save_videos_grid(samples, save_path)
                        logger.info(f"Saved samples to {save_path}")

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= max_train_steps:
                break

    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        pipeline = TuneAVideoPipeline.from_pretrained(
            pretrained_model_path,
            text_encoder=text_encoder,
            vae=vae,
            unet=unet,
        )
        pipeline.save_pretrained(output_dir)

    accelerator.end_training()

    # Video-P2P
    scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
    MY_TOKEN = ''
    LOW_RESOURCE = False
    NUM_DDIM_STEPS = 50
    GUIDANCE_SCALE = 7.5
    MAX_NUM_WORDS = 77
    device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')

    # need to adjust sometimes
    mask_th = (.3, .3)


    pretrained_model_path = output_dir
    image_path = train_data['video_path']
    prompt = train_data['prompt']
    # prompts = [prompt, ]
    output_folder = os.path.join(pretrained_model_path, 'results')
    if fast:
        save_name_1 = os.path.join(output_folder, 'inversion_fast.gif')
        save_name_2 = os.path.join(output_folder, '{}_fast.gif'.format(save_name))
    else:
        save_name_1 = os.path.join(output_folder, 'inversion.gif')
        save_name_2 = os.path.join(output_folder, '{}.gif'.format(save_name))
    if blend_word:
        blend_word = (((blend_word[0],), (blend_word[1],)))
    eq_params = dict(eq_params)
    prompts = list(prompts)
    cross_replace_steps = {'default_': cross_replace_steps,}

    weight_dtype = torch.float32
    if mixed_precision_p2p == "fp16":
        weight_dtype = torch.float16
    elif mixed_precision_p2p == "bf16":
        weight_dtype = torch.bfloat16

    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    # Load the tokenizer
    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    # Load models and create wrapper for stable diffusion
    text_encoder = CLIPTextModel.from_pretrained(
        pretrained_model_path,
        subfolder="text_encoder",
    ).to(device, dtype=weight_dtype)
    vae = AutoencoderKL.from_pretrained(
        pretrained_model_path,
        subfolder="vae",
    ).to(device, dtype=weight_dtype)
    unet = UNet3DConditionModel.from_pretrained(
        pretrained_model_path, subfolder="unet"
    ).to(device)
    ldm_stable = TuneAVideoPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
    ).to(device)

    try:
        ldm_stable.disable_xformers_memory_efficient_attention()
    except AttributeError:
        print("Attribute disable_xformers_memory_efficient_attention() is missing")
    tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
    # A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).

    class LocalBlend:
        
        def get_mask(self, maps, alpha, use_pool):
            k = 1
            maps = (maps * alpha).sum(-1).mean(2)
            if use_pool:
                maps = F.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
            mask = F.interpolate(maps, size=(x_t.shape[3:]))
            mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
            mask = mask.gt(self.th[1-int(use_pool)])
            mask = mask[:1] + mask
            return mask
        
        def __call__(self, x_t, attention_store, step):
            self.counter += 1
            if self.counter > self.start_blend:
                maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
                maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps]
                maps = torch.cat(maps, dim=2)
                mask = self.get_mask(maps, self.alpha_layers, True)
                if self.substruct_layers is not None:
                    maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
                    mask = mask * maps_sub
                mask = mask.float()
                mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1])
                x_t = x_t[:1] + mask * (x_t - x_t[:1])
            return x_t
        
        def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
            alpha_layers = torch.zeros(len(prompts),  1, 1, 1, 1, MAX_NUM_WORDS)
            for i, (prompt, words_) in enumerate(zip(prompts, words)):
                if type(words_) is str:
                    words_ = [words_]
                for word in words_:
                    ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
                    alpha_layers[i, :, :, :, :, ind] = 1
            
            if substruct_words is not None:
                substruct_layers = torch.zeros(len(prompts),  1, 1, 1, 1, MAX_NUM_WORDS)
                for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
                    if type(words_) is str:
                        words_ = [words_]
                    for word in words_:
                        ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
                        substruct_layers[i, :, :, :, :, ind] = 1
                self.substruct_layers = substruct_layers.to(device)
            else:
                self.substruct_layers = None
            self.alpha_layers = alpha_layers.to(device)
            self.start_blend = int(start_blend * NUM_DDIM_STEPS)
            self.counter = 0 
            self.th=th
            
            
    class EmptyControl:
        
        
        def step_callback(self, x_t):
            return x_t
        
        def between_steps(self):
            return
        
        def __call__(self, attn, is_cross: bool, place_in_unet: str):
            return attn

        
    class AttentionControl(abc.ABC):
        
        def step_callback(self, x_t):
            return x_t
        
        def between_steps(self):
            return
        
        @property
        def num_uncond_att_layers(self):
            return self.num_att_layers if LOW_RESOURCE else 0
        
        @abc.abstractmethod
        def forward (self, attn, is_cross: bool, place_in_unet: str):
            raise NotImplementedError

        def __call__(self, attn, is_cross: bool, place_in_unet: str):
            if self.cur_att_layer >= self.num_uncond_att_layers:
                if LOW_RESOURCE:
                    attn = self.forward(attn, is_cross, place_in_unet)
                else:
                    h = attn.shape[0]
                    attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
            self.cur_att_layer += 1
            if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
                self.cur_att_layer = 0
                self.cur_step += 1
                self.between_steps()
            return attn
        
        def reset(self):
            self.cur_step = 0
            self.cur_att_layer = 0

        def __init__(self):
            self.cur_step = 0
            self.num_att_layers = -1
            self.cur_att_layer = 0

    class SpatialReplace(EmptyControl):
        
        def step_callback(self, x_t):
            if self.cur_step < self.stop_inject:
                b = x_t.shape[0]
                x_t = x_t[:1].expand(b, *x_t.shape[1:])
            return x_t

        def __init__(self, stop_inject: float):
            super(SpatialReplace, self).__init__()
            self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
            

    class AttentionStore(AttentionControl):

        @staticmethod
        def get_empty_store():
            return {"down_cross": [], "mid_cross": [], "up_cross": [],
                    "down_self": [],  "mid_self": [],  "up_self": []}

        def forward(self, attn, is_cross: bool, place_in_unet: str):
            key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
            if attn.shape[1] <= 32 ** 2:
                self.step_store[key].append(attn)
            return attn

        def between_steps(self):
            if len(self.attention_store) == 0:
                self.attention_store = self.step_store
            else:
                for key in self.attention_store:
                    for i in range(len(self.attention_store[key])):
                        self.attention_store[key][i] += self.step_store[key][i]
            self.step_store = self.get_empty_store()

        def get_average_attention(self):
            average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
            return average_attention


        def reset(self):
            super(AttentionStore, self).reset()
            self.step_store = self.get_empty_store()
            self.attention_store = {}

        def __init__(self):
            super(AttentionStore, self).__init__()
            self.step_store = self.get_empty_store()
            self.attention_store = {}

            
    class AttentionControlEdit(AttentionStore, abc.ABC):
        
        def step_callback(self, x_t):
            if self.local_blend is not None:
                x_t = self.local_blend(x_t, self.attention_store, self.cur_step)
            return x_t
            
        def replace_self_attention(self, attn_base, att_replace, place_in_unet):
            if att_replace.shape[2] <= 32 ** 2:
                attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
                return attn_base
            else:
                return att_replace
        
        @abc.abstractmethod
        def replace_cross_attention(self, attn_base, att_replace):
            raise NotImplementedError
        
        def forward(self, attn, is_cross: bool, place_in_unet: str):
            super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
            if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
                h = attn.shape[0] // (self.batch_size)
                attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
                attn_base, attn_repalce = attn[0], attn[1:]
                if is_cross:
                    alpha_words = self.cross_replace_alpha[self.cur_step]
                    attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
                    attn[1:] = attn_repalce_new
                else:
                    attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
                attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
            return attn
        
        def __init__(self, prompts, num_steps: int,
                    cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                    self_replace_steps: Union[float, Tuple[float, float]],
                    local_blend: Optional[LocalBlend]):
            super(AttentionControlEdit, self).__init__()
            self.batch_size = len(prompts)
            self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
            if type(self_replace_steps) is float:
                self_replace_steps = 0, self_replace_steps
            self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
            self.local_blend = local_blend

    class AttentionReplace(AttentionControlEdit):

        def replace_cross_attention(self, attn_base, att_replace):
            return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
        
        def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                    local_blend: Optional[LocalBlend] = None):
            super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
            self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
            

    class AttentionRefine(AttentionControlEdit):

        def replace_cross_attention(self, attn_base, att_replace):
            attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
            attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
            return attn_replace

        def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                    local_blend: Optional[LocalBlend] = None):
            super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
            self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
            self.mapper, alphas = self.mapper.to(device), alphas.to(device)
            self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])


    class AttentionReweight(AttentionControlEdit):

        def replace_cross_attention(self, attn_base, att_replace):
            if self.prev_controller is not None:
                attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
            attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
            return attn_replace

        def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
                    local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
            super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
            self.equalizer = equalizer.to(device)
            self.prev_controller = controller


    def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
                    Tuple[float, ...]]):
        if type(word_select) is int or type(word_select) is str:
            word_select = (word_select,)
        equalizer = torch.ones(1, 77)
        
        for word, val in zip(word_select, values):
            inds = ptp_utils.get_word_inds(text, word, tokenizer)
            equalizer[:, inds] = val
        return equalizer

    def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
        out = []
        attention_maps = attention_store.get_average_attention()
        num_pixels = res ** 2
        for location in from_where:
            for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
                if item.shape[1] == num_pixels:
                    cross_maps = item.reshape(8, 8, res, res, item.shape[-1])
                    out.append(cross_maps)
        out = torch.cat(out, dim=1)
        out = out.sum(1) / out.shape[1]
        return out.cpu()


    def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit:
        if blend_words is None:
            lb = None
        else:
            lb = LocalBlend(prompts, blend_word, th=mask_th)
        if is_replace_controller:
            controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
        else:
            controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
        if equilizer_params is not None:
            eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
            controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
                                        self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
        return controller


    def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1):
        vr = decord.VideoReader(image_path, width=512, height=512)
        sample_index = list(range(0, len(vr), sampling_rate))[:n_sample_frame]
        video = vr.get_batch(sample_index)
        return video.numpy()


    class NullInversion:
        
        def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
            prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
            alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
            alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
            beta_prod_t = 1 - alpha_prod_t
            pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
            pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
            prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
            return prev_sample
        
        def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
            timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
            alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
            alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
            beta_prod_t = 1 - alpha_prod_t
            next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
            next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
            next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
            return next_sample
        
        def get_noise_pred_single(self, latents, t, context):
            noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
            return noise_pred

        def get_noise_pred(self, latents, t, is_forward=True, context=None):
            latents_input = torch.cat([latents] * 2)
            if context is None:
                context = self.context
            guidance_scale = 1 if is_forward else GUIDANCE_SCALE
            noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
            noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
            if is_forward:
                latents = self.next_step(noise_pred, t, latents)
            else:
                latents = self.prev_step(noise_pred, t, latents)
            return latents

        @torch.no_grad()
        def latent2image(self, latents, return_type='np'):
            latents = 1 / 0.18215 * latents.detach()
            image = self.model.vae.decode(latents)['sample']
            if return_type == 'np':
                image = (image / 2 + 0.5).clamp(0, 1)
                image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
                image = (image * 255).astype(np.uint8)
            return image

        @torch.no_grad()
        def latent2image_video(self, latents, return_type='np'):
            latents = 1 / 0.18215 * latents.detach()
            latents = latents[0].permute(1, 0, 2, 3)
            image = self.model.vae.decode(latents)['sample']
            if return_type == 'np':
                image = (image / 2 + 0.5).clamp(0, 1)
                image = image.cpu().permute(0, 2, 3, 1).numpy()
                image = (image * 255).astype(np.uint8)
            return image

        @torch.no_grad()
        def image2latent(self, image):
            with torch.no_grad():
                if type(image) is Image:
                    image = np.array(image)
                if type(image) is torch.Tensor and image.dim() == 4:
                    latents = image
                else:
                    image = torch.from_numpy(image).float() / 127.5 - 1
                    image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype=weight_dtype)
                    latents = self.model.vae.encode(image)['latent_dist'].mean
                    latents = latents * 0.18215
            return latents

        @torch.no_grad()
        def image2latent_video(self, image):
            with torch.no_grad():
                image = torch.from_numpy(image).float() / 127.5 - 1
                image = image.permute(0, 3, 1, 2).to(device).to(device, dtype=weight_dtype)
                latents = self.model.vae.encode(image)['latent_dist'].mean
                latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1)
                latents = latents * 0.18215
            return latents

        @torch.no_grad()
        def init_prompt(self, prompt: str):
            uncond_input = self.model.tokenizer(
                [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
                return_tensors="pt"
            )
            uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
            text_input = self.model.tokenizer(
                [prompt],
                padding="max_length",
                max_length=self.model.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
            self.context = torch.cat([uncond_embeddings, text_embeddings])
            self.prompt = prompt

        @torch.no_grad()
        def ddim_loop(self, latent):
            uncond_embeddings, cond_embeddings = self.context.chunk(2)
            all_latent = [latent]
            latent = latent.clone().detach()
            for i in range(NUM_DDIM_STEPS):
                t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
                noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings)
                latent = self.next_step(noise_pred, t, latent)
                all_latent.append(latent)
            return all_latent

        @property
        def scheduler(self):
            return self.model.scheduler

        @torch.no_grad()
        def ddim_inversion(self, image):
            latent = self.image2latent_video(image)
            image_rec = self.latent2image_video(latent)
            ddim_latents = self.ddim_loop(latent)
            return image_rec, ddim_latents

        def null_optimization(self, latents, num_inner_steps, epsilon):
            uncond_embeddings, cond_embeddings = self.context.chunk(2)
            uncond_embeddings_list = []
            latent_cur = latents[-1]
            # bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
            for i in range(NUM_DDIM_STEPS):
                uncond_embeddings = uncond_embeddings.clone().detach()
                uncond_embeddings.requires_grad = True
                optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
                latent_prev = latents[len(latents) - i - 2]
                t = self.model.scheduler.timesteps[i]
                with torch.no_grad():
                    noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
                for j in range(num_inner_steps):
                    noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
                    noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
                    latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
                    loss = F.mse_loss(latents_prev_rec, latent_prev)
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    loss_item = loss.item()
                    # bar.update()
                    if loss_item < epsilon + i * 2e-5:
                        break
                # for j in range(j + 1, num_inner_steps):
                #     bar.update()
                uncond_embeddings_list.append(uncond_embeddings[:1].detach())
                with torch.no_grad():
                    context = torch.cat([uncond_embeddings, cond_embeddings])
                    latent_cur = self.get_noise_pred(latent_cur, t, False, context)
            # bar.close()
            return uncond_embeddings_list
        
        def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
            self.init_prompt(prompt)
            ptp_utils.register_attention_control(self.model, None)
            image_gt = load_512_seq(image_path, *offsets)
            if verbose:
                print("DDIM inversion...")
            image_rec, ddim_latents = self.ddim_inversion(image_gt)
            if verbose:
                print("Null-text optimization...")
            uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)
            return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings

        def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
            self.init_prompt(prompt)
            ptp_utils.register_attention_control(self.model, None)
            image_gt = load_512_seq(image_path, *offsets)
            if verbose:
                print("DDIM inversion...")
            image_rec, ddim_latents = self.ddim_inversion(image_gt)
            if verbose:
                print("Null-text optimization...")
            return (image_gt, image_rec), ddim_latents[-1], None
        
        def __init__(self, model):
            scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
                                    set_alpha_to_one=False)
            self.model = model
            self.tokenizer = self.model.tokenizer
            self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
            self.prompt = None
            self.context = None

    null_inversion = NullInversion(ldm_stable)

    ###############
    # Custom APIs:

    ldm_stable.enable_xformers_memory_efficient_attention()

    if fast:
        (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert_(image_path, prompt, offsets=(0,0,0,0), verbose=True)
    else:
        (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, prompt, offsets=(0,0,0,0), verbose=True)

    ##### load uncond #####
    # uncond_embeddings_load = np.load(uncond_embeddings_path)
    # uncond_embeddings = []
    # for i in range(uncond_embeddings_load.shape[0]):
    #     uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device))
    #######################

    ##### save uncond #####
    # uncond_embeddings = torch.cat(uncond_embeddings)
    # uncond_embeddings = uncond_embeddings.cpu().numpy()
    #######################

    print("Start Video-P2P!")
    controller = make_controller(prompts, is_word_swap, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th)
    ptp_utils.register_attention_control(ldm_stable, controller)
    generator = torch.Generator(device=device)
    with torch.no_grad():
        sequence = ldm_stable(
            prompts,
            generator=generator,
            latents=x_t,
            uncond_embeddings_pre=uncond_embeddings,
            controller = controller,
            video_length=video_len,
            fast=fast,
        ).videos
    sequence1 = rearrange(sequence[0], "c t h w -> t h w c")
    sequence2 = rearrange(sequence[1], "c t h w -> t h w c")
    inversion = []
    videop2p = []
    for i in range(sequence1.shape[0]):
        inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) )
        videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) )

    # inversion[0].save(save_name_1, save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250)
    videop2p[0].save(save_name_2, save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
    parser.add_argument("--fast", action='store_true')
    args = parser.parse_args()

    main(**OmegaConf.load(args.config), fast=args.fast)