ShaoTengLiu commited on
Commit
371bfd9
·
1 Parent(s): 498135d

update video-p2p

Browse files
Files changed (41) hide show
  1. .DS_Store +0 -0
  2. Tune-A-Video-debug/README.md +0 -227
  3. Tune-A-Video-debug/configs/car-turn.yaml +0 -41
  4. Tune-A-Video-debug/configs/man-skiing.yaml +0 -41
  5. Tune-A-Video-debug/configs/man-surfing.yaml +0 -41
  6. Tune-A-Video-debug/configs/rabbit-watermelon.yaml +0 -41
  7. Tune-A-Video-debug/data/car-turn.mp4 +0 -0
  8. Tune-A-Video-debug/data/man-skiing.mp4 +0 -0
  9. Tune-A-Video-debug/data/man-surfing.mp4 +0 -0
  10. Tune-A-Video-debug/data/rabbit-watermelon.mp4 +0 -0
  11. Tune-A-Video-debug/notebooks/Tune-A-Video.ipynb +0 -385
  12. Tune-A-Video-debug/requirements.txt +0 -13
  13. Tune-A-Video-debug/tuneavideo/data/dataset.py +0 -44
  14. Tune-A-Video-debug/tuneavideo/models/attention.py +0 -328
  15. Tune-A-Video-debug/tuneavideo/models/resnet.py +0 -209
  16. Tune-A-Video-debug/tuneavideo/models/unet.py +0 -450
  17. Tune-A-Video-debug/tuneavideo/models/unet_blocks.py +0 -588
  18. Tune-A-Video-debug/tuneavideo/pipelines/pipeline_tuneavideo.py +0 -407
  19. Tune-A-Video-debug/tuneavideo/util.py +0 -84
  20. Tune-A-Video/README.md +0 -227
  21. Tune-A-Video/configs/car-turn.yaml +0 -41
  22. Tune-A-Video/configs/man-surfing.yaml +0 -41
  23. Tune-A-Video/configs/rabbit-watermelon.yaml +0 -41
  24. Tune-A-Video/data/car-turn.mp4 +0 -0
  25. Tune-A-Video/data/man-skiing.mp4 +0 -0
  26. Tune-A-Video/data/man-surfing.mp4 +0 -0
  27. Tune-A-Video/data/rabbit-watermelon.mp4 +0 -0
  28. Tune-A-Video/notebooks/Tune-A-Video.ipynb +0 -385
  29. Tune-A-Video/requirements.txt +0 -13
  30. Tune-A-Video/train_tuneavideo.py +0 -367
  31. Tune-A-Video/tuneavideo/data/dataset.py +0 -44
  32. Tune-A-Video/tuneavideo/models/attention.py +0 -328
  33. Tune-A-Video/tuneavideo/models/resnet.py +0 -209
  34. Tune-A-Video/tuneavideo/models/unet.py +0 -450
  35. Tune-A-Video/tuneavideo/models/unet_blocks.py +0 -588
  36. Tune-A-Video/tuneavideo/pipelines/pipeline_tuneavideo.py +0 -407
  37. Tune-A-Video/tuneavideo/util.py +0 -84
  38. {Tune-A-Video → Video-P2P}/configs/man-skiing.yaml +19 -8
  39. Tune-A-Video-debug/train_tuneavideo.py → Video-P2P/run.py +627 -3
  40. app_training.py +20 -4
  41. trainer.py +10 -8
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
Tune-A-Video-debug/README.md DELETED
@@ -1,227 +0,0 @@
1
- # Tune-A-Video
2
-
3
- This repository is the official implementation of [Tune-A-Video](https://arxiv.org/abs/2212.11565).
4
-
5
- **[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)**
6
- <br/>
7
- [Jay Zhangjie Wu](https://zhangjiewu.github.io/),
8
- [Yixiao Ge](https://geyixiao.com/),
9
- [Xintao Wang](https://xinntao.github.io/),
10
- [Stan Weixian Lei](),
11
- [Yuchao Gu](https://ycgu.site/),
12
- [Yufei Shi](),
13
- [Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/),
14
- [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en),
15
- [Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en),
16
- [Mike Zheng Shou](https://sites.google.com/view/showlab)
17
- <br/>
18
-
19
- [![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://tuneavideo.github.io/)
20
- [![arXiv](https://img.shields.io/badge/arXiv-2212.11565-b31b1b.svg)](https://arxiv.org/abs/2212.11565)
21
- [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI)
22
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/showlab/Tune-A-Video/blob/main/notebooks/Tune-A-Video.ipynb)
23
-
24
-
25
- <p align="center">
26
- <img src="https://tuneavideo.github.io/assets/overview.png" width="800px"/>
27
- <br>
28
- <em>Given a video-text pair as input, our method, Tune-A-Video, fine-tunes a pre-trained text-to-image diffusion model for text-to-video generation.</em>
29
- </p>
30
-
31
- ## News
32
- - [02/22/2023] Improved consistency using DDIM inversion.
33
- - [02/08/2023] [Colab demo](https://colab.research.google.com/github/showlab/Tune-A-Video/blob/main/notebooks/Tune-A-Video.ipynb) released!
34
- - [02/03/2023] Pre-trained Tune-A-Video models are available on [Hugging Face Library](https://huggingface.co/Tune-A-Video-library)!
35
- - [01/28/2023] New Feature: tune a video on personalized [DreamBooth](https://dreambooth.github.io/) models.
36
- - [01/28/2023] Code released!
37
-
38
- ## Setup
39
-
40
- ### Requirements
41
-
42
- ```shell
43
- pip install -r requirements.txt
44
- ```
45
-
46
- Installing [xformers](https://github.com/facebookresearch/xformers) is highly recommended for more efficiency and speed on GPUs.
47
- To enable xformers, set `enable_xformers_memory_efficient_attention=True` (default).
48
-
49
- ### Weights
50
-
51
- **[Stable Diffusion]** [Stable Diffusion](https://arxiv.org/abs/2112.10752) is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. The pre-trained Stable Diffusion models can be downloaded from Hugging Face (e.g., [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), [v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)). You can also use fine-tuned Stable Diffusion models trained on different styles (e.g, [Modern Disney](https://huggingface.co/nitrosocke/mo-di-diffusion), [Redshift](https://huggingface.co/nitrosocke/redshift-diffusion), etc.).
52
-
53
- **[DreamBooth]** [DreamBooth](https://dreambooth.github.io/) is a method to personalize text-to-image models like Stable Diffusion given just a few images (3~5 images) of a subject. Tuning a video on DreamBooth models allows personalized text-to-video generation of a specific subject. There are some public DreamBooth models available on [Hugging Face](https://huggingface.co/sd-dreambooth-library) (e.g., [mr-potato-head](https://huggingface.co/sd-dreambooth-library/mr-potato-head)). You can also train your own DreamBooth model following [this training example](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth).
54
-
55
-
56
- ## Usage
57
-
58
- ### Training
59
-
60
- To fine-tune the text-to-image diffusion models for text-to-video generation, run this command:
61
-
62
- ```bash
63
- accelerate launch train_tuneavideo.py --config="configs/man-skiing.yaml"
64
- ```
65
-
66
- Note: Tuning a 24-frame video usually takes `300~500` steps, about `10~15` minutes using one A100 GPU.
67
- Reduce `n_sample_frames` if your GPU memory is limited.
68
-
69
- ### Inference
70
-
71
- Once the training is done, run inference:
72
-
73
- ```python
74
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
75
- from tuneavideo.models.unet import UNet3DConditionModel
76
- from tuneavideo.util import save_videos_grid
77
- import torch
78
-
79
- pretrained_model_path = "./checkpoints/stable-diffusion-v1-4"
80
- my_model_path = "./outputs/man-skiing"
81
- unet = UNet3DConditionModel.from_pretrained(my_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
82
- pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
83
- pipe.enable_xformers_memory_efficient_attention()
84
- pipe.enable_vae_slicing()
85
-
86
- prompt = "spider man is skiing"
87
- ddim_inv_latent = torch.load(f"{my_model_path}/inv_latents/ddim_latent-500.pt").to(torch.float16)
88
- video = pipe(prompt, latents=ddim_inv_latent, video_length=24, height=512, width=512, num_inference_steps=50, guidance_scale=12.5).videos
89
-
90
- save_videos_grid(video, f"./{prompt}.gif")
91
- ```
92
-
93
- ## Results
94
-
95
- ### Pretrained T2I (Stable Diffusion)
96
- <table class="center">
97
- <tr>
98
- <td style="text-align:center;"><b>Input Video</b></td>
99
- <td style="text-align:center;" colspan="3"><b>Output Video</b></td>
100
- </tr>
101
- <tr>
102
- <td><img src="https://tuneavideo.github.io/assets/data/man-skiing.gif"></td>
103
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/spiderman-beach.gif"></td>
104
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/wonder-woman.gif"></td>
105
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/pink-sunset.gif"></td>
106
- </tr>
107
- <tr>
108
- <td width=25% style="text-align:center;color:gray;">"A man is skiing"</td>
109
- <td width=25% style="text-align:center;">"Spider Man is skiing on the beach, cartoon style”</td>
110
- <td width=25% style="text-align:center;">"Wonder Woman, wearing a cowboy hat, is skiing"</td>
111
- <td width=25% style="text-align:center;">"A man, wearing pink clothes, is skiing at sunset"</td>
112
- </tr>
113
-
114
- <tr>
115
- <td><img src="https://tuneavideo.github.io/assets/data/rabbit-watermelon.gif"></td>
116
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/rabbit.gif"></td>
117
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/cat.gif"></td>
118
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/puppy.gif"></td>
119
- </tr>
120
- <tr>
121
- <td width=25% style="text-align:center;color:gray;">"A rabbit is eating a watermelon"</td>
122
- <td width=25% style="text-align:center;">"A rabbit is <del>eating a watermelon</del> on the table"</td>
123
- <td width=25% style="text-align:center;">"A cat with sunglasses is eating a watermelon on the beach"</td>
124
- <td width=25% style="text-align:center;">"A puppy is eating a cheeseburger on the table, comic style"</td>
125
- </tr>
126
-
127
- <tr>
128
- <td><img src="https://tuneavideo.github.io/assets/data/car-turn.gif"></td>
129
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/porsche-beach.gif"></td>
130
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/car-cartoon.gif"></td>
131
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/car-snow.gif"></td>
132
- </tr>
133
- <tr>
134
- <td width=25% style="text-align:center;color:gray;">"A jeep car is moving on the road"</td>
135
- <td width=25% style="text-align:center;">"A Porsche car is moving on the beach"</td>
136
- <td width=25% style="text-align:center;">"A car is moving on the road, cartoon style"</td>
137
- <td width=25% style="text-align:center;">"A car is moving on the snow"</td>
138
- </tr>
139
-
140
- <tr>
141
- <td><img src="https://tuneavideo.github.io/assets/data/man-basketball.gif"></td>
142
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/trump.gif"></td>
143
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/astronaut.gif"></td>
144
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/lego.gif"></td>
145
- </tr>
146
- <tr>
147
- <td width=25% style="text-align:center;color:gray;">"A man is dribbling a basketball"</td>
148
- <td width=25% style="text-align:center;">"Trump is dribbling a basketball"</td>
149
- <td width=25% style="text-align:center;">"An astronaut is dribbling a basketball, cartoon style"</td>
150
- <td width=25% style="text-align:center;">"A lego man in a black suit is dribbling a basketball"</td>
151
- </tr>
152
-
153
- <!-- <tr>
154
- <td><img src="https://tuneavideo.github.io/assets/data/lion-roaring.gif"></td>
155
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/tiger-roar.gif"></td>
156
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/lion-vangogh.gif"></td>
157
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/wolf-nyc.gif"></td>
158
- </tr>
159
- <tr>
160
- <td width=25% style="text-align:center;color:gray;">"A lion is roaring"</td>
161
- <td width=25% style="text-align:center;">"A tiger is roaring"</td>
162
- <td width=25% style="text-align:center;">"A lion is roaring, Van Gogh style"</td>
163
- <td width=25% style="text-align:center;">"A wolf is roaring in New York City"</td>
164
- </tr> -->
165
-
166
- </table>
167
-
168
- ### Pretrained T2I (personalized DreamBooth)
169
-
170
- <img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/modern-disney.png" width="240px"/>
171
-
172
- <table class="center">
173
- <tr>
174
- <td style="text-align:center;"><b>Input Video</b></td>
175
- <td style="text-align:center;" colspan="3"><b>Output Video</b></td>
176
- </tr>
177
- <tr>
178
- <td><img src="https://tuneavideo.github.io/assets/data/bear-guitar.gif"></td>
179
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/rabbit.gif"></td>
180
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/prince.gif"></td>
181
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/princess.gif"></td>
182
- </tr>
183
- <tr>
184
- <td width=25% style="text-align:center;color:gray;">"A bear is playing guitar"</td>
185
- <td width=25% style="text-align:center;">"A rabbit is playing guitar, modern disney style"</td>
186
- <td width=25% style="text-align:center;">"A handsome prince is playing guitar, modern disney style"</td>
187
- <td width=25% style="text-align:center;">"A magic princess with sunglasses is playing guitar on the stage, modern disney style"</td>
188
- </tr>
189
- </table>
190
-
191
- <img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/mr-potato-head.png" width="240px"/>
192
-
193
- <table class="center">
194
- <tr>
195
- <td style="text-align:center;"><b>Input Video</b></td>
196
- <td style="text-align:center;" colspan="3"><b>Output Video</b></td>
197
- </tr>
198
- <tr>
199
- <td><img src="https://tuneavideo.github.io/assets/data/bear-guitar.gif"></td>
200
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/lego-snow.gif"></td>
201
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/sunglasses-beach.gif"></td>
202
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/van-gogh.gif"></td>
203
- </tr>
204
- <tr>
205
- <td width=25% style="text-align:center;color:gray;">"A bear is playing guitar"</td>
206
- <td width=25% style="text-align:center;">"Mr Potato Head, made of lego, is playing guitar on the snow"</td>
207
- <td width=25% style="text-align:center;">"Mr Potato Head, wearing sunglasses, is playing guitar on the beach"</td>
208
- <td width=25% style="text-align:center;">"Mr Potato Head is playing guitar in the starry night, Van Gogh style"</td>
209
- </tr>
210
- </table>
211
-
212
-
213
- ## Citation
214
- If you make use of our work, please cite our paper.
215
- ```bibtex
216
- @article{wu2022tuneavideo,
217
- title={Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation},
218
- author={Wu, Jay Zhangjie and Ge, Yixiao and Wang, Xintao and Lei, Stan Weixian and Gu, Yuchao and Hsu, Wynne and Shan, Ying and Qie, Xiaohu and Shou, Mike Zheng},
219
- journal={arXiv preprint arXiv:2212.11565},
220
- year={2022}
221
- }
222
- ```
223
-
224
- ## Shoutouts
225
-
226
- - This code builds on [diffusers](https://github.com/huggingface/diffusers). Thanks for open-sourcing!
227
- - Thanks [hysts](https://github.com/hysts) for the awesome [gradio demo](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/configs/car-turn.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/car-turn"
3
-
4
- train_data:
5
- video_path: "data/car-turn.mp4"
6
- prompt: "a jeep car is moving on the road"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 2
12
-
13
- validation_data:
14
- prompts:
15
- - "a jeep car is moving on the beach"
16
- - "a jeep car is moving on the snow"
17
- - "a jeep car is moving on the road, cartoon style"
18
- - "a sports car is moving on the road"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/configs/man-skiing.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/man-skiing"
3
-
4
- train_data:
5
- video_path: "data/man-skiing.mp4"
6
- prompt: "a man is skiing"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 2
12
-
13
- validation_data:
14
- prompts:
15
- - "mickey mouse is skiing on the snow"
16
- - "spider man is skiing on the beach, cartoon style"
17
- - "wonder woman, wearing a cowboy hat, is skiing"
18
- - "a man, wearing pink clothes, is skiing at sunset"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/configs/man-surfing.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/man-surfing"
3
-
4
- train_data:
5
- video_path: "data/man-surfing.mp4"
6
- prompt: "a man is surfing"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "a panda is surfing"
16
- - "a boy, wearing a birthday hat, is surfing"
17
- - "a raccoon is surfing, cartoon style"
18
- - "Iron Man is surfing in the desert"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/configs/rabbit-watermelon.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/rabbit-watermelon"
3
-
4
- train_data:
5
- video_path: "data/rabbit-watermelon.mp4"
6
- prompt: "a rabbit is eating a watermelon"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 2
12
-
13
- validation_data:
14
- prompts:
15
- - "a tiger is eating a watermelon"
16
- - "a rabbit is eating an orange"
17
- - "a rabbit is eating a pizza"
18
- - "a puppy is eating an orange"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/data/car-turn.mp4 DELETED
Binary file (942 kB)
 
Tune-A-Video-debug/data/man-skiing.mp4 DELETED
Binary file (649 kB)
 
Tune-A-Video-debug/data/man-surfing.mp4 DELETED
Binary file (786 kB)
 
Tune-A-Video-debug/data/rabbit-watermelon.mp4 DELETED
Binary file (605 kB)
 
Tune-A-Video-debug/notebooks/Tune-A-Video.ipynb DELETED
@@ -1,385 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "fZ_xQvU70UQc"
7
- },
8
- "source": [
9
- "# Tune-A-Video\n",
10
- "\n",
11
- "**[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)** \n",
12
- "[Jay Zhangjie Wu](https://zhangjiewu.github.io/), \n",
13
- "[Yixiao Ge](https://geyixiao.com/), \n",
14
- "[Xintao Wang](https://xinntao.github.io/), \n",
15
- "[Stan Weixian Lei](), \n",
16
- "[Yuchao Gu](https://ycgu.site/), \n",
17
- "[Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/), \n",
18
- "[Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en), \n",
19
- "[Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en), \n",
20
- "[Mike Zheng Shou](https://sites.google.com/view/showlab) \n",
21
- "\n",
22
- "[![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://tuneavideo.github.io/)\n",
23
- "[![arXiv](https://img.shields.io/badge/arXiv-2212.11565-b31b1b.svg)](https://arxiv.org/abs/2212.11565)\n",
24
- "[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI)\n",
25
- "[![GitHub](https://img.shields.io/github/stars/showlab/Tune-A-Video?style=social)](https://github.com/showlab/Tune-A-Video)"
26
- ]
27
- },
28
- {
29
- "cell_type": "markdown",
30
- "metadata": {
31
- "id": "wnTMyW41cC1E"
32
- },
33
- "source": [
34
- "## Setup"
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": null,
40
- "metadata": {
41
- "id": "XU7NuMAA2drw"
42
- },
43
- "outputs": [],
44
- "source": [
45
- "#@markdown Check type of GPU and VRAM available.\n",
46
- "!nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "metadata": {
53
- "id": "D1PRgre3Gt5U"
54
- },
55
- "outputs": [],
56
- "source": [
57
- "#@title Install requirements\n",
58
- "\n",
59
- "!git clone https://github.com/showlab/Tune-A-Video.git /content/Tune-A-Video\n",
60
- "%cd /content/Tune-A-Video \n",
61
- "# %pip install -r requirements.txt\n",
62
- "%pip install -q -U --pre triton\n",
63
- "%pip install -q diffusers[torch]==0.11.1 transformers==4.26.0 bitsandbytes==0.35.4 \\\n",
64
- "decord accelerate omegaconf einops ftfy gradio imageio-ffmpeg xformers"
65
- ]
66
- },
67
- {
68
- "cell_type": "code",
69
- "execution_count": null,
70
- "metadata": {
71
- "cellView": "form",
72
- "id": "m6I6kZNG3Inb"
73
- },
74
- "outputs": [],
75
- "source": [
76
- "#@title Download pretrained model\n",
77
- "\n",
78
- "#@markdown Name/Path of the initial model.\n",
79
- "MODEL_NAME = \"CompVis/stable-diffusion-v1-4\" #@param {type:\"string\"}\n",
80
- "\n",
81
- "#@markdown If model should be download from a remote repo. Untick it if the model is loaded from a local path.\n",
82
- "download_pretrained_model = True #@param {type:\"boolean\"}\n",
83
- "if download_pretrained_model:\n",
84
- " !git lfs install\n",
85
- " !git clone https://huggingface.co/$MODEL_NAME checkpoints/$MODEL_NAME\n",
86
- " MODEL_NAME = f\"./checkpoints/{MODEL_NAME}\"\n",
87
- "print(f\"[*] MODEL_NAME={MODEL_NAME}\")"
88
- ]
89
- },
90
- {
91
- "cell_type": "markdown",
92
- "metadata": {
93
- "id": "qn5ILIyDJIcX"
94
- },
95
- "source": [
96
- "## Usage\n"
97
- ]
98
- },
99
- {
100
- "cell_type": "markdown",
101
- "metadata": {
102
- "id": "REmFAHfz9Y_X"
103
- },
104
- "source": [
105
- "### Training\n"
106
- ]
107
- },
108
- {
109
- "cell_type": "code",
110
- "execution_count": null,
111
- "metadata": {
112
- "id": "Rxg0y5MBudmd"
113
- },
114
- "outputs": [],
115
- "source": [
116
- "#@markdown If model weights should be saved directly in google drive (takes around 4-5 GB).\n",
117
- "save_to_gdrive = False #@param {type:\"boolean\"}\n",
118
- "if save_to_gdrive:\n",
119
- " from google.colab import drive\n",
120
- " drive.mount('/content/drive')\n",
121
- "\n",
122
- "#@markdown Enter the directory name to save model at.\n",
123
- "\n",
124
- "OUTPUT_DIR = \"outputs/man-skiing\" #@param {type:\"string\"}\n",
125
- "if save_to_gdrive:\n",
126
- " OUTPUT_DIR = \"/content/drive/MyDrive/\" + OUTPUT_DIR\n",
127
- "\n",
128
- "print(f\"[*] Weights will be saved at {OUTPUT_DIR}\")\n",
129
- "\n",
130
- "!mkdir -p $OUTPUT_DIR\n"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "metadata": {
137
- "cellView": "form",
138
- "id": "32gYIDDR1aCp"
139
- },
140
- "outputs": [],
141
- "source": [
142
- "#@markdown Upload your video by running this cell.\n",
143
- "\n",
144
- "#@markdown OR\n",
145
- "\n",
146
- "#@markdown You can use the file manager on the left panel to upload (drag and drop) to `data` folder.\n",
147
- "\n",
148
- "import os\n",
149
- "from google.colab import files\n",
150
- "import shutil\n",
151
- "\n",
152
- "uploaded = files.upload()\n",
153
- "for filename in uploaded.keys():\n",
154
- " dst_path = os.path.join(\"data\", filename)\n",
155
- " shutil.move(filename, dst_path)"
156
- ]
157
- },
158
- {
159
- "cell_type": "code",
160
- "execution_count": null,
161
- "metadata": {
162
- "id": "wGGFFpNcR2d_"
163
- },
164
- "outputs": [],
165
- "source": [
166
- "#@markdown Train config\n",
167
- "\n",
168
- "from omegaconf import OmegaConf\n",
169
- "\n",
170
- "CONFIG_NAME = \"configs/man-skiing.yaml\" #@param {type:\"string\"}\n",
171
- "\n",
172
- "train_video_path = \"data/man-skiing.mp4\" #@param {type:\"string\"}\n",
173
- "train_prompt = \"a man is skiing\" #@param {type:\"string\"}\n",
174
- "video_length = 8 #@param {type:\"number\"}\n",
175
- "width = 512 #@param {type:\"number\"}\n",
176
- "height = 512 #@param {type:\"number\"}\n",
177
- "learning_rate = 3e-5 #@param {type:\"number\"}\n",
178
- "train_steps = 300 #@param {type:\"number\"}\n",
179
- "\n",
180
- "config = {\n",
181
- " \"pretrained_model_path\": MODEL_NAME,\n",
182
- " \"output_dir\": OUTPUT_DIR,\n",
183
- " \"train_data\": {\n",
184
- " \"video_path\": train_video_path,\n",
185
- " \"prompt\": train_prompt,\n",
186
- " \"n_sample_frames\": video_length,\n",
187
- " \"width\": width,\n",
188
- " \"height\": height,\n",
189
- " \"sample_start_idx\": 0,\n",
190
- " \"sample_frame_rate\": 2,\n",
191
- " },\n",
192
- " \"validation_data\": {\n",
193
- " \"prompts\": [\n",
194
- " \"mickey mouse is skiing on the snow\",\n",
195
- " \"spider man is skiing on the beach, cartoon style\",\n",
196
- " \"wonder woman, wearing a cowboy hat, is skiing\",\n",
197
- " \"a man, wearing pink clothes, is skiing at sunset\",\n",
198
- " ],\n",
199
- " \"video_length\": video_length,\n",
200
- " \"width\": width,\n",
201
- " \"height\": height,\n",
202
- " \"num_inference_steps\": 20,\n",
203
- " \"guidance_scale\": 12.5,\n",
204
- " \"use_inv_latent\": True,\n",
205
- " \"num_inv_steps\": 50,\n",
206
- " },\n",
207
- " \"learning_rate\": learning_rate,\n",
208
- " \"train_batch_size\": 1,\n",
209
- " \"max_train_steps\": train_steps,\n",
210
- " \"checkpointing_steps\": 1000,\n",
211
- " \"validation_steps\": 100,\n",
212
- " \"trainable_modules\": [\n",
213
- " \"attn1.to_q\",\n",
214
- " \"attn2.to_q\",\n",
215
- " \"attn_temp\",\n",
216
- " ],\n",
217
- " \"seed\": 33,\n",
218
- " \"mixed_precision\": \"fp16\",\n",
219
- " \"use_8bit_adam\": False,\n",
220
- " \"gradient_checkpointing\": True,\n",
221
- " \"enable_xformers_memory_efficient_attention\": True,\n",
222
- "}\n",
223
- "\n",
224
- "OmegaConf.save(config, CONFIG_NAME)"
225
- ]
226
- },
227
- {
228
- "cell_type": "code",
229
- "execution_count": null,
230
- "metadata": {
231
- "id": "jjcSXTp-u-Eg"
232
- },
233
- "outputs": [],
234
- "source": [
235
- "!accelerate launch train_tuneavideo.py --config=$CONFIG_NAME"
236
- ]
237
- },
238
- {
239
- "cell_type": "markdown",
240
- "metadata": {
241
- "id": "ToNG4fd_dTbF"
242
- },
243
- "source": [
244
- "### Inference"
245
- ]
246
- },
247
- {
248
- "cell_type": "code",
249
- "execution_count": null,
250
- "metadata": {
251
- "id": "91bsSFv2Punm"
252
- },
253
- "outputs": [],
254
- "source": [
255
- "import torch\n",
256
- "from torch import autocast\n",
257
- "from diffusers import DDIMScheduler\n",
258
- "from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline\n",
259
- "from tuneavideo.models.unet import UNet3DConditionModel\n",
260
- "from tuneavideo.util import save_videos_grid\n",
261
- "\n",
262
- "\n",
263
- "unet = UNet3DConditionModel.from_pretrained(OUTPUT_DIR, subfolder='unet', torch_dtype=torch.float16).to('cuda')\n",
264
- "scheduler = DDIMScheduler.from_pretrained(MODEL_NAME, subfolder='scheduler')\n",
265
- "pipe = TuneAVideoPipeline.from_pretrained(MODEL_NAME, unet=unet, scheduler=scheduler, torch_dtype=torch.float16).to(\"cuda\")\n",
266
- "pipe.enable_xformers_memory_efficient_attention()\n",
267
- "pipe.enable_vae_slicing()\n",
268
- "\n",
269
- "g_cuda = None"
270
- ]
271
- },
272
- {
273
- "cell_type": "code",
274
- "execution_count": null,
275
- "metadata": {
276
- "cellView": "form",
277
- "id": "oIzkltjpVO_f"
278
- },
279
- "outputs": [],
280
- "source": [
281
- "#@markdown Can set random seed here for reproducibility.\n",
282
- "g_cuda = torch.Generator(device='cuda')\n",
283
- "seed = 1234 #@param {type:\"number\"}\n",
284
- "g_cuda.manual_seed(seed)"
285
- ]
286
- },
287
- {
288
- "cell_type": "code",
289
- "execution_count": null,
290
- "metadata": {
291
- "id": "K6xoHWSsbcS3",
292
- "scrolled": false
293
- },
294
- "outputs": [],
295
- "source": [
296
- "#@markdown Run for generating videos.\n",
297
- "\n",
298
- "prompt = \"iron man is skiing\" #@param {type:\"string\"}\n",
299
- "negative_prompt = \"\" #@param {type:\"string\"}\n",
300
- "use_inv_latent = True #@param {type:\"boolean\"}\n",
301
- "inv_latent_path = \"\" #@param {type:\"string\"}\n",
302
- "num_samples = 1 #@param {type:\"number\"}\n",
303
- "guidance_scale = 12.5 #@param {type:\"number\"}\n",
304
- "num_inference_steps = 50 #@param {type:\"number\"}\n",
305
- "video_length = 8 #@param {type:\"number\"}\n",
306
- "height = 512 #@param {type:\"number\"}\n",
307
- "width = 512 #@param {type:\"number\"}\n",
308
- "\n",
309
- "ddim_inv_latent = None\n",
310
- "if use_inv_latent and inv_latent_path == \"\":\n",
311
- " from natsort import natsorted\n",
312
- " from glob import glob\n",
313
- " import os\n",
314
- " inv_latent_path = natsorted(glob(f\"{OUTPUT_DIR}/inv_latents/*\"))[-1]\n",
315
- " ddim_inv_latent = torch.load(inv_latent_path).to(torch.float16)\n",
316
- " print(f\"DDIM inversion latent loaded from {inv_latent_path}\")\n",
317
- "\n",
318
- "with autocast(\"cuda\"), torch.inference_mode():\n",
319
- " videos = pipe(\n",
320
- " prompt, \n",
321
- " latents=ddim_inv_latent,\n",
322
- " video_length=video_length, \n",
323
- " height=height, \n",
324
- " width=width, \n",
325
- " negative_prompt=negative_prompt,\n",
326
- " num_videos_per_prompt=num_samples,\n",
327
- " num_inference_steps=num_inference_steps, \n",
328
- " guidance_scale=guidance_scale,\n",
329
- " generator=g_cuda\n",
330
- " ).videos\n",
331
- "\n",
332
- "save_dir = \"./results\" #@param {type:\"string\"}\n",
333
- "save_path = f\"{save_dir}/{prompt}.gif\"\n",
334
- "save_videos_grid(videos, save_path)\n",
335
- "\n",
336
- "# display\n",
337
- "from IPython.display import Image, display\n",
338
- "display(Image(filename=save_path))"
339
- ]
340
- },
341
- {
342
- "cell_type": "code",
343
- "execution_count": null,
344
- "metadata": {
345
- "id": "jXgi8HM4c-DA"
346
- },
347
- "outputs": [],
348
- "source": [
349
- "#@markdown Free runtime memory\n",
350
- "exit()"
351
- ]
352
- }
353
- ],
354
- "metadata": {
355
- "accelerator": "GPU",
356
- "colab": {
357
- "provenance": []
358
- },
359
- "gpuClass": "standard",
360
- "kernelspec": {
361
- "display_name": "Python 3 (ipykernel)",
362
- "language": "python",
363
- "name": "python3"
364
- },
365
- "language_info": {
366
- "codemirror_mode": {
367
- "name": "ipython",
368
- "version": 3
369
- },
370
- "file_extension": ".py",
371
- "mimetype": "text/x-python",
372
- "name": "python",
373
- "nbconvert_exporter": "python",
374
- "pygments_lexer": "ipython3",
375
- "version": "3.8.13-final"
376
- },
377
- "vscode": {
378
- "interpreter": {
379
- "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
380
- }
381
- }
382
- },
383
- "nbformat": 4,
384
- "nbformat_minor": 0
385
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/requirements.txt DELETED
@@ -1,13 +0,0 @@
1
- torch==1.12.1
2
- torchvision==0.13.1
3
- diffusers[torch]==0.11.1
4
- transformers>=4.25.1
5
- bitsandbytes==0.35.4
6
- decord==0.6.0
7
- accelerate
8
- tensorboard
9
- modelcards
10
- omegaconf
11
- einops
12
- imageio
13
- ftfy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/data/dataset.py DELETED
@@ -1,44 +0,0 @@
1
- import decord
2
- decord.bridge.set_bridge('torch')
3
-
4
- from torch.utils.data import Dataset
5
- from einops import rearrange
6
-
7
-
8
- class TuneAVideoDataset(Dataset):
9
- def __init__(
10
- self,
11
- video_path: str,
12
- prompt: str,
13
- width: int = 512,
14
- height: int = 512,
15
- n_sample_frames: int = 8,
16
- sample_start_idx: int = 0,
17
- sample_frame_rate: int = 1,
18
- ):
19
- self.video_path = video_path
20
- self.prompt = prompt
21
- self.prompt_ids = None
22
-
23
- self.width = width
24
- self.height = height
25
- self.n_sample_frames = n_sample_frames
26
- self.sample_start_idx = sample_start_idx
27
- self.sample_frame_rate = sample_frame_rate
28
-
29
- def __len__(self):
30
- return 1
31
-
32
- def __getitem__(self, index):
33
- # load and sample video frames
34
- vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
35
- sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
36
- video = vr.get_batch(sample_index)
37
- video = rearrange(video, "f h w c -> f c h w")
38
-
39
- example = {
40
- "pixel_values": (video / 127.5 - 1.0),
41
- "prompt_ids": self.prompt_ids
42
- }
43
-
44
- return example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/models/attention.py DELETED
@@ -1,328 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
-
3
- from dataclasses import dataclass
4
- from typing import Optional
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- from torch import nn
9
-
10
- from diffusers.configuration_utils import ConfigMixin, register_to_config
11
- from diffusers.modeling_utils import ModelMixin
12
- from diffusers.utils import BaseOutput
13
- from diffusers.utils.import_utils import is_xformers_available
14
- from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
-
16
- from einops import rearrange, repeat
17
-
18
-
19
- @dataclass
20
- class Transformer3DModelOutput(BaseOutput):
21
- sample: torch.FloatTensor
22
-
23
-
24
- if is_xformers_available():
25
- import xformers
26
- import xformers.ops
27
- else:
28
- xformers = None
29
-
30
-
31
- class Transformer3DModel(ModelMixin, ConfigMixin):
32
- @register_to_config
33
- def __init__(
34
- self,
35
- num_attention_heads: int = 16,
36
- attention_head_dim: int = 88,
37
- in_channels: Optional[int] = None,
38
- num_layers: int = 1,
39
- dropout: float = 0.0,
40
- norm_num_groups: int = 32,
41
- cross_attention_dim: Optional[int] = None,
42
- attention_bias: bool = False,
43
- activation_fn: str = "geglu",
44
- num_embeds_ada_norm: Optional[int] = None,
45
- use_linear_projection: bool = False,
46
- only_cross_attention: bool = False,
47
- upcast_attention: bool = False,
48
- ):
49
- super().__init__()
50
- self.use_linear_projection = use_linear_projection
51
- self.num_attention_heads = num_attention_heads
52
- self.attention_head_dim = attention_head_dim
53
- inner_dim = num_attention_heads * attention_head_dim
54
-
55
- # Define input layers
56
- self.in_channels = in_channels
57
-
58
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
59
- if use_linear_projection:
60
- self.proj_in = nn.Linear(in_channels, inner_dim)
61
- else:
62
- self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
63
-
64
- # Define transformers blocks
65
- self.transformer_blocks = nn.ModuleList(
66
- [
67
- BasicTransformerBlock(
68
- inner_dim,
69
- num_attention_heads,
70
- attention_head_dim,
71
- dropout=dropout,
72
- cross_attention_dim=cross_attention_dim,
73
- activation_fn=activation_fn,
74
- num_embeds_ada_norm=num_embeds_ada_norm,
75
- attention_bias=attention_bias,
76
- only_cross_attention=only_cross_attention,
77
- upcast_attention=upcast_attention,
78
- )
79
- for d in range(num_layers)
80
- ]
81
- )
82
-
83
- # 4. Define output layers
84
- if use_linear_projection:
85
- self.proj_out = nn.Linear(in_channels, inner_dim)
86
- else:
87
- self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
88
-
89
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
90
- # Input
91
- assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
92
- video_length = hidden_states.shape[2]
93
- hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
94
- encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
95
-
96
- batch, channel, height, weight = hidden_states.shape
97
- residual = hidden_states
98
-
99
- hidden_states = self.norm(hidden_states)
100
- if not self.use_linear_projection:
101
- hidden_states = self.proj_in(hidden_states)
102
- inner_dim = hidden_states.shape[1]
103
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
104
- else:
105
- inner_dim = hidden_states.shape[1]
106
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
107
- hidden_states = self.proj_in(hidden_states)
108
-
109
- # Blocks
110
- for block in self.transformer_blocks:
111
- hidden_states = block(
112
- hidden_states,
113
- encoder_hidden_states=encoder_hidden_states,
114
- timestep=timestep,
115
- video_length=video_length
116
- )
117
-
118
- # Output
119
- if not self.use_linear_projection:
120
- hidden_states = (
121
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
122
- )
123
- hidden_states = self.proj_out(hidden_states)
124
- else:
125
- hidden_states = self.proj_out(hidden_states)
126
- hidden_states = (
127
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
- )
129
-
130
- output = hidden_states + residual
131
-
132
- output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
133
- if not return_dict:
134
- return (output,)
135
-
136
- return Transformer3DModelOutput(sample=output)
137
-
138
-
139
- class BasicTransformerBlock(nn.Module):
140
- def __init__(
141
- self,
142
- dim: int,
143
- num_attention_heads: int,
144
- attention_head_dim: int,
145
- dropout=0.0,
146
- cross_attention_dim: Optional[int] = None,
147
- activation_fn: str = "geglu",
148
- num_embeds_ada_norm: Optional[int] = None,
149
- attention_bias: bool = False,
150
- only_cross_attention: bool = False,
151
- upcast_attention: bool = False,
152
- ):
153
- super().__init__()
154
- self.only_cross_attention = only_cross_attention
155
- self.use_ada_layer_norm = num_embeds_ada_norm is not None
156
-
157
- # SC-Attn
158
- self.attn1 = SparseCausalAttention(
159
- query_dim=dim,
160
- heads=num_attention_heads,
161
- dim_head=attention_head_dim,
162
- dropout=dropout,
163
- bias=attention_bias,
164
- cross_attention_dim=cross_attention_dim if only_cross_attention else None,
165
- upcast_attention=upcast_attention,
166
- )
167
- self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
168
-
169
- # Cross-Attn
170
- if cross_attention_dim is not None:
171
- self.attn2 = CrossAttention(
172
- query_dim=dim,
173
- cross_attention_dim=cross_attention_dim,
174
- heads=num_attention_heads,
175
- dim_head=attention_head_dim,
176
- dropout=dropout,
177
- bias=attention_bias,
178
- upcast_attention=upcast_attention,
179
- )
180
- else:
181
- self.attn2 = None
182
-
183
- if cross_attention_dim is not None:
184
- self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
185
- else:
186
- self.norm2 = None
187
-
188
- # Feed-forward
189
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
190
- self.norm3 = nn.LayerNorm(dim)
191
-
192
- # Temp-Attn
193
- self.attn_temp = CrossAttention(
194
- query_dim=dim,
195
- heads=num_attention_heads,
196
- dim_head=attention_head_dim,
197
- dropout=dropout,
198
- bias=attention_bias,
199
- upcast_attention=upcast_attention,
200
- )
201
- nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
202
- self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
203
-
204
- def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
205
- if not is_xformers_available():
206
- print("Here is how to install it")
207
- raise ModuleNotFoundError(
208
- "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
209
- " xformers",
210
- name="xformers",
211
- )
212
- elif not torch.cuda.is_available():
213
- raise ValueError(
214
- "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
215
- " available for GPU "
216
- )
217
- else:
218
- try:
219
- # Make sure we can run the memory efficient attention
220
- _ = xformers.ops.memory_efficient_attention(
221
- torch.randn((1, 2, 40), device="cuda"),
222
- torch.randn((1, 2, 40), device="cuda"),
223
- torch.randn((1, 2, 40), device="cuda"),
224
- )
225
- except Exception as e:
226
- raise e
227
- self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
228
- if self.attn2 is not None:
229
- self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
230
- # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
231
-
232
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
233
- # SparseCausal-Attention
234
- norm_hidden_states = (
235
- self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
236
- )
237
-
238
- if self.only_cross_attention:
239
- hidden_states = (
240
- self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
241
- )
242
- else:
243
- hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
244
-
245
- if self.attn2 is not None:
246
- # Cross-Attention
247
- norm_hidden_states = (
248
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
249
- )
250
- hidden_states = (
251
- self.attn2(
252
- norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
253
- )
254
- + hidden_states
255
- )
256
-
257
- # Feed-forward
258
- hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
259
-
260
- # Temporal-Attention
261
- d = hidden_states.shape[1]
262
- hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
263
- norm_hidden_states = (
264
- self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
265
- )
266
- hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
267
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
268
-
269
- return hidden_states
270
-
271
-
272
- class SparseCausalAttention(CrossAttention):
273
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
274
- batch_size, sequence_length, _ = hidden_states.shape
275
-
276
- encoder_hidden_states = encoder_hidden_states
277
-
278
- if self.group_norm is not None:
279
- hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
280
-
281
- query = self.to_q(hidden_states)
282
- dim = query.shape[-1]
283
- query = self.reshape_heads_to_batch_dim(query)
284
-
285
- if self.added_kv_proj_dim is not None:
286
- raise NotImplementedError
287
-
288
- encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
289
- key = self.to_k(encoder_hidden_states)
290
- value = self.to_v(encoder_hidden_states)
291
-
292
- former_frame_index = torch.arange(video_length) - 1
293
- former_frame_index[0] = 0
294
-
295
- key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
296
- key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
297
- key = rearrange(key, "b f d c -> (b f) d c")
298
-
299
- value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
300
- value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
301
- value = rearrange(value, "b f d c -> (b f) d c")
302
-
303
- key = self.reshape_heads_to_batch_dim(key)
304
- value = self.reshape_heads_to_batch_dim(value)
305
-
306
- if attention_mask is not None:
307
- if attention_mask.shape[-1] != query.shape[1]:
308
- target_length = query.shape[1]
309
- attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
310
- attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
311
-
312
- # attention, what we cannot get enough of
313
- if self._use_memory_efficient_attention_xformers:
314
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
315
- # Some versions of xformers return output in fp32, cast it back to the dtype of the input
316
- hidden_states = hidden_states.to(query.dtype)
317
- else:
318
- if self._slice_size is None or query.shape[0] // self._slice_size == 1:
319
- hidden_states = self._attention(query, key, value, attention_mask)
320
- else:
321
- hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
322
-
323
- # linear proj
324
- hidden_states = self.to_out[0](hidden_states)
325
-
326
- # dropout
327
- hidden_states = self.to_out[1](hidden_states)
328
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/models/resnet.py DELETED
@@ -1,209 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from einops import rearrange
8
-
9
-
10
- class InflatedConv3d(nn.Conv2d):
11
- def forward(self, x):
12
- video_length = x.shape[2]
13
-
14
- x = rearrange(x, "b c f h w -> (b f) c h w")
15
- x = super().forward(x)
16
- x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
-
18
- return x
19
-
20
-
21
- class Upsample3D(nn.Module):
22
- def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
23
- super().__init__()
24
- self.channels = channels
25
- self.out_channels = out_channels or channels
26
- self.use_conv = use_conv
27
- self.use_conv_transpose = use_conv_transpose
28
- self.name = name
29
-
30
- conv = None
31
- if use_conv_transpose:
32
- raise NotImplementedError
33
- elif use_conv:
34
- conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
35
-
36
- if name == "conv":
37
- self.conv = conv
38
- else:
39
- self.Conv2d_0 = conv
40
-
41
- def forward(self, hidden_states, output_size=None):
42
- assert hidden_states.shape[1] == self.channels
43
-
44
- if self.use_conv_transpose:
45
- raise NotImplementedError
46
-
47
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
48
- dtype = hidden_states.dtype
49
- if dtype == torch.bfloat16:
50
- hidden_states = hidden_states.to(torch.float32)
51
-
52
- # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
53
- if hidden_states.shape[0] >= 64:
54
- hidden_states = hidden_states.contiguous()
55
-
56
- # if `output_size` is passed we force the interpolation output
57
- # size and do not make use of `scale_factor=2`
58
- if output_size is None:
59
- hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
60
- else:
61
- hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
62
-
63
- # If the input is bfloat16, we cast back to bfloat16
64
- if dtype == torch.bfloat16:
65
- hidden_states = hidden_states.to(dtype)
66
-
67
- if self.use_conv:
68
- if self.name == "conv":
69
- hidden_states = self.conv(hidden_states)
70
- else:
71
- hidden_states = self.Conv2d_0(hidden_states)
72
-
73
- return hidden_states
74
-
75
-
76
- class Downsample3D(nn.Module):
77
- def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
78
- super().__init__()
79
- self.channels = channels
80
- self.out_channels = out_channels or channels
81
- self.use_conv = use_conv
82
- self.padding = padding
83
- stride = 2
84
- self.name = name
85
-
86
- if use_conv:
87
- conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
88
- else:
89
- raise NotImplementedError
90
-
91
- if name == "conv":
92
- self.Conv2d_0 = conv
93
- self.conv = conv
94
- elif name == "Conv2d_0":
95
- self.conv = conv
96
- else:
97
- self.conv = conv
98
-
99
- def forward(self, hidden_states):
100
- assert hidden_states.shape[1] == self.channels
101
- if self.use_conv and self.padding == 0:
102
- raise NotImplementedError
103
-
104
- assert hidden_states.shape[1] == self.channels
105
- hidden_states = self.conv(hidden_states)
106
-
107
- return hidden_states
108
-
109
-
110
- class ResnetBlock3D(nn.Module):
111
- def __init__(
112
- self,
113
- *,
114
- in_channels,
115
- out_channels=None,
116
- conv_shortcut=False,
117
- dropout=0.0,
118
- temb_channels=512,
119
- groups=32,
120
- groups_out=None,
121
- pre_norm=True,
122
- eps=1e-6,
123
- non_linearity="swish",
124
- time_embedding_norm="default",
125
- output_scale_factor=1.0,
126
- use_in_shortcut=None,
127
- ):
128
- super().__init__()
129
- self.pre_norm = pre_norm
130
- self.pre_norm = True
131
- self.in_channels = in_channels
132
- out_channels = in_channels if out_channels is None else out_channels
133
- self.out_channels = out_channels
134
- self.use_conv_shortcut = conv_shortcut
135
- self.time_embedding_norm = time_embedding_norm
136
- self.output_scale_factor = output_scale_factor
137
-
138
- if groups_out is None:
139
- groups_out = groups
140
-
141
- self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
142
-
143
- self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
144
-
145
- if temb_channels is not None:
146
- if self.time_embedding_norm == "default":
147
- time_emb_proj_out_channels = out_channels
148
- elif self.time_embedding_norm == "scale_shift":
149
- time_emb_proj_out_channels = out_channels * 2
150
- else:
151
- raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
152
-
153
- self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
154
- else:
155
- self.time_emb_proj = None
156
-
157
- self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
158
- self.dropout = torch.nn.Dropout(dropout)
159
- self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
160
-
161
- if non_linearity == "swish":
162
- self.nonlinearity = lambda x: F.silu(x)
163
- elif non_linearity == "mish":
164
- self.nonlinearity = Mish()
165
- elif non_linearity == "silu":
166
- self.nonlinearity = nn.SiLU()
167
-
168
- self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
169
-
170
- self.conv_shortcut = None
171
- if self.use_in_shortcut:
172
- self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
173
-
174
- def forward(self, input_tensor, temb):
175
- hidden_states = input_tensor
176
-
177
- hidden_states = self.norm1(hidden_states)
178
- hidden_states = self.nonlinearity(hidden_states)
179
-
180
- hidden_states = self.conv1(hidden_states)
181
-
182
- if temb is not None:
183
- temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
184
-
185
- if temb is not None and self.time_embedding_norm == "default":
186
- hidden_states = hidden_states + temb
187
-
188
- hidden_states = self.norm2(hidden_states)
189
-
190
- if temb is not None and self.time_embedding_norm == "scale_shift":
191
- scale, shift = torch.chunk(temb, 2, dim=1)
192
- hidden_states = hidden_states * (1 + scale) + shift
193
-
194
- hidden_states = self.nonlinearity(hidden_states)
195
-
196
- hidden_states = self.dropout(hidden_states)
197
- hidden_states = self.conv2(hidden_states)
198
-
199
- if self.conv_shortcut is not None:
200
- input_tensor = self.conv_shortcut(input_tensor)
201
-
202
- output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
203
-
204
- return output_tensor
205
-
206
-
207
- class Mish(torch.nn.Module):
208
- def forward(self, hidden_states):
209
- return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/models/unet.py DELETED
@@ -1,450 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
-
3
- from dataclasses import dataclass
4
- from typing import List, Optional, Tuple, Union
5
-
6
- import os
7
- import json
8
-
9
- import torch
10
- import torch.nn as nn
11
- import torch.utils.checkpoint
12
-
13
- from diffusers.configuration_utils import ConfigMixin, register_to_config
14
- from diffusers.modeling_utils import ModelMixin
15
- from diffusers.utils import BaseOutput, logging
16
- from diffusers.models.embeddings import TimestepEmbedding, Timesteps
17
- from .unet_blocks import (
18
- CrossAttnDownBlock3D,
19
- CrossAttnUpBlock3D,
20
- DownBlock3D,
21
- UNetMidBlock3DCrossAttn,
22
- UpBlock3D,
23
- get_down_block,
24
- get_up_block,
25
- )
26
- from .resnet import InflatedConv3d
27
-
28
-
29
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
-
31
-
32
- @dataclass
33
- class UNet3DConditionOutput(BaseOutput):
34
- sample: torch.FloatTensor
35
-
36
-
37
- class UNet3DConditionModel(ModelMixin, ConfigMixin):
38
- _supports_gradient_checkpointing = True
39
-
40
- @register_to_config
41
- def __init__(
42
- self,
43
- sample_size: Optional[int] = None,
44
- in_channels: int = 4,
45
- out_channels: int = 4,
46
- center_input_sample: bool = False,
47
- flip_sin_to_cos: bool = True,
48
- freq_shift: int = 0,
49
- down_block_types: Tuple[str] = (
50
- "CrossAttnDownBlock3D",
51
- "CrossAttnDownBlock3D",
52
- "CrossAttnDownBlock3D",
53
- "DownBlock3D",
54
- ),
55
- mid_block_type: str = "UNetMidBlock3DCrossAttn",
56
- up_block_types: Tuple[str] = (
57
- "UpBlock3D",
58
- "CrossAttnUpBlock3D",
59
- "CrossAttnUpBlock3D",
60
- "CrossAttnUpBlock3D"
61
- ),
62
- only_cross_attention: Union[bool, Tuple[bool]] = False,
63
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
64
- layers_per_block: int = 2,
65
- downsample_padding: int = 1,
66
- mid_block_scale_factor: float = 1,
67
- act_fn: str = "silu",
68
- norm_num_groups: int = 32,
69
- norm_eps: float = 1e-5,
70
- cross_attention_dim: int = 1280,
71
- attention_head_dim: Union[int, Tuple[int]] = 8,
72
- dual_cross_attention: bool = False,
73
- use_linear_projection: bool = False,
74
- class_embed_type: Optional[str] = None,
75
- num_class_embeds: Optional[int] = None,
76
- upcast_attention: bool = False,
77
- resnet_time_scale_shift: str = "default",
78
- ):
79
- super().__init__()
80
-
81
- self.sample_size = sample_size
82
- time_embed_dim = block_out_channels[0] * 4
83
-
84
- # input
85
- self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
86
-
87
- # time
88
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
89
- timestep_input_dim = block_out_channels[0]
90
-
91
- self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
92
-
93
- # class embedding
94
- if class_embed_type is None and num_class_embeds is not None:
95
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
96
- elif class_embed_type == "timestep":
97
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
98
- elif class_embed_type == "identity":
99
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
100
- else:
101
- self.class_embedding = None
102
-
103
- self.down_blocks = nn.ModuleList([])
104
- self.mid_block = None
105
- self.up_blocks = nn.ModuleList([])
106
-
107
- if isinstance(only_cross_attention, bool):
108
- only_cross_attention = [only_cross_attention] * len(down_block_types)
109
-
110
- if isinstance(attention_head_dim, int):
111
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
112
-
113
- # down
114
- output_channel = block_out_channels[0]
115
- for i, down_block_type in enumerate(down_block_types):
116
- input_channel = output_channel
117
- output_channel = block_out_channels[i]
118
- is_final_block = i == len(block_out_channels) - 1
119
-
120
- down_block = get_down_block(
121
- down_block_type,
122
- num_layers=layers_per_block,
123
- in_channels=input_channel,
124
- out_channels=output_channel,
125
- temb_channels=time_embed_dim,
126
- add_downsample=not is_final_block,
127
- resnet_eps=norm_eps,
128
- resnet_act_fn=act_fn,
129
- resnet_groups=norm_num_groups,
130
- cross_attention_dim=cross_attention_dim,
131
- attn_num_head_channels=attention_head_dim[i],
132
- downsample_padding=downsample_padding,
133
- dual_cross_attention=dual_cross_attention,
134
- use_linear_projection=use_linear_projection,
135
- only_cross_attention=only_cross_attention[i],
136
- upcast_attention=upcast_attention,
137
- resnet_time_scale_shift=resnet_time_scale_shift,
138
- )
139
- self.down_blocks.append(down_block)
140
-
141
- # mid
142
- if mid_block_type == "UNetMidBlock3DCrossAttn":
143
- self.mid_block = UNetMidBlock3DCrossAttn(
144
- in_channels=block_out_channels[-1],
145
- temb_channels=time_embed_dim,
146
- resnet_eps=norm_eps,
147
- resnet_act_fn=act_fn,
148
- output_scale_factor=mid_block_scale_factor,
149
- resnet_time_scale_shift=resnet_time_scale_shift,
150
- cross_attention_dim=cross_attention_dim,
151
- attn_num_head_channels=attention_head_dim[-1],
152
- resnet_groups=norm_num_groups,
153
- dual_cross_attention=dual_cross_attention,
154
- use_linear_projection=use_linear_projection,
155
- upcast_attention=upcast_attention,
156
- )
157
- else:
158
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
159
-
160
- # count how many layers upsample the videos
161
- self.num_upsamplers = 0
162
-
163
- # up
164
- reversed_block_out_channels = list(reversed(block_out_channels))
165
- reversed_attention_head_dim = list(reversed(attention_head_dim))
166
- only_cross_attention = list(reversed(only_cross_attention))
167
- output_channel = reversed_block_out_channels[0]
168
- for i, up_block_type in enumerate(up_block_types):
169
- is_final_block = i == len(block_out_channels) - 1
170
-
171
- prev_output_channel = output_channel
172
- output_channel = reversed_block_out_channels[i]
173
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
174
-
175
- # add upsample block for all BUT final layer
176
- if not is_final_block:
177
- add_upsample = True
178
- self.num_upsamplers += 1
179
- else:
180
- add_upsample = False
181
-
182
- up_block = get_up_block(
183
- up_block_type,
184
- num_layers=layers_per_block + 1,
185
- in_channels=input_channel,
186
- out_channels=output_channel,
187
- prev_output_channel=prev_output_channel,
188
- temb_channels=time_embed_dim,
189
- add_upsample=add_upsample,
190
- resnet_eps=norm_eps,
191
- resnet_act_fn=act_fn,
192
- resnet_groups=norm_num_groups,
193
- cross_attention_dim=cross_attention_dim,
194
- attn_num_head_channels=reversed_attention_head_dim[i],
195
- dual_cross_attention=dual_cross_attention,
196
- use_linear_projection=use_linear_projection,
197
- only_cross_attention=only_cross_attention[i],
198
- upcast_attention=upcast_attention,
199
- resnet_time_scale_shift=resnet_time_scale_shift,
200
- )
201
- self.up_blocks.append(up_block)
202
- prev_output_channel = output_channel
203
-
204
- # out
205
- self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
206
- self.conv_act = nn.SiLU()
207
- self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
208
-
209
- def set_attention_slice(self, slice_size):
210
- r"""
211
- Enable sliced attention computation.
212
-
213
- When this option is enabled, the attention module will split the input tensor in slices, to compute attention
214
- in several steps. This is useful to save some memory in exchange for a small speed decrease.
215
-
216
- Args:
217
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
218
- When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
219
- `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
220
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
221
- must be a multiple of `slice_size`.
222
- """
223
- sliceable_head_dims = []
224
-
225
- def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
226
- if hasattr(module, "set_attention_slice"):
227
- sliceable_head_dims.append(module.sliceable_head_dim)
228
-
229
- for child in module.children():
230
- fn_recursive_retrieve_slicable_dims(child)
231
-
232
- # retrieve number of attention layers
233
- for module in self.children():
234
- fn_recursive_retrieve_slicable_dims(module)
235
-
236
- num_slicable_layers = len(sliceable_head_dims)
237
-
238
- if slice_size == "auto":
239
- # half the attention head size is usually a good trade-off between
240
- # speed and memory
241
- slice_size = [dim // 2 for dim in sliceable_head_dims]
242
- elif slice_size == "max":
243
- # make smallest slice possible
244
- slice_size = num_slicable_layers * [1]
245
-
246
- slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
247
-
248
- if len(slice_size) != len(sliceable_head_dims):
249
- raise ValueError(
250
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
251
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
252
- )
253
-
254
- for i in range(len(slice_size)):
255
- size = slice_size[i]
256
- dim = sliceable_head_dims[i]
257
- if size is not None and size > dim:
258
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
259
-
260
- # Recursively walk through all the children.
261
- # Any children which exposes the set_attention_slice method
262
- # gets the message
263
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
264
- if hasattr(module, "set_attention_slice"):
265
- module.set_attention_slice(slice_size.pop())
266
-
267
- for child in module.children():
268
- fn_recursive_set_attention_slice(child, slice_size)
269
-
270
- reversed_slice_size = list(reversed(slice_size))
271
- for module in self.children():
272
- fn_recursive_set_attention_slice(module, reversed_slice_size)
273
-
274
- def _set_gradient_checkpointing(self, module, value=False):
275
- if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
276
- module.gradient_checkpointing = value
277
-
278
- def forward(
279
- self,
280
- sample: torch.FloatTensor,
281
- timestep: Union[torch.Tensor, float, int],
282
- encoder_hidden_states: torch.Tensor,
283
- class_labels: Optional[torch.Tensor] = None,
284
- attention_mask: Optional[torch.Tensor] = None,
285
- return_dict: bool = True,
286
- ) -> Union[UNet3DConditionOutput, Tuple]:
287
- r"""
288
- Args:
289
- sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
290
- timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
291
- encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
292
- return_dict (`bool`, *optional*, defaults to `True`):
293
- Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
294
-
295
- Returns:
296
- [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
297
- [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
298
- returning a tuple, the first element is the sample tensor.
299
- """
300
- # By default samples have to be AT least a multiple of the overall upsampling factor.
301
- # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
302
- # However, the upsampling interpolation output size can be forced to fit any upsampling size
303
- # on the fly if necessary.
304
- default_overall_up_factor = 2**self.num_upsamplers
305
-
306
- # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
307
- forward_upsample_size = False
308
- upsample_size = None
309
-
310
- if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
311
- logger.info("Forward upsample size to force interpolation output size.")
312
- forward_upsample_size = True
313
-
314
- # prepare attention_mask
315
- if attention_mask is not None:
316
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
317
- attention_mask = attention_mask.unsqueeze(1)
318
-
319
- # center input if necessary
320
- if self.config.center_input_sample:
321
- sample = 2 * sample - 1.0
322
-
323
- # time
324
- timesteps = timestep
325
- if not torch.is_tensor(timesteps):
326
- # This would be a good case for the `match` statement (Python 3.10+)
327
- is_mps = sample.device.type == "mps"
328
- if isinstance(timestep, float):
329
- dtype = torch.float32 if is_mps else torch.float64
330
- else:
331
- dtype = torch.int32 if is_mps else torch.int64
332
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
333
- elif len(timesteps.shape) == 0:
334
- timesteps = timesteps[None].to(sample.device)
335
-
336
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
337
- timesteps = timesteps.expand(sample.shape[0])
338
-
339
- t_emb = self.time_proj(timesteps)
340
-
341
- # timesteps does not contain any weights and will always return f32 tensors
342
- # but time_embedding might actually be running in fp16. so we need to cast here.
343
- # there might be better ways to encapsulate this.
344
- t_emb = t_emb.to(dtype=self.dtype)
345
- emb = self.time_embedding(t_emb)
346
-
347
- if self.class_embedding is not None:
348
- if class_labels is None:
349
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
350
-
351
- if self.config.class_embed_type == "timestep":
352
- class_labels = self.time_proj(class_labels)
353
-
354
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
355
- emb = emb + class_emb
356
-
357
- # pre-process
358
- sample = self.conv_in(sample)
359
-
360
- # down
361
- down_block_res_samples = (sample,)
362
- for downsample_block in self.down_blocks:
363
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
364
- sample, res_samples = downsample_block(
365
- hidden_states=sample,
366
- temb=emb,
367
- encoder_hidden_states=encoder_hidden_states,
368
- attention_mask=attention_mask,
369
- )
370
- else:
371
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
372
-
373
- down_block_res_samples += res_samples
374
-
375
- # mid
376
- sample = self.mid_block(
377
- sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
378
- )
379
-
380
- # up
381
- for i, upsample_block in enumerate(self.up_blocks):
382
- is_final_block = i == len(self.up_blocks) - 1
383
-
384
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
385
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
386
-
387
- # if we have not reached the final block and need to forward the
388
- # upsample size, we do it here
389
- if not is_final_block and forward_upsample_size:
390
- upsample_size = down_block_res_samples[-1].shape[2:]
391
-
392
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
393
- sample = upsample_block(
394
- hidden_states=sample,
395
- temb=emb,
396
- res_hidden_states_tuple=res_samples,
397
- encoder_hidden_states=encoder_hidden_states,
398
- upsample_size=upsample_size,
399
- attention_mask=attention_mask,
400
- )
401
- else:
402
- sample = upsample_block(
403
- hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
404
- )
405
- # post-process
406
- sample = self.conv_norm_out(sample)
407
- sample = self.conv_act(sample)
408
- sample = self.conv_out(sample)
409
-
410
- if not return_dict:
411
- return (sample,)
412
-
413
- return UNet3DConditionOutput(sample=sample)
414
-
415
- @classmethod
416
- def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
417
- if subfolder is not None:
418
- pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
419
-
420
- config_file = os.path.join(pretrained_model_path, 'config.json')
421
- if not os.path.isfile(config_file):
422
- raise RuntimeError(f"{config_file} does not exist")
423
- with open(config_file, "r") as f:
424
- config = json.load(f)
425
- config["_class_name"] = cls.__name__
426
- config["down_block_types"] = [
427
- "CrossAttnDownBlock3D",
428
- "CrossAttnDownBlock3D",
429
- "CrossAttnDownBlock3D",
430
- "DownBlock3D"
431
- ]
432
- config["up_block_types"] = [
433
- "UpBlock3D",
434
- "CrossAttnUpBlock3D",
435
- "CrossAttnUpBlock3D",
436
- "CrossAttnUpBlock3D"
437
- ]
438
-
439
- from diffusers.utils import WEIGHTS_NAME
440
- model = cls.from_config(config)
441
- model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
442
- if not os.path.isfile(model_file):
443
- raise RuntimeError(f"{model_file} does not exist")
444
- state_dict = torch.load(model_file, map_location="cpu")
445
- for k, v in model.state_dict().items():
446
- if '_temp.' in k:
447
- state_dict.update({k: v})
448
- model.load_state_dict(state_dict)
449
-
450
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/models/unet_blocks.py DELETED
@@ -1,588 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
-
3
- import torch
4
- from torch import nn
5
-
6
- from .attention import Transformer3DModel
7
- from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
-
9
-
10
- def get_down_block(
11
- down_block_type,
12
- num_layers,
13
- in_channels,
14
- out_channels,
15
- temb_channels,
16
- add_downsample,
17
- resnet_eps,
18
- resnet_act_fn,
19
- attn_num_head_channels,
20
- resnet_groups=None,
21
- cross_attention_dim=None,
22
- downsample_padding=None,
23
- dual_cross_attention=False,
24
- use_linear_projection=False,
25
- only_cross_attention=False,
26
- upcast_attention=False,
27
- resnet_time_scale_shift="default",
28
- ):
29
- down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
30
- if down_block_type == "DownBlock3D":
31
- return DownBlock3D(
32
- num_layers=num_layers,
33
- in_channels=in_channels,
34
- out_channels=out_channels,
35
- temb_channels=temb_channels,
36
- add_downsample=add_downsample,
37
- resnet_eps=resnet_eps,
38
- resnet_act_fn=resnet_act_fn,
39
- resnet_groups=resnet_groups,
40
- downsample_padding=downsample_padding,
41
- resnet_time_scale_shift=resnet_time_scale_shift,
42
- )
43
- elif down_block_type == "CrossAttnDownBlock3D":
44
- if cross_attention_dim is None:
45
- raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
46
- return CrossAttnDownBlock3D(
47
- num_layers=num_layers,
48
- in_channels=in_channels,
49
- out_channels=out_channels,
50
- temb_channels=temb_channels,
51
- add_downsample=add_downsample,
52
- resnet_eps=resnet_eps,
53
- resnet_act_fn=resnet_act_fn,
54
- resnet_groups=resnet_groups,
55
- downsample_padding=downsample_padding,
56
- cross_attention_dim=cross_attention_dim,
57
- attn_num_head_channels=attn_num_head_channels,
58
- dual_cross_attention=dual_cross_attention,
59
- use_linear_projection=use_linear_projection,
60
- only_cross_attention=only_cross_attention,
61
- upcast_attention=upcast_attention,
62
- resnet_time_scale_shift=resnet_time_scale_shift,
63
- )
64
- raise ValueError(f"{down_block_type} does not exist.")
65
-
66
-
67
- def get_up_block(
68
- up_block_type,
69
- num_layers,
70
- in_channels,
71
- out_channels,
72
- prev_output_channel,
73
- temb_channels,
74
- add_upsample,
75
- resnet_eps,
76
- resnet_act_fn,
77
- attn_num_head_channels,
78
- resnet_groups=None,
79
- cross_attention_dim=None,
80
- dual_cross_attention=False,
81
- use_linear_projection=False,
82
- only_cross_attention=False,
83
- upcast_attention=False,
84
- resnet_time_scale_shift="default",
85
- ):
86
- up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
87
- if up_block_type == "UpBlock3D":
88
- return UpBlock3D(
89
- num_layers=num_layers,
90
- in_channels=in_channels,
91
- out_channels=out_channels,
92
- prev_output_channel=prev_output_channel,
93
- temb_channels=temb_channels,
94
- add_upsample=add_upsample,
95
- resnet_eps=resnet_eps,
96
- resnet_act_fn=resnet_act_fn,
97
- resnet_groups=resnet_groups,
98
- resnet_time_scale_shift=resnet_time_scale_shift,
99
- )
100
- elif up_block_type == "CrossAttnUpBlock3D":
101
- if cross_attention_dim is None:
102
- raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
103
- return CrossAttnUpBlock3D(
104
- num_layers=num_layers,
105
- in_channels=in_channels,
106
- out_channels=out_channels,
107
- prev_output_channel=prev_output_channel,
108
- temb_channels=temb_channels,
109
- add_upsample=add_upsample,
110
- resnet_eps=resnet_eps,
111
- resnet_act_fn=resnet_act_fn,
112
- resnet_groups=resnet_groups,
113
- cross_attention_dim=cross_attention_dim,
114
- attn_num_head_channels=attn_num_head_channels,
115
- dual_cross_attention=dual_cross_attention,
116
- use_linear_projection=use_linear_projection,
117
- only_cross_attention=only_cross_attention,
118
- upcast_attention=upcast_attention,
119
- resnet_time_scale_shift=resnet_time_scale_shift,
120
- )
121
- raise ValueError(f"{up_block_type} does not exist.")
122
-
123
-
124
- class UNetMidBlock3DCrossAttn(nn.Module):
125
- def __init__(
126
- self,
127
- in_channels: int,
128
- temb_channels: int,
129
- dropout: float = 0.0,
130
- num_layers: int = 1,
131
- resnet_eps: float = 1e-6,
132
- resnet_time_scale_shift: str = "default",
133
- resnet_act_fn: str = "swish",
134
- resnet_groups: int = 32,
135
- resnet_pre_norm: bool = True,
136
- attn_num_head_channels=1,
137
- output_scale_factor=1.0,
138
- cross_attention_dim=1280,
139
- dual_cross_attention=False,
140
- use_linear_projection=False,
141
- upcast_attention=False,
142
- ):
143
- super().__init__()
144
-
145
- self.has_cross_attention = True
146
- self.attn_num_head_channels = attn_num_head_channels
147
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
148
-
149
- # there is always at least one resnet
150
- resnets = [
151
- ResnetBlock3D(
152
- in_channels=in_channels,
153
- out_channels=in_channels,
154
- temb_channels=temb_channels,
155
- eps=resnet_eps,
156
- groups=resnet_groups,
157
- dropout=dropout,
158
- time_embedding_norm=resnet_time_scale_shift,
159
- non_linearity=resnet_act_fn,
160
- output_scale_factor=output_scale_factor,
161
- pre_norm=resnet_pre_norm,
162
- )
163
- ]
164
- attentions = []
165
-
166
- for _ in range(num_layers):
167
- if dual_cross_attention:
168
- raise NotImplementedError
169
- attentions.append(
170
- Transformer3DModel(
171
- attn_num_head_channels,
172
- in_channels // attn_num_head_channels,
173
- in_channels=in_channels,
174
- num_layers=1,
175
- cross_attention_dim=cross_attention_dim,
176
- norm_num_groups=resnet_groups,
177
- use_linear_projection=use_linear_projection,
178
- upcast_attention=upcast_attention,
179
- )
180
- )
181
- resnets.append(
182
- ResnetBlock3D(
183
- in_channels=in_channels,
184
- out_channels=in_channels,
185
- temb_channels=temb_channels,
186
- eps=resnet_eps,
187
- groups=resnet_groups,
188
- dropout=dropout,
189
- time_embedding_norm=resnet_time_scale_shift,
190
- non_linearity=resnet_act_fn,
191
- output_scale_factor=output_scale_factor,
192
- pre_norm=resnet_pre_norm,
193
- )
194
- )
195
-
196
- self.attentions = nn.ModuleList(attentions)
197
- self.resnets = nn.ModuleList(resnets)
198
-
199
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
200
- hidden_states = self.resnets[0](hidden_states, temb)
201
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
202
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
203
- hidden_states = resnet(hidden_states, temb)
204
-
205
- return hidden_states
206
-
207
-
208
- class CrossAttnDownBlock3D(nn.Module):
209
- def __init__(
210
- self,
211
- in_channels: int,
212
- out_channels: int,
213
- temb_channels: int,
214
- dropout: float = 0.0,
215
- num_layers: int = 1,
216
- resnet_eps: float = 1e-6,
217
- resnet_time_scale_shift: str = "default",
218
- resnet_act_fn: str = "swish",
219
- resnet_groups: int = 32,
220
- resnet_pre_norm: bool = True,
221
- attn_num_head_channels=1,
222
- cross_attention_dim=1280,
223
- output_scale_factor=1.0,
224
- downsample_padding=1,
225
- add_downsample=True,
226
- dual_cross_attention=False,
227
- use_linear_projection=False,
228
- only_cross_attention=False,
229
- upcast_attention=False,
230
- ):
231
- super().__init__()
232
- resnets = []
233
- attentions = []
234
-
235
- self.has_cross_attention = True
236
- self.attn_num_head_channels = attn_num_head_channels
237
-
238
- for i in range(num_layers):
239
- in_channels = in_channels if i == 0 else out_channels
240
- resnets.append(
241
- ResnetBlock3D(
242
- in_channels=in_channels,
243
- out_channels=out_channels,
244
- temb_channels=temb_channels,
245
- eps=resnet_eps,
246
- groups=resnet_groups,
247
- dropout=dropout,
248
- time_embedding_norm=resnet_time_scale_shift,
249
- non_linearity=resnet_act_fn,
250
- output_scale_factor=output_scale_factor,
251
- pre_norm=resnet_pre_norm,
252
- )
253
- )
254
- if dual_cross_attention:
255
- raise NotImplementedError
256
- attentions.append(
257
- Transformer3DModel(
258
- attn_num_head_channels,
259
- out_channels // attn_num_head_channels,
260
- in_channels=out_channels,
261
- num_layers=1,
262
- cross_attention_dim=cross_attention_dim,
263
- norm_num_groups=resnet_groups,
264
- use_linear_projection=use_linear_projection,
265
- only_cross_attention=only_cross_attention,
266
- upcast_attention=upcast_attention,
267
- )
268
- )
269
- self.attentions = nn.ModuleList(attentions)
270
- self.resnets = nn.ModuleList(resnets)
271
-
272
- if add_downsample:
273
- self.downsamplers = nn.ModuleList(
274
- [
275
- Downsample3D(
276
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
277
- )
278
- ]
279
- )
280
- else:
281
- self.downsamplers = None
282
-
283
- self.gradient_checkpointing = False
284
-
285
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
286
- output_states = ()
287
-
288
- for resnet, attn in zip(self.resnets, self.attentions):
289
- if self.training and self.gradient_checkpointing:
290
-
291
- def create_custom_forward(module, return_dict=None):
292
- def custom_forward(*inputs):
293
- if return_dict is not None:
294
- return module(*inputs, return_dict=return_dict)
295
- else:
296
- return module(*inputs)
297
-
298
- return custom_forward
299
-
300
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
301
- hidden_states = torch.utils.checkpoint.checkpoint(
302
- create_custom_forward(attn, return_dict=False),
303
- hidden_states,
304
- encoder_hidden_states,
305
- )[0]
306
- else:
307
- hidden_states = resnet(hidden_states, temb)
308
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
309
-
310
- output_states += (hidden_states,)
311
-
312
- if self.downsamplers is not None:
313
- for downsampler in self.downsamplers:
314
- hidden_states = downsampler(hidden_states)
315
-
316
- output_states += (hidden_states,)
317
-
318
- return hidden_states, output_states
319
-
320
-
321
- class DownBlock3D(nn.Module):
322
- def __init__(
323
- self,
324
- in_channels: int,
325
- out_channels: int,
326
- temb_channels: int,
327
- dropout: float = 0.0,
328
- num_layers: int = 1,
329
- resnet_eps: float = 1e-6,
330
- resnet_time_scale_shift: str = "default",
331
- resnet_act_fn: str = "swish",
332
- resnet_groups: int = 32,
333
- resnet_pre_norm: bool = True,
334
- output_scale_factor=1.0,
335
- add_downsample=True,
336
- downsample_padding=1,
337
- ):
338
- super().__init__()
339
- resnets = []
340
-
341
- for i in range(num_layers):
342
- in_channels = in_channels if i == 0 else out_channels
343
- resnets.append(
344
- ResnetBlock3D(
345
- in_channels=in_channels,
346
- out_channels=out_channels,
347
- temb_channels=temb_channels,
348
- eps=resnet_eps,
349
- groups=resnet_groups,
350
- dropout=dropout,
351
- time_embedding_norm=resnet_time_scale_shift,
352
- non_linearity=resnet_act_fn,
353
- output_scale_factor=output_scale_factor,
354
- pre_norm=resnet_pre_norm,
355
- )
356
- )
357
-
358
- self.resnets = nn.ModuleList(resnets)
359
-
360
- if add_downsample:
361
- self.downsamplers = nn.ModuleList(
362
- [
363
- Downsample3D(
364
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
365
- )
366
- ]
367
- )
368
- else:
369
- self.downsamplers = None
370
-
371
- self.gradient_checkpointing = False
372
-
373
- def forward(self, hidden_states, temb=None):
374
- output_states = ()
375
-
376
- for resnet in self.resnets:
377
- if self.training and self.gradient_checkpointing:
378
-
379
- def create_custom_forward(module):
380
- def custom_forward(*inputs):
381
- return module(*inputs)
382
-
383
- return custom_forward
384
-
385
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
386
- else:
387
- hidden_states = resnet(hidden_states, temb)
388
-
389
- output_states += (hidden_states,)
390
-
391
- if self.downsamplers is not None:
392
- for downsampler in self.downsamplers:
393
- hidden_states = downsampler(hidden_states)
394
-
395
- output_states += (hidden_states,)
396
-
397
- return hidden_states, output_states
398
-
399
-
400
- class CrossAttnUpBlock3D(nn.Module):
401
- def __init__(
402
- self,
403
- in_channels: int,
404
- out_channels: int,
405
- prev_output_channel: int,
406
- temb_channels: int,
407
- dropout: float = 0.0,
408
- num_layers: int = 1,
409
- resnet_eps: float = 1e-6,
410
- resnet_time_scale_shift: str = "default",
411
- resnet_act_fn: str = "swish",
412
- resnet_groups: int = 32,
413
- resnet_pre_norm: bool = True,
414
- attn_num_head_channels=1,
415
- cross_attention_dim=1280,
416
- output_scale_factor=1.0,
417
- add_upsample=True,
418
- dual_cross_attention=False,
419
- use_linear_projection=False,
420
- only_cross_attention=False,
421
- upcast_attention=False,
422
- ):
423
- super().__init__()
424
- resnets = []
425
- attentions = []
426
-
427
- self.has_cross_attention = True
428
- self.attn_num_head_channels = attn_num_head_channels
429
-
430
- for i in range(num_layers):
431
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
432
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
433
-
434
- resnets.append(
435
- ResnetBlock3D(
436
- in_channels=resnet_in_channels + res_skip_channels,
437
- out_channels=out_channels,
438
- temb_channels=temb_channels,
439
- eps=resnet_eps,
440
- groups=resnet_groups,
441
- dropout=dropout,
442
- time_embedding_norm=resnet_time_scale_shift,
443
- non_linearity=resnet_act_fn,
444
- output_scale_factor=output_scale_factor,
445
- pre_norm=resnet_pre_norm,
446
- )
447
- )
448
- if dual_cross_attention:
449
- raise NotImplementedError
450
- attentions.append(
451
- Transformer3DModel(
452
- attn_num_head_channels,
453
- out_channels // attn_num_head_channels,
454
- in_channels=out_channels,
455
- num_layers=1,
456
- cross_attention_dim=cross_attention_dim,
457
- norm_num_groups=resnet_groups,
458
- use_linear_projection=use_linear_projection,
459
- only_cross_attention=only_cross_attention,
460
- upcast_attention=upcast_attention,
461
- )
462
- )
463
-
464
- self.attentions = nn.ModuleList(attentions)
465
- self.resnets = nn.ModuleList(resnets)
466
-
467
- if add_upsample:
468
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
469
- else:
470
- self.upsamplers = None
471
-
472
- self.gradient_checkpointing = False
473
-
474
- def forward(
475
- self,
476
- hidden_states,
477
- res_hidden_states_tuple,
478
- temb=None,
479
- encoder_hidden_states=None,
480
- upsample_size=None,
481
- attention_mask=None,
482
- ):
483
- for resnet, attn in zip(self.resnets, self.attentions):
484
- # pop res hidden states
485
- res_hidden_states = res_hidden_states_tuple[-1]
486
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
487
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
488
-
489
- if self.training and self.gradient_checkpointing:
490
-
491
- def create_custom_forward(module, return_dict=None):
492
- def custom_forward(*inputs):
493
- if return_dict is not None:
494
- return module(*inputs, return_dict=return_dict)
495
- else:
496
- return module(*inputs)
497
-
498
- return custom_forward
499
-
500
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
501
- hidden_states = torch.utils.checkpoint.checkpoint(
502
- create_custom_forward(attn, return_dict=False),
503
- hidden_states,
504
- encoder_hidden_states,
505
- )[0]
506
- else:
507
- hidden_states = resnet(hidden_states, temb)
508
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
509
-
510
- if self.upsamplers is not None:
511
- for upsampler in self.upsamplers:
512
- hidden_states = upsampler(hidden_states, upsample_size)
513
-
514
- return hidden_states
515
-
516
-
517
- class UpBlock3D(nn.Module):
518
- def __init__(
519
- self,
520
- in_channels: int,
521
- prev_output_channel: int,
522
- out_channels: int,
523
- temb_channels: int,
524
- dropout: float = 0.0,
525
- num_layers: int = 1,
526
- resnet_eps: float = 1e-6,
527
- resnet_time_scale_shift: str = "default",
528
- resnet_act_fn: str = "swish",
529
- resnet_groups: int = 32,
530
- resnet_pre_norm: bool = True,
531
- output_scale_factor=1.0,
532
- add_upsample=True,
533
- ):
534
- super().__init__()
535
- resnets = []
536
-
537
- for i in range(num_layers):
538
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
539
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
540
-
541
- resnets.append(
542
- ResnetBlock3D(
543
- in_channels=resnet_in_channels + res_skip_channels,
544
- out_channels=out_channels,
545
- temb_channels=temb_channels,
546
- eps=resnet_eps,
547
- groups=resnet_groups,
548
- dropout=dropout,
549
- time_embedding_norm=resnet_time_scale_shift,
550
- non_linearity=resnet_act_fn,
551
- output_scale_factor=output_scale_factor,
552
- pre_norm=resnet_pre_norm,
553
- )
554
- )
555
-
556
- self.resnets = nn.ModuleList(resnets)
557
-
558
- if add_upsample:
559
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
560
- else:
561
- self.upsamplers = None
562
-
563
- self.gradient_checkpointing = False
564
-
565
- def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
566
- for resnet in self.resnets:
567
- # pop res hidden states
568
- res_hidden_states = res_hidden_states_tuple[-1]
569
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
570
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
571
-
572
- if self.training and self.gradient_checkpointing:
573
-
574
- def create_custom_forward(module):
575
- def custom_forward(*inputs):
576
- return module(*inputs)
577
-
578
- return custom_forward
579
-
580
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
- else:
582
- hidden_states = resnet(hidden_states, temb)
583
-
584
- if self.upsamplers is not None:
585
- for upsampler in self.upsamplers:
586
- hidden_states = upsampler(hidden_states, upsample_size)
587
-
588
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/pipelines/pipeline_tuneavideo.py DELETED
@@ -1,407 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
2
-
3
- import inspect
4
- from typing import Callable, List, Optional, Union
5
- from dataclasses import dataclass
6
-
7
- import numpy as np
8
- import torch
9
-
10
- from diffusers.utils import is_accelerate_available
11
- from packaging import version
12
- from transformers import CLIPTextModel, CLIPTokenizer
13
-
14
- from diffusers.configuration_utils import FrozenDict
15
- from diffusers.models import AutoencoderKL
16
- from diffusers.pipeline_utils import DiffusionPipeline
17
- from diffusers.schedulers import (
18
- DDIMScheduler,
19
- DPMSolverMultistepScheduler,
20
- EulerAncestralDiscreteScheduler,
21
- EulerDiscreteScheduler,
22
- LMSDiscreteScheduler,
23
- PNDMScheduler,
24
- )
25
- from diffusers.utils import deprecate, logging, BaseOutput
26
-
27
- from einops import rearrange
28
-
29
- from ..models.unet import UNet3DConditionModel
30
-
31
-
32
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
-
34
-
35
- @dataclass
36
- class TuneAVideoPipelineOutput(BaseOutput):
37
- videos: Union[torch.Tensor, np.ndarray]
38
-
39
-
40
- class TuneAVideoPipeline(DiffusionPipeline):
41
- _optional_components = []
42
-
43
- def __init__(
44
- self,
45
- vae: AutoencoderKL,
46
- text_encoder: CLIPTextModel,
47
- tokenizer: CLIPTokenizer,
48
- unet: UNet3DConditionModel,
49
- scheduler: Union[
50
- DDIMScheduler,
51
- PNDMScheduler,
52
- LMSDiscreteScheduler,
53
- EulerDiscreteScheduler,
54
- EulerAncestralDiscreteScheduler,
55
- DPMSolverMultistepScheduler,
56
- ],
57
- ):
58
- super().__init__()
59
-
60
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
- deprecation_message = (
62
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
- " file"
68
- )
69
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
- new_config = dict(scheduler.config)
71
- new_config["steps_offset"] = 1
72
- scheduler._internal_dict = FrozenDict(new_config)
73
-
74
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
- deprecation_message = (
76
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
- )
82
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
- new_config = dict(scheduler.config)
84
- new_config["clip_sample"] = False
85
- scheduler._internal_dict = FrozenDict(new_config)
86
-
87
- is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
- version.parse(unet.config._diffusers_version).base_version
89
- ) < version.parse("0.9.0.dev0")
90
- is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
- if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
- deprecation_message = (
93
- "The configuration file of the unet has set the default `sample_size` to smaller than"
94
- " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
- " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
- " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
- " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
- " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
- " the `unet/config.json` file"
102
- )
103
- deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
- new_config = dict(unet.config)
105
- new_config["sample_size"] = 64
106
- unet._internal_dict = FrozenDict(new_config)
107
-
108
- self.register_modules(
109
- vae=vae,
110
- text_encoder=text_encoder,
111
- tokenizer=tokenizer,
112
- unet=unet,
113
- scheduler=scheduler,
114
- )
115
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
-
117
- def enable_vae_slicing(self):
118
- self.vae.enable_slicing()
119
-
120
- def disable_vae_slicing(self):
121
- self.vae.disable_slicing()
122
-
123
- def enable_sequential_cpu_offload(self, gpu_id=0):
124
- if is_accelerate_available():
125
- from accelerate import cpu_offload
126
- else:
127
- raise ImportError("Please install accelerate via `pip install accelerate`")
128
-
129
- device = torch.device(f"cuda:{gpu_id}")
130
-
131
- for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
132
- if cpu_offloaded_model is not None:
133
- cpu_offload(cpu_offloaded_model, device)
134
-
135
-
136
- @property
137
- def _execution_device(self):
138
- if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
139
- return self.device
140
- for module in self.unet.modules():
141
- if (
142
- hasattr(module, "_hf_hook")
143
- and hasattr(module._hf_hook, "execution_device")
144
- and module._hf_hook.execution_device is not None
145
- ):
146
- return torch.device(module._hf_hook.execution_device)
147
- return self.device
148
-
149
- def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
150
- batch_size = len(prompt) if isinstance(prompt, list) else 1
151
-
152
- text_inputs = self.tokenizer(
153
- prompt,
154
- padding="max_length",
155
- max_length=self.tokenizer.model_max_length,
156
- truncation=True,
157
- return_tensors="pt",
158
- )
159
- text_input_ids = text_inputs.input_ids
160
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
161
-
162
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
163
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
164
- logger.warning(
165
- "The following part of your input was truncated because CLIP can only handle sequences up to"
166
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
167
- )
168
-
169
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
170
- attention_mask = text_inputs.attention_mask.to(device)
171
- else:
172
- attention_mask = None
173
-
174
- text_embeddings = self.text_encoder(
175
- text_input_ids.to(device),
176
- attention_mask=attention_mask,
177
- )
178
- text_embeddings = text_embeddings[0]
179
-
180
- # duplicate text embeddings for each generation per prompt, using mps friendly method
181
- bs_embed, seq_len, _ = text_embeddings.shape
182
- text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
183
- text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
184
-
185
- # get unconditional embeddings for classifier free guidance
186
- if do_classifier_free_guidance:
187
- uncond_tokens: List[str]
188
- if negative_prompt is None:
189
- uncond_tokens = [""] * batch_size
190
- elif type(prompt) is not type(negative_prompt):
191
- raise TypeError(
192
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
193
- f" {type(prompt)}."
194
- )
195
- elif isinstance(negative_prompt, str):
196
- uncond_tokens = [negative_prompt]
197
- elif batch_size != len(negative_prompt):
198
- raise ValueError(
199
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
200
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
201
- " the batch size of `prompt`."
202
- )
203
- else:
204
- uncond_tokens = negative_prompt
205
-
206
- max_length = text_input_ids.shape[-1]
207
- uncond_input = self.tokenizer(
208
- uncond_tokens,
209
- padding="max_length",
210
- max_length=max_length,
211
- truncation=True,
212
- return_tensors="pt",
213
- )
214
-
215
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
216
- attention_mask = uncond_input.attention_mask.to(device)
217
- else:
218
- attention_mask = None
219
-
220
- uncond_embeddings = self.text_encoder(
221
- uncond_input.input_ids.to(device),
222
- attention_mask=attention_mask,
223
- )
224
- uncond_embeddings = uncond_embeddings[0]
225
-
226
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
227
- seq_len = uncond_embeddings.shape[1]
228
- uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
229
- uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
230
-
231
- # For classifier free guidance, we need to do two forward passes.
232
- # Here we concatenate the unconditional and text embeddings into a single batch
233
- # to avoid doing two forward passes
234
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
235
-
236
- return text_embeddings
237
-
238
- def decode_latents(self, latents):
239
- video_length = latents.shape[2]
240
- latents = 1 / 0.18215 * latents
241
- latents = rearrange(latents, "b c f h w -> (b f) c h w")
242
- video = self.vae.decode(latents).sample
243
- video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
244
- video = (video / 2 + 0.5).clamp(0, 1)
245
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
246
- video = video.cpu().float().numpy()
247
- return video
248
-
249
- def prepare_extra_step_kwargs(self, generator, eta):
250
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
251
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
252
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
253
- # and should be between [0, 1]
254
-
255
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
256
- extra_step_kwargs = {}
257
- if accepts_eta:
258
- extra_step_kwargs["eta"] = eta
259
-
260
- # check if the scheduler accepts generator
261
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
262
- if accepts_generator:
263
- extra_step_kwargs["generator"] = generator
264
- return extra_step_kwargs
265
-
266
- def check_inputs(self, prompt, height, width, callback_steps):
267
- if not isinstance(prompt, str) and not isinstance(prompt, list):
268
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
269
-
270
- if height % 8 != 0 or width % 8 != 0:
271
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
272
-
273
- if (callback_steps is None) or (
274
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
275
- ):
276
- raise ValueError(
277
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
278
- f" {type(callback_steps)}."
279
- )
280
-
281
- def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
282
- shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
283
- if isinstance(generator, list) and len(generator) != batch_size:
284
- raise ValueError(
285
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
286
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
287
- )
288
-
289
- if latents is None:
290
- rand_device = "cpu" if device.type == "mps" else device
291
-
292
- if isinstance(generator, list):
293
- shape = (1,) + shape[1:]
294
- latents = [
295
- torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
296
- for i in range(batch_size)
297
- ]
298
- latents = torch.cat(latents, dim=0).to(device)
299
- else:
300
- latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
301
- else:
302
- if latents.shape != shape:
303
- raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
304
- latents = latents.to(device)
305
-
306
- # scale the initial noise by the standard deviation required by the scheduler
307
- latents = latents * self.scheduler.init_noise_sigma
308
- return latents
309
-
310
- @torch.no_grad()
311
- def __call__(
312
- self,
313
- prompt: Union[str, List[str]],
314
- video_length: Optional[int],
315
- height: Optional[int] = None,
316
- width: Optional[int] = None,
317
- num_inference_steps: int = 50,
318
- guidance_scale: float = 7.5,
319
- negative_prompt: Optional[Union[str, List[str]]] = None,
320
- num_videos_per_prompt: Optional[int] = 1,
321
- eta: float = 0.0,
322
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
323
- latents: Optional[torch.FloatTensor] = None,
324
- output_type: Optional[str] = "tensor",
325
- return_dict: bool = True,
326
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
327
- callback_steps: Optional[int] = 1,
328
- **kwargs,
329
- ):
330
- # Default height and width to unet
331
- height = height or self.unet.config.sample_size * self.vae_scale_factor
332
- width = width or self.unet.config.sample_size * self.vae_scale_factor
333
-
334
- # Check inputs. Raise error if not correct
335
- self.check_inputs(prompt, height, width, callback_steps)
336
-
337
- # Define call parameters
338
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
339
- device = self._execution_device
340
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
341
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
342
- # corresponds to doing no classifier free guidance.
343
- do_classifier_free_guidance = guidance_scale > 1.0
344
-
345
- # Encode input prompt
346
- text_embeddings = self._encode_prompt(
347
- prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
348
- )
349
-
350
- # Prepare timesteps
351
- self.scheduler.set_timesteps(num_inference_steps, device=device)
352
- timesteps = self.scheduler.timesteps
353
-
354
- # Prepare latent variables
355
- num_channels_latents = self.unet.in_channels
356
- latents = self.prepare_latents(
357
- batch_size * num_videos_per_prompt,
358
- num_channels_latents,
359
- video_length,
360
- height,
361
- width,
362
- text_embeddings.dtype,
363
- device,
364
- generator,
365
- latents,
366
- )
367
- latents_dtype = latents.dtype
368
-
369
- # Prepare extra step kwargs.
370
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
371
-
372
- # Denoising loop
373
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
374
- with self.progress_bar(total=num_inference_steps) as progress_bar:
375
- for i, t in enumerate(timesteps):
376
- # expand the latents if we are doing classifier free guidance
377
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
378
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
379
-
380
- # predict the noise residual
381
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
382
-
383
- # perform guidance
384
- if do_classifier_free_guidance:
385
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
386
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
387
-
388
- # compute the previous noisy sample x_t -> x_t-1
389
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
390
-
391
- # call the callback, if provided
392
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
393
- progress_bar.update()
394
- if callback is not None and i % callback_steps == 0:
395
- callback(i, t, latents)
396
-
397
- # Post-processing
398
- video = self.decode_latents(latents)
399
-
400
- # Convert to tensor
401
- if output_type == "tensor":
402
- video = torch.from_numpy(video)
403
-
404
- if not return_dict:
405
- return video
406
-
407
- return TuneAVideoPipelineOutput(videos=video)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video-debug/tuneavideo/util.py DELETED
@@ -1,84 +0,0 @@
1
- import os
2
- import imageio
3
- import numpy as np
4
- from typing import Union
5
-
6
- import torch
7
- import torchvision
8
-
9
- from tqdm import tqdm
10
- from einops import rearrange
11
-
12
-
13
- def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
14
- videos = rearrange(videos, "b c t h w -> t b c h w")
15
- outputs = []
16
- for x in videos:
17
- x = torchvision.utils.make_grid(x, nrow=n_rows)
18
- x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
19
- if rescale:
20
- x = (x + 1.0) / 2.0 # -1,1 -> 0,1
21
- x = (x * 255).numpy().astype(np.uint8)
22
- outputs.append(x)
23
-
24
- os.makedirs(os.path.dirname(path), exist_ok=True)
25
- imageio.mimsave(path, outputs, fps=fps)
26
-
27
-
28
- # DDIM Inversion
29
- @torch.no_grad()
30
- def init_prompt(prompt, pipeline):
31
- uncond_input = pipeline.tokenizer(
32
- [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
33
- return_tensors="pt"
34
- )
35
- uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
36
- text_input = pipeline.tokenizer(
37
- [prompt],
38
- padding="max_length",
39
- max_length=pipeline.tokenizer.model_max_length,
40
- truncation=True,
41
- return_tensors="pt",
42
- )
43
- text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
44
- context = torch.cat([uncond_embeddings, text_embeddings])
45
-
46
- return context
47
-
48
-
49
- def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
50
- sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
51
- timestep, next_timestep = min(
52
- timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
53
- alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
54
- alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
55
- beta_prod_t = 1 - alpha_prod_t
56
- next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
57
- next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
58
- next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
59
- return next_sample
60
-
61
-
62
- def get_noise_pred_single(latents, t, context, unet):
63
- noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
64
- return noise_pred
65
-
66
-
67
- @torch.no_grad()
68
- def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
69
- context = init_prompt(prompt, pipeline)
70
- uncond_embeddings, cond_embeddings = context.chunk(2)
71
- all_latent = [latent]
72
- latent = latent.clone().detach()
73
- for i in tqdm(range(num_inv_steps)):
74
- t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
75
- noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
76
- latent = next_step(noise_pred, t, latent, ddim_scheduler)
77
- all_latent.append(latent)
78
- return all_latent
79
-
80
-
81
- @torch.no_grad()
82
- def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
83
- ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
84
- return ddim_latents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/README.md DELETED
@@ -1,227 +0,0 @@
1
- # Tune-A-Video
2
-
3
- This repository is the official implementation of [Tune-A-Video](https://arxiv.org/abs/2212.11565).
4
-
5
- **[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)**
6
- <br/>
7
- [Jay Zhangjie Wu](https://zhangjiewu.github.io/),
8
- [Yixiao Ge](https://geyixiao.com/),
9
- [Xintao Wang](https://xinntao.github.io/),
10
- [Stan Weixian Lei](),
11
- [Yuchao Gu](https://ycgu.site/),
12
- [Yufei Shi](),
13
- [Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/),
14
- [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en),
15
- [Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en),
16
- [Mike Zheng Shou](https://sites.google.com/view/showlab)
17
- <br/>
18
-
19
- [![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://tuneavideo.github.io/)
20
- [![arXiv](https://img.shields.io/badge/arXiv-2212.11565-b31b1b.svg)](https://arxiv.org/abs/2212.11565)
21
- [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI)
22
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/showlab/Tune-A-Video/blob/main/notebooks/Tune-A-Video.ipynb)
23
-
24
-
25
- <p align="center">
26
- <img src="https://tuneavideo.github.io/assets/overview.png" width="800px"/>
27
- <br>
28
- <em>Given a video-text pair as input, our method, Tune-A-Video, fine-tunes a pre-trained text-to-image diffusion model for text-to-video generation.</em>
29
- </p>
30
-
31
- ## News
32
- - [02/22/2023] Improved consistency using DDIM inversion.
33
- - [02/08/2023] [Colab demo](https://colab.research.google.com/github/showlab/Tune-A-Video/blob/main/notebooks/Tune-A-Video.ipynb) released!
34
- - [02/03/2023] Pre-trained Tune-A-Video models are available on [Hugging Face Library](https://huggingface.co/Tune-A-Video-library)!
35
- - [01/28/2023] New Feature: tune a video on personalized [DreamBooth](https://dreambooth.github.io/) models.
36
- - [01/28/2023] Code released!
37
-
38
- ## Setup
39
-
40
- ### Requirements
41
-
42
- ```shell
43
- pip install -r requirements.txt
44
- ```
45
-
46
- Installing [xformers](https://github.com/facebookresearch/xformers) is highly recommended for more efficiency and speed on GPUs.
47
- To enable xformers, set `enable_xformers_memory_efficient_attention=True` (default).
48
-
49
- ### Weights
50
-
51
- **[Stable Diffusion]** [Stable Diffusion](https://arxiv.org/abs/2112.10752) is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. The pre-trained Stable Diffusion models can be downloaded from Hugging Face (e.g., [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), [v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)). You can also use fine-tuned Stable Diffusion models trained on different styles (e.g, [Modern Disney](https://huggingface.co/nitrosocke/mo-di-diffusion), [Redshift](https://huggingface.co/nitrosocke/redshift-diffusion), etc.).
52
-
53
- **[DreamBooth]** [DreamBooth](https://dreambooth.github.io/) is a method to personalize text-to-image models like Stable Diffusion given just a few images (3~5 images) of a subject. Tuning a video on DreamBooth models allows personalized text-to-video generation of a specific subject. There are some public DreamBooth models available on [Hugging Face](https://huggingface.co/sd-dreambooth-library) (e.g., [mr-potato-head](https://huggingface.co/sd-dreambooth-library/mr-potato-head)). You can also train your own DreamBooth model following [this training example](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth).
54
-
55
-
56
- ## Usage
57
-
58
- ### Training
59
-
60
- To fine-tune the text-to-image diffusion models for text-to-video generation, run this command:
61
-
62
- ```bash
63
- accelerate launch train_tuneavideo.py --config="configs/man-skiing.yaml"
64
- ```
65
-
66
- Note: Tuning a 24-frame video usually takes `300~500` steps, about `10~15` minutes using one A100 GPU.
67
- Reduce `n_sample_frames` if your GPU memory is limited.
68
-
69
- ### Inference
70
-
71
- Once the training is done, run inference:
72
-
73
- ```python
74
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
75
- from tuneavideo.models.unet import UNet3DConditionModel
76
- from tuneavideo.util import save_videos_grid
77
- import torch
78
-
79
- pretrained_model_path = "./checkpoints/stable-diffusion-v1-4"
80
- my_model_path = "./outputs/man-skiing"
81
- unet = UNet3DConditionModel.from_pretrained(my_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
82
- pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
83
- pipe.enable_xformers_memory_efficient_attention()
84
- pipe.enable_vae_slicing()
85
-
86
- prompt = "spider man is skiing"
87
- ddim_inv_latent = torch.load(f"{my_model_path}/inv_latents/ddim_latent-500.pt").to(torch.float16)
88
- video = pipe(prompt, latents=ddim_inv_latent, video_length=24, height=512, width=512, num_inference_steps=50, guidance_scale=12.5).videos
89
-
90
- save_videos_grid(video, f"./{prompt}.gif")
91
- ```
92
-
93
- ## Results
94
-
95
- ### Pretrained T2I (Stable Diffusion)
96
- <table class="center">
97
- <tr>
98
- <td style="text-align:center;"><b>Input Video</b></td>
99
- <td style="text-align:center;" colspan="3"><b>Output Video</b></td>
100
- </tr>
101
- <tr>
102
- <td><img src="https://tuneavideo.github.io/assets/data/man-skiing.gif"></td>
103
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/spiderman-beach.gif"></td>
104
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/wonder-woman.gif"></td>
105
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/pink-sunset.gif"></td>
106
- </tr>
107
- <tr>
108
- <td width=25% style="text-align:center;color:gray;">"A man is skiing"</td>
109
- <td width=25% style="text-align:center;">"Spider Man is skiing on the beach, cartoon style”</td>
110
- <td width=25% style="text-align:center;">"Wonder Woman, wearing a cowboy hat, is skiing"</td>
111
- <td width=25% style="text-align:center;">"A man, wearing pink clothes, is skiing at sunset"</td>
112
- </tr>
113
-
114
- <tr>
115
- <td><img src="https://tuneavideo.github.io/assets/data/rabbit-watermelon.gif"></td>
116
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/rabbit.gif"></td>
117
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/cat.gif"></td>
118
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/puppy.gif"></td>
119
- </tr>
120
- <tr>
121
- <td width=25% style="text-align:center;color:gray;">"A rabbit is eating a watermelon"</td>
122
- <td width=25% style="text-align:center;">"A rabbit is <del>eating a watermelon</del> on the table"</td>
123
- <td width=25% style="text-align:center;">"A cat with sunglasses is eating a watermelon on the beach"</td>
124
- <td width=25% style="text-align:center;">"A puppy is eating a cheeseburger on the table, comic style"</td>
125
- </tr>
126
-
127
- <tr>
128
- <td><img src="https://tuneavideo.github.io/assets/data/car-turn.gif"></td>
129
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/porsche-beach.gif"></td>
130
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/car-cartoon.gif"></td>
131
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/car-snow.gif"></td>
132
- </tr>
133
- <tr>
134
- <td width=25% style="text-align:center;color:gray;">"A jeep car is moving on the road"</td>
135
- <td width=25% style="text-align:center;">"A Porsche car is moving on the beach"</td>
136
- <td width=25% style="text-align:center;">"A car is moving on the road, cartoon style"</td>
137
- <td width=25% style="text-align:center;">"A car is moving on the snow"</td>
138
- </tr>
139
-
140
- <tr>
141
- <td><img src="https://tuneavideo.github.io/assets/data/man-basketball.gif"></td>
142
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/trump.gif"></td>
143
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/astronaut.gif"></td>
144
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/lego.gif"></td>
145
- </tr>
146
- <tr>
147
- <td width=25% style="text-align:center;color:gray;">"A man is dribbling a basketball"</td>
148
- <td width=25% style="text-align:center;">"Trump is dribbling a basketball"</td>
149
- <td width=25% style="text-align:center;">"An astronaut is dribbling a basketball, cartoon style"</td>
150
- <td width=25% style="text-align:center;">"A lego man in a black suit is dribbling a basketball"</td>
151
- </tr>
152
-
153
- <!-- <tr>
154
- <td><img src="https://tuneavideo.github.io/assets/data/lion-roaring.gif"></td>
155
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/tiger-roar.gif"></td>
156
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/lion-vangogh.gif"></td>
157
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/wolf-nyc.gif"></td>
158
- </tr>
159
- <tr>
160
- <td width=25% style="text-align:center;color:gray;">"A lion is roaring"</td>
161
- <td width=25% style="text-align:center;">"A tiger is roaring"</td>
162
- <td width=25% style="text-align:center;">"A lion is roaring, Van Gogh style"</td>
163
- <td width=25% style="text-align:center;">"A wolf is roaring in New York City"</td>
164
- </tr> -->
165
-
166
- </table>
167
-
168
- ### Pretrained T2I (personalized DreamBooth)
169
-
170
- <img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/modern-disney.png" width="240px"/>
171
-
172
- <table class="center">
173
- <tr>
174
- <td style="text-align:center;"><b>Input Video</b></td>
175
- <td style="text-align:center;" colspan="3"><b>Output Video</b></td>
176
- </tr>
177
- <tr>
178
- <td><img src="https://tuneavideo.github.io/assets/data/bear-guitar.gif"></td>
179
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/rabbit.gif"></td>
180
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/prince.gif"></td>
181
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/princess.gif"></td>
182
- </tr>
183
- <tr>
184
- <td width=25% style="text-align:center;color:gray;">"A bear is playing guitar"</td>
185
- <td width=25% style="text-align:center;">"A rabbit is playing guitar, modern disney style"</td>
186
- <td width=25% style="text-align:center;">"A handsome prince is playing guitar, modern disney style"</td>
187
- <td width=25% style="text-align:center;">"A magic princess with sunglasses is playing guitar on the stage, modern disney style"</td>
188
- </tr>
189
- </table>
190
-
191
- <img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/mr-potato-head.png" width="240px"/>
192
-
193
- <table class="center">
194
- <tr>
195
- <td style="text-align:center;"><b>Input Video</b></td>
196
- <td style="text-align:center;" colspan="3"><b>Output Video</b></td>
197
- </tr>
198
- <tr>
199
- <td><img src="https://tuneavideo.github.io/assets/data/bear-guitar.gif"></td>
200
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/lego-snow.gif"></td>
201
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/sunglasses-beach.gif"></td>
202
- <td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/van-gogh.gif"></td>
203
- </tr>
204
- <tr>
205
- <td width=25% style="text-align:center;color:gray;">"A bear is playing guitar"</td>
206
- <td width=25% style="text-align:center;">"Mr Potato Head, made of lego, is playing guitar on the snow"</td>
207
- <td width=25% style="text-align:center;">"Mr Potato Head, wearing sunglasses, is playing guitar on the beach"</td>
208
- <td width=25% style="text-align:center;">"Mr Potato Head is playing guitar in the starry night, Van Gogh style"</td>
209
- </tr>
210
- </table>
211
-
212
-
213
- ## Citation
214
- If you make use of our work, please cite our paper.
215
- ```bibtex
216
- @article{wu2022tuneavideo,
217
- title={Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation},
218
- author={Wu, Jay Zhangjie and Ge, Yixiao and Wang, Xintao and Lei, Stan Weixian and Gu, Yuchao and Hsu, Wynne and Shan, Ying and Qie, Xiaohu and Shou, Mike Zheng},
219
- journal={arXiv preprint arXiv:2212.11565},
220
- year={2022}
221
- }
222
- ```
223
-
224
- ## Shoutouts
225
-
226
- - This code builds on [diffusers](https://github.com/huggingface/diffusers). Thanks for open-sourcing!
227
- - Thanks [hysts](https://github.com/hysts) for the awesome [gradio demo](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/configs/car-turn.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/car-turn"
3
-
4
- train_data:
5
- video_path: "data/car-turn.mp4"
6
- prompt: "a jeep car is moving on the road"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 2
12
-
13
- validation_data:
14
- prompts:
15
- - "a jeep car is moving on the beach"
16
- - "a jeep car is moving on the snow"
17
- - "a jeep car is moving on the road, cartoon style"
18
- - "a sports car is moving on the road"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/configs/man-surfing.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/man-surfing"
3
-
4
- train_data:
5
- video_path: "data/man-surfing.mp4"
6
- prompt: "a man is surfing"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "a panda is surfing"
16
- - "a boy, wearing a birthday hat, is surfing"
17
- - "a raccoon is surfing, cartoon style"
18
- - "Iron Man is surfing in the desert"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/configs/rabbit-watermelon.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/rabbit-watermelon"
3
-
4
- train_data:
5
- video_path: "data/rabbit-watermelon.mp4"
6
- prompt: "a rabbit is eating a watermelon"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 2
12
-
13
- validation_data:
14
- prompts:
15
- - "a tiger is eating a watermelon"
16
- - "a rabbit is eating an orange"
17
- - "a rabbit is eating a pizza"
18
- - "a puppy is eating an orange"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/data/car-turn.mp4 DELETED
Binary file (942 kB)
 
Tune-A-Video/data/man-skiing.mp4 DELETED
Binary file (649 kB)
 
Tune-A-Video/data/man-surfing.mp4 DELETED
Binary file (786 kB)
 
Tune-A-Video/data/rabbit-watermelon.mp4 DELETED
Binary file (605 kB)
 
Tune-A-Video/notebooks/Tune-A-Video.ipynb DELETED
@@ -1,385 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "fZ_xQvU70UQc"
7
- },
8
- "source": [
9
- "# Tune-A-Video\n",
10
- "\n",
11
- "**[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)** \n",
12
- "[Jay Zhangjie Wu](https://zhangjiewu.github.io/), \n",
13
- "[Yixiao Ge](https://geyixiao.com/), \n",
14
- "[Xintao Wang](https://xinntao.github.io/), \n",
15
- "[Stan Weixian Lei](), \n",
16
- "[Yuchao Gu](https://ycgu.site/), \n",
17
- "[Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/), \n",
18
- "[Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en), \n",
19
- "[Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en), \n",
20
- "[Mike Zheng Shou](https://sites.google.com/view/showlab) \n",
21
- "\n",
22
- "[![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://tuneavideo.github.io/)\n",
23
- "[![arXiv](https://img.shields.io/badge/arXiv-2212.11565-b31b1b.svg)](https://arxiv.org/abs/2212.11565)\n",
24
- "[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI)\n",
25
- "[![GitHub](https://img.shields.io/github/stars/showlab/Tune-A-Video?style=social)](https://github.com/showlab/Tune-A-Video)"
26
- ]
27
- },
28
- {
29
- "cell_type": "markdown",
30
- "metadata": {
31
- "id": "wnTMyW41cC1E"
32
- },
33
- "source": [
34
- "## Setup"
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": null,
40
- "metadata": {
41
- "id": "XU7NuMAA2drw"
42
- },
43
- "outputs": [],
44
- "source": [
45
- "#@markdown Check type of GPU and VRAM available.\n",
46
- "!nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "metadata": {
53
- "id": "D1PRgre3Gt5U"
54
- },
55
- "outputs": [],
56
- "source": [
57
- "#@title Install requirements\n",
58
- "\n",
59
- "!git clone https://github.com/showlab/Tune-A-Video.git /content/Tune-A-Video\n",
60
- "%cd /content/Tune-A-Video \n",
61
- "# %pip install -r requirements.txt\n",
62
- "%pip install -q -U --pre triton\n",
63
- "%pip install -q diffusers[torch]==0.11.1 transformers==4.26.0 bitsandbytes==0.35.4 \\\n",
64
- "decord accelerate omegaconf einops ftfy gradio imageio-ffmpeg xformers"
65
- ]
66
- },
67
- {
68
- "cell_type": "code",
69
- "execution_count": null,
70
- "metadata": {
71
- "cellView": "form",
72
- "id": "m6I6kZNG3Inb"
73
- },
74
- "outputs": [],
75
- "source": [
76
- "#@title Download pretrained model\n",
77
- "\n",
78
- "#@markdown Name/Path of the initial model.\n",
79
- "MODEL_NAME = \"CompVis/stable-diffusion-v1-4\" #@param {type:\"string\"}\n",
80
- "\n",
81
- "#@markdown If model should be download from a remote repo. Untick it if the model is loaded from a local path.\n",
82
- "download_pretrained_model = True #@param {type:\"boolean\"}\n",
83
- "if download_pretrained_model:\n",
84
- " !git lfs install\n",
85
- " !git clone https://huggingface.co/$MODEL_NAME checkpoints/$MODEL_NAME\n",
86
- " MODEL_NAME = f\"./checkpoints/{MODEL_NAME}\"\n",
87
- "print(f\"[*] MODEL_NAME={MODEL_NAME}\")"
88
- ]
89
- },
90
- {
91
- "cell_type": "markdown",
92
- "metadata": {
93
- "id": "qn5ILIyDJIcX"
94
- },
95
- "source": [
96
- "## Usage\n"
97
- ]
98
- },
99
- {
100
- "cell_type": "markdown",
101
- "metadata": {
102
- "id": "REmFAHfz9Y_X"
103
- },
104
- "source": [
105
- "### Training\n"
106
- ]
107
- },
108
- {
109
- "cell_type": "code",
110
- "execution_count": null,
111
- "metadata": {
112
- "id": "Rxg0y5MBudmd"
113
- },
114
- "outputs": [],
115
- "source": [
116
- "#@markdown If model weights should be saved directly in google drive (takes around 4-5 GB).\n",
117
- "save_to_gdrive = False #@param {type:\"boolean\"}\n",
118
- "if save_to_gdrive:\n",
119
- " from google.colab import drive\n",
120
- " drive.mount('/content/drive')\n",
121
- "\n",
122
- "#@markdown Enter the directory name to save model at.\n",
123
- "\n",
124
- "OUTPUT_DIR = \"outputs/man-skiing\" #@param {type:\"string\"}\n",
125
- "if save_to_gdrive:\n",
126
- " OUTPUT_DIR = \"/content/drive/MyDrive/\" + OUTPUT_DIR\n",
127
- "\n",
128
- "print(f\"[*] Weights will be saved at {OUTPUT_DIR}\")\n",
129
- "\n",
130
- "!mkdir -p $OUTPUT_DIR\n"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "metadata": {
137
- "cellView": "form",
138
- "id": "32gYIDDR1aCp"
139
- },
140
- "outputs": [],
141
- "source": [
142
- "#@markdown Upload your video by running this cell.\n",
143
- "\n",
144
- "#@markdown OR\n",
145
- "\n",
146
- "#@markdown You can use the file manager on the left panel to upload (drag and drop) to `data` folder.\n",
147
- "\n",
148
- "import os\n",
149
- "from google.colab import files\n",
150
- "import shutil\n",
151
- "\n",
152
- "uploaded = files.upload()\n",
153
- "for filename in uploaded.keys():\n",
154
- " dst_path = os.path.join(\"data\", filename)\n",
155
- " shutil.move(filename, dst_path)"
156
- ]
157
- },
158
- {
159
- "cell_type": "code",
160
- "execution_count": null,
161
- "metadata": {
162
- "id": "wGGFFpNcR2d_"
163
- },
164
- "outputs": [],
165
- "source": [
166
- "#@markdown Train config\n",
167
- "\n",
168
- "from omegaconf import OmegaConf\n",
169
- "\n",
170
- "CONFIG_NAME = \"configs/man-skiing.yaml\" #@param {type:\"string\"}\n",
171
- "\n",
172
- "train_video_path = \"data/man-skiing.mp4\" #@param {type:\"string\"}\n",
173
- "train_prompt = \"a man is skiing\" #@param {type:\"string\"}\n",
174
- "video_length = 8 #@param {type:\"number\"}\n",
175
- "width = 512 #@param {type:\"number\"}\n",
176
- "height = 512 #@param {type:\"number\"}\n",
177
- "learning_rate = 3e-5 #@param {type:\"number\"}\n",
178
- "train_steps = 300 #@param {type:\"number\"}\n",
179
- "\n",
180
- "config = {\n",
181
- " \"pretrained_model_path\": MODEL_NAME,\n",
182
- " \"output_dir\": OUTPUT_DIR,\n",
183
- " \"train_data\": {\n",
184
- " \"video_path\": train_video_path,\n",
185
- " \"prompt\": train_prompt,\n",
186
- " \"n_sample_frames\": video_length,\n",
187
- " \"width\": width,\n",
188
- " \"height\": height,\n",
189
- " \"sample_start_idx\": 0,\n",
190
- " \"sample_frame_rate\": 2,\n",
191
- " },\n",
192
- " \"validation_data\": {\n",
193
- " \"prompts\": [\n",
194
- " \"mickey mouse is skiing on the snow\",\n",
195
- " \"spider man is skiing on the beach, cartoon style\",\n",
196
- " \"wonder woman, wearing a cowboy hat, is skiing\",\n",
197
- " \"a man, wearing pink clothes, is skiing at sunset\",\n",
198
- " ],\n",
199
- " \"video_length\": video_length,\n",
200
- " \"width\": width,\n",
201
- " \"height\": height,\n",
202
- " \"num_inference_steps\": 20,\n",
203
- " \"guidance_scale\": 12.5,\n",
204
- " \"use_inv_latent\": True,\n",
205
- " \"num_inv_steps\": 50,\n",
206
- " },\n",
207
- " \"learning_rate\": learning_rate,\n",
208
- " \"train_batch_size\": 1,\n",
209
- " \"max_train_steps\": train_steps,\n",
210
- " \"checkpointing_steps\": 1000,\n",
211
- " \"validation_steps\": 100,\n",
212
- " \"trainable_modules\": [\n",
213
- " \"attn1.to_q\",\n",
214
- " \"attn2.to_q\",\n",
215
- " \"attn_temp\",\n",
216
- " ],\n",
217
- " \"seed\": 33,\n",
218
- " \"mixed_precision\": \"fp16\",\n",
219
- " \"use_8bit_adam\": False,\n",
220
- " \"gradient_checkpointing\": True,\n",
221
- " \"enable_xformers_memory_efficient_attention\": True,\n",
222
- "}\n",
223
- "\n",
224
- "OmegaConf.save(config, CONFIG_NAME)"
225
- ]
226
- },
227
- {
228
- "cell_type": "code",
229
- "execution_count": null,
230
- "metadata": {
231
- "id": "jjcSXTp-u-Eg"
232
- },
233
- "outputs": [],
234
- "source": [
235
- "!accelerate launch train_tuneavideo.py --config=$CONFIG_NAME"
236
- ]
237
- },
238
- {
239
- "cell_type": "markdown",
240
- "metadata": {
241
- "id": "ToNG4fd_dTbF"
242
- },
243
- "source": [
244
- "### Inference"
245
- ]
246
- },
247
- {
248
- "cell_type": "code",
249
- "execution_count": null,
250
- "metadata": {
251
- "id": "91bsSFv2Punm"
252
- },
253
- "outputs": [],
254
- "source": [
255
- "import torch\n",
256
- "from torch import autocast\n",
257
- "from diffusers import DDIMScheduler\n",
258
- "from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline\n",
259
- "from tuneavideo.models.unet import UNet3DConditionModel\n",
260
- "from tuneavideo.util import save_videos_grid\n",
261
- "\n",
262
- "\n",
263
- "unet = UNet3DConditionModel.from_pretrained(OUTPUT_DIR, subfolder='unet', torch_dtype=torch.float16).to('cuda')\n",
264
- "scheduler = DDIMScheduler.from_pretrained(MODEL_NAME, subfolder='scheduler')\n",
265
- "pipe = TuneAVideoPipeline.from_pretrained(MODEL_NAME, unet=unet, scheduler=scheduler, torch_dtype=torch.float16).to(\"cuda\")\n",
266
- "pipe.enable_xformers_memory_efficient_attention()\n",
267
- "pipe.enable_vae_slicing()\n",
268
- "\n",
269
- "g_cuda = None"
270
- ]
271
- },
272
- {
273
- "cell_type": "code",
274
- "execution_count": null,
275
- "metadata": {
276
- "cellView": "form",
277
- "id": "oIzkltjpVO_f"
278
- },
279
- "outputs": [],
280
- "source": [
281
- "#@markdown Can set random seed here for reproducibility.\n",
282
- "g_cuda = torch.Generator(device='cuda')\n",
283
- "seed = 1234 #@param {type:\"number\"}\n",
284
- "g_cuda.manual_seed(seed)"
285
- ]
286
- },
287
- {
288
- "cell_type": "code",
289
- "execution_count": null,
290
- "metadata": {
291
- "id": "K6xoHWSsbcS3",
292
- "scrolled": false
293
- },
294
- "outputs": [],
295
- "source": [
296
- "#@markdown Run for generating videos.\n",
297
- "\n",
298
- "prompt = \"iron man is skiing\" #@param {type:\"string\"}\n",
299
- "negative_prompt = \"\" #@param {type:\"string\"}\n",
300
- "use_inv_latent = True #@param {type:\"boolean\"}\n",
301
- "inv_latent_path = \"\" #@param {type:\"string\"}\n",
302
- "num_samples = 1 #@param {type:\"number\"}\n",
303
- "guidance_scale = 12.5 #@param {type:\"number\"}\n",
304
- "num_inference_steps = 50 #@param {type:\"number\"}\n",
305
- "video_length = 8 #@param {type:\"number\"}\n",
306
- "height = 512 #@param {type:\"number\"}\n",
307
- "width = 512 #@param {type:\"number\"}\n",
308
- "\n",
309
- "ddim_inv_latent = None\n",
310
- "if use_inv_latent and inv_latent_path == \"\":\n",
311
- " from natsort import natsorted\n",
312
- " from glob import glob\n",
313
- " import os\n",
314
- " inv_latent_path = natsorted(glob(f\"{OUTPUT_DIR}/inv_latents/*\"))[-1]\n",
315
- " ddim_inv_latent = torch.load(inv_latent_path).to(torch.float16)\n",
316
- " print(f\"DDIM inversion latent loaded from {inv_latent_path}\")\n",
317
- "\n",
318
- "with autocast(\"cuda\"), torch.inference_mode():\n",
319
- " videos = pipe(\n",
320
- " prompt, \n",
321
- " latents=ddim_inv_latent,\n",
322
- " video_length=video_length, \n",
323
- " height=height, \n",
324
- " width=width, \n",
325
- " negative_prompt=negative_prompt,\n",
326
- " num_videos_per_prompt=num_samples,\n",
327
- " num_inference_steps=num_inference_steps, \n",
328
- " guidance_scale=guidance_scale,\n",
329
- " generator=g_cuda\n",
330
- " ).videos\n",
331
- "\n",
332
- "save_dir = \"./results\" #@param {type:\"string\"}\n",
333
- "save_path = f\"{save_dir}/{prompt}.gif\"\n",
334
- "save_videos_grid(videos, save_path)\n",
335
- "\n",
336
- "# display\n",
337
- "from IPython.display import Image, display\n",
338
- "display(Image(filename=save_path))"
339
- ]
340
- },
341
- {
342
- "cell_type": "code",
343
- "execution_count": null,
344
- "metadata": {
345
- "id": "jXgi8HM4c-DA"
346
- },
347
- "outputs": [],
348
- "source": [
349
- "#@markdown Free runtime memory\n",
350
- "exit()"
351
- ]
352
- }
353
- ],
354
- "metadata": {
355
- "accelerator": "GPU",
356
- "colab": {
357
- "provenance": []
358
- },
359
- "gpuClass": "standard",
360
- "kernelspec": {
361
- "display_name": "Python 3 (ipykernel)",
362
- "language": "python",
363
- "name": "python3"
364
- },
365
- "language_info": {
366
- "codemirror_mode": {
367
- "name": "ipython",
368
- "version": 3
369
- },
370
- "file_extension": ".py",
371
- "mimetype": "text/x-python",
372
- "name": "python",
373
- "nbconvert_exporter": "python",
374
- "pygments_lexer": "ipython3",
375
- "version": "3.8.13-final"
376
- },
377
- "vscode": {
378
- "interpreter": {
379
- "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
380
- }
381
- }
382
- },
383
- "nbformat": 4,
384
- "nbformat_minor": 0
385
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/requirements.txt DELETED
@@ -1,13 +0,0 @@
1
- torch==1.12.1
2
- torchvision==0.13.1
3
- diffusers[torch]==0.11.1
4
- transformers>=4.25.1
5
- bitsandbytes==0.35.4
6
- decord==0.6.0
7
- accelerate
8
- tensorboard
9
- modelcards
10
- omegaconf
11
- einops
12
- imageio
13
- ftfy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/train_tuneavideo.py DELETED
@@ -1,367 +0,0 @@
1
- import argparse
2
- import datetime
3
- import logging
4
- import inspect
5
- import math
6
- import os
7
- from typing import Dict, Optional, Tuple
8
- from omegaconf import OmegaConf
9
-
10
- import torch
11
- import torch.nn.functional as F
12
- import torch.utils.checkpoint
13
-
14
- import diffusers
15
- import transformers
16
- from accelerate import Accelerator
17
- from accelerate.logging import get_logger
18
- from accelerate.utils import set_seed
19
- from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
20
- from diffusers.optimization import get_scheduler
21
- from diffusers.utils import check_min_version
22
- from diffusers.utils.import_utils import is_xformers_available
23
- from tqdm.auto import tqdm
24
- from transformers import CLIPTextModel, CLIPTokenizer
25
-
26
- from tuneavideo.models.unet import UNet3DConditionModel
27
- from tuneavideo.data.dataset import TuneAVideoDataset
28
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
29
- from tuneavideo.util import save_videos_grid, ddim_inversion
30
- from einops import rearrange
31
-
32
-
33
- # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
34
- check_min_version("0.10.0.dev0")
35
-
36
- logger = get_logger(__name__, log_level="INFO")
37
-
38
-
39
- def main(
40
- pretrained_model_path: str,
41
- output_dir: str,
42
- train_data: Dict,
43
- validation_data: Dict,
44
- validation_steps: int = 100,
45
- trainable_modules: Tuple[str] = (
46
- "attn1.to_q",
47
- "attn2.to_q",
48
- "attn_temp",
49
- ),
50
- train_batch_size: int = 1,
51
- max_train_steps: int = 500,
52
- learning_rate: float = 3e-5,
53
- scale_lr: bool = False,
54
- lr_scheduler: str = "constant",
55
- lr_warmup_steps: int = 0,
56
- adam_beta1: float = 0.9,
57
- adam_beta2: float = 0.999,
58
- adam_weight_decay: float = 1e-2,
59
- adam_epsilon: float = 1e-08,
60
- max_grad_norm: float = 1.0,
61
- gradient_accumulation_steps: int = 1,
62
- gradient_checkpointing: bool = True,
63
- checkpointing_steps: int = 500,
64
- resume_from_checkpoint: Optional[str] = None,
65
- mixed_precision: Optional[str] = "fp16",
66
- use_8bit_adam: bool = False,
67
- enable_xformers_memory_efficient_attention: bool = True,
68
- seed: Optional[int] = None,
69
- ):
70
- *_, config = inspect.getargvalues(inspect.currentframe())
71
-
72
- accelerator = Accelerator(
73
- gradient_accumulation_steps=gradient_accumulation_steps,
74
- mixed_precision=mixed_precision,
75
- )
76
-
77
- # Make one log on every process with the configuration for debugging.
78
- logging.basicConfig(
79
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
80
- datefmt="%m/%d/%Y %H:%M:%S",
81
- level=logging.INFO,
82
- )
83
- logger.info(accelerator.state, main_process_only=False)
84
- if accelerator.is_local_main_process:
85
- transformers.utils.logging.set_verbosity_warning()
86
- diffusers.utils.logging.set_verbosity_info()
87
- else:
88
- transformers.utils.logging.set_verbosity_error()
89
- diffusers.utils.logging.set_verbosity_error()
90
-
91
- # If passed along, set the training seed now.
92
- if seed is not None:
93
- set_seed(seed)
94
-
95
- # Handle the output folder creation
96
- if accelerator.is_main_process:
97
- # now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
98
- # output_dir = os.path.join(output_dir, now)
99
- os.makedirs(output_dir, exist_ok=True)
100
- os.makedirs(f"{output_dir}/samples", exist_ok=True)
101
- os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
102
- OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
103
-
104
- # Load scheduler, tokenizer and models.
105
- noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
106
- tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
107
- text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
108
- vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
109
- unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
110
-
111
- # Freeze vae and text_encoder
112
- vae.requires_grad_(False)
113
- text_encoder.requires_grad_(False)
114
-
115
- unet.requires_grad_(False)
116
- for name, module in unet.named_modules():
117
- if name.endswith(tuple(trainable_modules)):
118
- for params in module.parameters():
119
- params.requires_grad = True
120
-
121
- if enable_xformers_memory_efficient_attention:
122
- if is_xformers_available():
123
- unet.enable_xformers_memory_efficient_attention()
124
- else:
125
- raise ValueError("xformers is not available. Make sure it is installed correctly")
126
-
127
- if gradient_checkpointing:
128
- unet.enable_gradient_checkpointing()
129
-
130
- if scale_lr:
131
- learning_rate = (
132
- learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
133
- )
134
-
135
- # Initialize the optimizer
136
- if use_8bit_adam:
137
- try:
138
- import bitsandbytes as bnb
139
- except ImportError:
140
- raise ImportError(
141
- "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
142
- )
143
-
144
- optimizer_cls = bnb.optim.AdamW8bit
145
- else:
146
- optimizer_cls = torch.optim.AdamW
147
-
148
- optimizer = optimizer_cls(
149
- unet.parameters(),
150
- lr=learning_rate,
151
- betas=(adam_beta1, adam_beta2),
152
- weight_decay=adam_weight_decay,
153
- eps=adam_epsilon,
154
- )
155
-
156
- # Get the training dataset
157
- train_dataset = TuneAVideoDataset(**train_data)
158
-
159
- # Preprocessing the dataset
160
- train_dataset.prompt_ids = tokenizer(
161
- train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
162
- ).input_ids[0]
163
-
164
- # DataLoaders creation:
165
- train_dataloader = torch.utils.data.DataLoader(
166
- train_dataset, batch_size=train_batch_size
167
- )
168
-
169
- # Get the validation pipeline
170
- validation_pipeline = TuneAVideoPipeline(
171
- vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
172
- scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
173
- )
174
- validation_pipeline.enable_vae_slicing()
175
- ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
176
- ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
177
-
178
- # Scheduler
179
- lr_scheduler = get_scheduler(
180
- lr_scheduler,
181
- optimizer=optimizer,
182
- num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
183
- num_training_steps=max_train_steps * gradient_accumulation_steps,
184
- )
185
-
186
- # Prepare everything with our `accelerator`.
187
- unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
188
- unet, optimizer, train_dataloader, lr_scheduler
189
- )
190
-
191
- # For mixed precision training we cast the text_encoder and vae weights to half-precision
192
- # as these models are only used for inference, keeping weights in full precision is not required.
193
- weight_dtype = torch.float32
194
- if accelerator.mixed_precision == "fp16":
195
- weight_dtype = torch.float16
196
- elif accelerator.mixed_precision == "bf16":
197
- weight_dtype = torch.bfloat16
198
-
199
- # Move text_encode and vae to gpu and cast to weight_dtype
200
- text_encoder.to(accelerator.device, dtype=weight_dtype)
201
- vae.to(accelerator.device, dtype=weight_dtype)
202
-
203
- # We need to recalculate our total training steps as the size of the training dataloader may have changed.
204
- num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
205
- # Afterwards we recalculate our number of training epochs
206
- num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
207
-
208
- # We need to initialize the trackers we use, and also store our configuration.
209
- # The trackers initializes automatically on the main process.
210
- if accelerator.is_main_process:
211
- accelerator.init_trackers("text2video-fine-tune")
212
-
213
- # Train!
214
- total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
215
-
216
- logger.info("***** Running training *****")
217
- logger.info(f" Num examples = {len(train_dataset)}")
218
- logger.info(f" Num Epochs = {num_train_epochs}")
219
- logger.info(f" Instantaneous batch size per device = {train_batch_size}")
220
- logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
221
- logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
222
- logger.info(f" Total optimization steps = {max_train_steps}")
223
- global_step = 0
224
- first_epoch = 0
225
-
226
- # Potentially load in the weights and states from a previous save
227
- if resume_from_checkpoint:
228
- if resume_from_checkpoint != "latest":
229
- path = os.path.basename(resume_from_checkpoint)
230
- else:
231
- # Get the most recent checkpoint
232
- dirs = os.listdir(output_dir)
233
- dirs = [d for d in dirs if d.startswith("checkpoint")]
234
- dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
235
- path = dirs[-1]
236
- accelerator.print(f"Resuming from checkpoint {path}")
237
- accelerator.load_state(os.path.join(output_dir, path))
238
- global_step = int(path.split("-")[1])
239
-
240
- first_epoch = global_step // num_update_steps_per_epoch
241
- resume_step = global_step % num_update_steps_per_epoch
242
-
243
- # Only show the progress bar once on each machine.
244
- progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
245
- progress_bar.set_description("Steps")
246
-
247
- for epoch in range(first_epoch, num_train_epochs):
248
- unet.train()
249
- train_loss = 0.0
250
- for step, batch in enumerate(train_dataloader):
251
- # Skip steps until we reach the resumed step
252
- if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
253
- if step % gradient_accumulation_steps == 0:
254
- progress_bar.update(1)
255
- continue
256
-
257
- with accelerator.accumulate(unet):
258
- # Convert videos to latent space
259
- pixel_values = batch["pixel_values"].to(weight_dtype)
260
- video_length = pixel_values.shape[1]
261
- pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
262
- latents = vae.encode(pixel_values).latent_dist.sample()
263
- latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
264
- latents = latents * 0.18215
265
-
266
- # Sample noise that we'll add to the latents
267
- noise = torch.randn_like(latents)
268
- bsz = latents.shape[0]
269
- # Sample a random timestep for each video
270
- timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
271
- timesteps = timesteps.long()
272
-
273
- # Add noise to the latents according to the noise magnitude at each timestep
274
- # (this is the forward diffusion process)
275
- noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
276
-
277
- # Get the text embedding for conditioning
278
- encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
279
-
280
- # Get the target for loss depending on the prediction type
281
- if noise_scheduler.prediction_type == "epsilon":
282
- target = noise
283
- elif noise_scheduler.prediction_type == "v_prediction":
284
- target = noise_scheduler.get_velocity(latents, noise, timesteps)
285
- else:
286
- raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
287
-
288
- # Predict the noise residual and compute loss
289
- model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
290
- loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
291
-
292
- # Gather the losses across all processes for logging (if we use distributed training).
293
- avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
294
- train_loss += avg_loss.item() / gradient_accumulation_steps
295
-
296
- # Backpropagate
297
- accelerator.backward(loss)
298
- if accelerator.sync_gradients:
299
- accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
300
- optimizer.step()
301
- lr_scheduler.step()
302
- optimizer.zero_grad()
303
-
304
- # Checks if the accelerator has performed an optimization step behind the scenes
305
- if accelerator.sync_gradients:
306
- progress_bar.update(1)
307
- global_step += 1
308
- accelerator.log({"train_loss": train_loss}, step=global_step)
309
- train_loss = 0.0
310
-
311
- if global_step % checkpointing_steps == 0:
312
- if accelerator.is_main_process:
313
- save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
314
- accelerator.save_state(save_path)
315
- logger.info(f"Saved state to {save_path}")
316
-
317
- if global_step % validation_steps == 0:
318
- if accelerator.is_main_process:
319
- samples = []
320
- generator = torch.Generator(device=latents.device)
321
- generator.manual_seed(seed)
322
-
323
- ddim_inv_latent = None
324
- if validation_data.use_inv_latent:
325
- inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt")
326
- ddim_inv_latent = ddim_inversion(
327
- validation_pipeline, ddim_inv_scheduler, video_latent=latents,
328
- num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype)
329
- torch.save(ddim_inv_latent, inv_latents_path)
330
-
331
- for idx, prompt in enumerate(validation_data.prompts):
332
- sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
333
- **validation_data).videos
334
- save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif")
335
- samples.append(sample)
336
- samples = torch.concat(samples)
337
- save_path = f"{output_dir}/samples/sample-{global_step}.gif"
338
- save_videos_grid(samples, save_path)
339
- logger.info(f"Saved samples to {save_path}")
340
-
341
- logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
342
- progress_bar.set_postfix(**logs)
343
-
344
- if global_step >= max_train_steps:
345
- break
346
-
347
- # Create the pipeline using the trained modules and save it.
348
- accelerator.wait_for_everyone()
349
- if accelerator.is_main_process:
350
- unet = accelerator.unwrap_model(unet)
351
- pipeline = TuneAVideoPipeline.from_pretrained(
352
- pretrained_model_path,
353
- text_encoder=text_encoder,
354
- vae=vae,
355
- unet=unet,
356
- )
357
- pipeline.save_pretrained(output_dir)
358
-
359
- accelerator.end_training()
360
-
361
-
362
- if __name__ == "__main__":
363
- parser = argparse.ArgumentParser()
364
- parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
365
- args = parser.parse_args()
366
-
367
- main(**OmegaConf.load(args.config))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/data/dataset.py DELETED
@@ -1,44 +0,0 @@
1
- import decord
2
- decord.bridge.set_bridge('torch')
3
-
4
- from torch.utils.data import Dataset
5
- from einops import rearrange
6
-
7
-
8
- class TuneAVideoDataset(Dataset):
9
- def __init__(
10
- self,
11
- video_path: str,
12
- prompt: str,
13
- width: int = 512,
14
- height: int = 512,
15
- n_sample_frames: int = 8,
16
- sample_start_idx: int = 0,
17
- sample_frame_rate: int = 1,
18
- ):
19
- self.video_path = video_path
20
- self.prompt = prompt
21
- self.prompt_ids = None
22
-
23
- self.width = width
24
- self.height = height
25
- self.n_sample_frames = n_sample_frames
26
- self.sample_start_idx = sample_start_idx
27
- self.sample_frame_rate = sample_frame_rate
28
-
29
- def __len__(self):
30
- return 1
31
-
32
- def __getitem__(self, index):
33
- # load and sample video frames
34
- vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
35
- sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
36
- video = vr.get_batch(sample_index)
37
- video = rearrange(video, "f h w c -> f c h w")
38
-
39
- example = {
40
- "pixel_values": (video / 127.5 - 1.0),
41
- "prompt_ids": self.prompt_ids
42
- }
43
-
44
- return example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/attention.py DELETED
@@ -1,328 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
-
3
- from dataclasses import dataclass
4
- from typing import Optional
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- from torch import nn
9
-
10
- from diffusers.configuration_utils import ConfigMixin, register_to_config
11
- from diffusers.modeling_utils import ModelMixin
12
- from diffusers.utils import BaseOutput
13
- from diffusers.utils.import_utils import is_xformers_available
14
- from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
-
16
- from einops import rearrange, repeat
17
-
18
-
19
- @dataclass
20
- class Transformer3DModelOutput(BaseOutput):
21
- sample: torch.FloatTensor
22
-
23
-
24
- if is_xformers_available():
25
- import xformers
26
- import xformers.ops
27
- else:
28
- xformers = None
29
-
30
-
31
- class Transformer3DModel(ModelMixin, ConfigMixin):
32
- @register_to_config
33
- def __init__(
34
- self,
35
- num_attention_heads: int = 16,
36
- attention_head_dim: int = 88,
37
- in_channels: Optional[int] = None,
38
- num_layers: int = 1,
39
- dropout: float = 0.0,
40
- norm_num_groups: int = 32,
41
- cross_attention_dim: Optional[int] = None,
42
- attention_bias: bool = False,
43
- activation_fn: str = "geglu",
44
- num_embeds_ada_norm: Optional[int] = None,
45
- use_linear_projection: bool = False,
46
- only_cross_attention: bool = False,
47
- upcast_attention: bool = False,
48
- ):
49
- super().__init__()
50
- self.use_linear_projection = use_linear_projection
51
- self.num_attention_heads = num_attention_heads
52
- self.attention_head_dim = attention_head_dim
53
- inner_dim = num_attention_heads * attention_head_dim
54
-
55
- # Define input layers
56
- self.in_channels = in_channels
57
-
58
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
59
- if use_linear_projection:
60
- self.proj_in = nn.Linear(in_channels, inner_dim)
61
- else:
62
- self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
63
-
64
- # Define transformers blocks
65
- self.transformer_blocks = nn.ModuleList(
66
- [
67
- BasicTransformerBlock(
68
- inner_dim,
69
- num_attention_heads,
70
- attention_head_dim,
71
- dropout=dropout,
72
- cross_attention_dim=cross_attention_dim,
73
- activation_fn=activation_fn,
74
- num_embeds_ada_norm=num_embeds_ada_norm,
75
- attention_bias=attention_bias,
76
- only_cross_attention=only_cross_attention,
77
- upcast_attention=upcast_attention,
78
- )
79
- for d in range(num_layers)
80
- ]
81
- )
82
-
83
- # 4. Define output layers
84
- if use_linear_projection:
85
- self.proj_out = nn.Linear(in_channels, inner_dim)
86
- else:
87
- self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
88
-
89
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
90
- # Input
91
- assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
92
- video_length = hidden_states.shape[2]
93
- hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
94
- encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
95
-
96
- batch, channel, height, weight = hidden_states.shape
97
- residual = hidden_states
98
-
99
- hidden_states = self.norm(hidden_states)
100
- if not self.use_linear_projection:
101
- hidden_states = self.proj_in(hidden_states)
102
- inner_dim = hidden_states.shape[1]
103
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
104
- else:
105
- inner_dim = hidden_states.shape[1]
106
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
107
- hidden_states = self.proj_in(hidden_states)
108
-
109
- # Blocks
110
- for block in self.transformer_blocks:
111
- hidden_states = block(
112
- hidden_states,
113
- encoder_hidden_states=encoder_hidden_states,
114
- timestep=timestep,
115
- video_length=video_length
116
- )
117
-
118
- # Output
119
- if not self.use_linear_projection:
120
- hidden_states = (
121
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
122
- )
123
- hidden_states = self.proj_out(hidden_states)
124
- else:
125
- hidden_states = self.proj_out(hidden_states)
126
- hidden_states = (
127
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
- )
129
-
130
- output = hidden_states + residual
131
-
132
- output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
133
- if not return_dict:
134
- return (output,)
135
-
136
- return Transformer3DModelOutput(sample=output)
137
-
138
-
139
- class BasicTransformerBlock(nn.Module):
140
- def __init__(
141
- self,
142
- dim: int,
143
- num_attention_heads: int,
144
- attention_head_dim: int,
145
- dropout=0.0,
146
- cross_attention_dim: Optional[int] = None,
147
- activation_fn: str = "geglu",
148
- num_embeds_ada_norm: Optional[int] = None,
149
- attention_bias: bool = False,
150
- only_cross_attention: bool = False,
151
- upcast_attention: bool = False,
152
- ):
153
- super().__init__()
154
- self.only_cross_attention = only_cross_attention
155
- self.use_ada_layer_norm = num_embeds_ada_norm is not None
156
-
157
- # SC-Attn
158
- self.attn1 = SparseCausalAttention(
159
- query_dim=dim,
160
- heads=num_attention_heads,
161
- dim_head=attention_head_dim,
162
- dropout=dropout,
163
- bias=attention_bias,
164
- cross_attention_dim=cross_attention_dim if only_cross_attention else None,
165
- upcast_attention=upcast_attention,
166
- )
167
- self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
168
-
169
- # Cross-Attn
170
- if cross_attention_dim is not None:
171
- self.attn2 = CrossAttention(
172
- query_dim=dim,
173
- cross_attention_dim=cross_attention_dim,
174
- heads=num_attention_heads,
175
- dim_head=attention_head_dim,
176
- dropout=dropout,
177
- bias=attention_bias,
178
- upcast_attention=upcast_attention,
179
- )
180
- else:
181
- self.attn2 = None
182
-
183
- if cross_attention_dim is not None:
184
- self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
185
- else:
186
- self.norm2 = None
187
-
188
- # Feed-forward
189
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
190
- self.norm3 = nn.LayerNorm(dim)
191
-
192
- # Temp-Attn
193
- self.attn_temp = CrossAttention(
194
- query_dim=dim,
195
- heads=num_attention_heads,
196
- dim_head=attention_head_dim,
197
- dropout=dropout,
198
- bias=attention_bias,
199
- upcast_attention=upcast_attention,
200
- )
201
- nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
202
- self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
203
-
204
- def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
205
- if not is_xformers_available():
206
- print("Here is how to install it")
207
- raise ModuleNotFoundError(
208
- "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
209
- " xformers",
210
- name="xformers",
211
- )
212
- elif not torch.cuda.is_available():
213
- raise ValueError(
214
- "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
215
- " available for GPU "
216
- )
217
- else:
218
- try:
219
- # Make sure we can run the memory efficient attention
220
- _ = xformers.ops.memory_efficient_attention(
221
- torch.randn((1, 2, 40), device="cuda"),
222
- torch.randn((1, 2, 40), device="cuda"),
223
- torch.randn((1, 2, 40), device="cuda"),
224
- )
225
- except Exception as e:
226
- raise e
227
- self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
228
- if self.attn2 is not None:
229
- self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
230
- # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
231
-
232
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
233
- # SparseCausal-Attention
234
- norm_hidden_states = (
235
- self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
236
- )
237
-
238
- if self.only_cross_attention:
239
- hidden_states = (
240
- self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
241
- )
242
- else:
243
- hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
244
-
245
- if self.attn2 is not None:
246
- # Cross-Attention
247
- norm_hidden_states = (
248
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
249
- )
250
- hidden_states = (
251
- self.attn2(
252
- norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
253
- )
254
- + hidden_states
255
- )
256
-
257
- # Feed-forward
258
- hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
259
-
260
- # Temporal-Attention
261
- d = hidden_states.shape[1]
262
- hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
263
- norm_hidden_states = (
264
- self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
265
- )
266
- hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
267
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
268
-
269
- return hidden_states
270
-
271
-
272
- class SparseCausalAttention(CrossAttention):
273
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
274
- batch_size, sequence_length, _ = hidden_states.shape
275
-
276
- encoder_hidden_states = encoder_hidden_states
277
-
278
- if self.group_norm is not None:
279
- hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
280
-
281
- query = self.to_q(hidden_states)
282
- dim = query.shape[-1]
283
- query = self.reshape_heads_to_batch_dim(query)
284
-
285
- if self.added_kv_proj_dim is not None:
286
- raise NotImplementedError
287
-
288
- encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
289
- key = self.to_k(encoder_hidden_states)
290
- value = self.to_v(encoder_hidden_states)
291
-
292
- former_frame_index = torch.arange(video_length) - 1
293
- former_frame_index[0] = 0
294
-
295
- key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
296
- key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
297
- key = rearrange(key, "b f d c -> (b f) d c")
298
-
299
- value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
300
- value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
301
- value = rearrange(value, "b f d c -> (b f) d c")
302
-
303
- key = self.reshape_heads_to_batch_dim(key)
304
- value = self.reshape_heads_to_batch_dim(value)
305
-
306
- if attention_mask is not None:
307
- if attention_mask.shape[-1] != query.shape[1]:
308
- target_length = query.shape[1]
309
- attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
310
- attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
311
-
312
- # attention, what we cannot get enough of
313
- if self._use_memory_efficient_attention_xformers:
314
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
315
- # Some versions of xformers return output in fp32, cast it back to the dtype of the input
316
- hidden_states = hidden_states.to(query.dtype)
317
- else:
318
- if self._slice_size is None or query.shape[0] // self._slice_size == 1:
319
- hidden_states = self._attention(query, key, value, attention_mask)
320
- else:
321
- hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
322
-
323
- # linear proj
324
- hidden_states = self.to_out[0](hidden_states)
325
-
326
- # dropout
327
- hidden_states = self.to_out[1](hidden_states)
328
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/resnet.py DELETED
@@ -1,209 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from einops import rearrange
8
-
9
-
10
- class InflatedConv3d(nn.Conv2d):
11
- def forward(self, x):
12
- video_length = x.shape[2]
13
-
14
- x = rearrange(x, "b c f h w -> (b f) c h w")
15
- x = super().forward(x)
16
- x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
-
18
- return x
19
-
20
-
21
- class Upsample3D(nn.Module):
22
- def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
23
- super().__init__()
24
- self.channels = channels
25
- self.out_channels = out_channels or channels
26
- self.use_conv = use_conv
27
- self.use_conv_transpose = use_conv_transpose
28
- self.name = name
29
-
30
- conv = None
31
- if use_conv_transpose:
32
- raise NotImplementedError
33
- elif use_conv:
34
- conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
35
-
36
- if name == "conv":
37
- self.conv = conv
38
- else:
39
- self.Conv2d_0 = conv
40
-
41
- def forward(self, hidden_states, output_size=None):
42
- assert hidden_states.shape[1] == self.channels
43
-
44
- if self.use_conv_transpose:
45
- raise NotImplementedError
46
-
47
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
48
- dtype = hidden_states.dtype
49
- if dtype == torch.bfloat16:
50
- hidden_states = hidden_states.to(torch.float32)
51
-
52
- # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
53
- if hidden_states.shape[0] >= 64:
54
- hidden_states = hidden_states.contiguous()
55
-
56
- # if `output_size` is passed we force the interpolation output
57
- # size and do not make use of `scale_factor=2`
58
- if output_size is None:
59
- hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
60
- else:
61
- hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
62
-
63
- # If the input is bfloat16, we cast back to bfloat16
64
- if dtype == torch.bfloat16:
65
- hidden_states = hidden_states.to(dtype)
66
-
67
- if self.use_conv:
68
- if self.name == "conv":
69
- hidden_states = self.conv(hidden_states)
70
- else:
71
- hidden_states = self.Conv2d_0(hidden_states)
72
-
73
- return hidden_states
74
-
75
-
76
- class Downsample3D(nn.Module):
77
- def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
78
- super().__init__()
79
- self.channels = channels
80
- self.out_channels = out_channels or channels
81
- self.use_conv = use_conv
82
- self.padding = padding
83
- stride = 2
84
- self.name = name
85
-
86
- if use_conv:
87
- conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
88
- else:
89
- raise NotImplementedError
90
-
91
- if name == "conv":
92
- self.Conv2d_0 = conv
93
- self.conv = conv
94
- elif name == "Conv2d_0":
95
- self.conv = conv
96
- else:
97
- self.conv = conv
98
-
99
- def forward(self, hidden_states):
100
- assert hidden_states.shape[1] == self.channels
101
- if self.use_conv and self.padding == 0:
102
- raise NotImplementedError
103
-
104
- assert hidden_states.shape[1] == self.channels
105
- hidden_states = self.conv(hidden_states)
106
-
107
- return hidden_states
108
-
109
-
110
- class ResnetBlock3D(nn.Module):
111
- def __init__(
112
- self,
113
- *,
114
- in_channels,
115
- out_channels=None,
116
- conv_shortcut=False,
117
- dropout=0.0,
118
- temb_channels=512,
119
- groups=32,
120
- groups_out=None,
121
- pre_norm=True,
122
- eps=1e-6,
123
- non_linearity="swish",
124
- time_embedding_norm="default",
125
- output_scale_factor=1.0,
126
- use_in_shortcut=None,
127
- ):
128
- super().__init__()
129
- self.pre_norm = pre_norm
130
- self.pre_norm = True
131
- self.in_channels = in_channels
132
- out_channels = in_channels if out_channels is None else out_channels
133
- self.out_channels = out_channels
134
- self.use_conv_shortcut = conv_shortcut
135
- self.time_embedding_norm = time_embedding_norm
136
- self.output_scale_factor = output_scale_factor
137
-
138
- if groups_out is None:
139
- groups_out = groups
140
-
141
- self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
142
-
143
- self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
144
-
145
- if temb_channels is not None:
146
- if self.time_embedding_norm == "default":
147
- time_emb_proj_out_channels = out_channels
148
- elif self.time_embedding_norm == "scale_shift":
149
- time_emb_proj_out_channels = out_channels * 2
150
- else:
151
- raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
152
-
153
- self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
154
- else:
155
- self.time_emb_proj = None
156
-
157
- self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
158
- self.dropout = torch.nn.Dropout(dropout)
159
- self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
160
-
161
- if non_linearity == "swish":
162
- self.nonlinearity = lambda x: F.silu(x)
163
- elif non_linearity == "mish":
164
- self.nonlinearity = Mish()
165
- elif non_linearity == "silu":
166
- self.nonlinearity = nn.SiLU()
167
-
168
- self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
169
-
170
- self.conv_shortcut = None
171
- if self.use_in_shortcut:
172
- self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
173
-
174
- def forward(self, input_tensor, temb):
175
- hidden_states = input_tensor
176
-
177
- hidden_states = self.norm1(hidden_states)
178
- hidden_states = self.nonlinearity(hidden_states)
179
-
180
- hidden_states = self.conv1(hidden_states)
181
-
182
- if temb is not None:
183
- temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
184
-
185
- if temb is not None and self.time_embedding_norm == "default":
186
- hidden_states = hidden_states + temb
187
-
188
- hidden_states = self.norm2(hidden_states)
189
-
190
- if temb is not None and self.time_embedding_norm == "scale_shift":
191
- scale, shift = torch.chunk(temb, 2, dim=1)
192
- hidden_states = hidden_states * (1 + scale) + shift
193
-
194
- hidden_states = self.nonlinearity(hidden_states)
195
-
196
- hidden_states = self.dropout(hidden_states)
197
- hidden_states = self.conv2(hidden_states)
198
-
199
- if self.conv_shortcut is not None:
200
- input_tensor = self.conv_shortcut(input_tensor)
201
-
202
- output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
203
-
204
- return output_tensor
205
-
206
-
207
- class Mish(torch.nn.Module):
208
- def forward(self, hidden_states):
209
- return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/unet.py DELETED
@@ -1,450 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
-
3
- from dataclasses import dataclass
4
- from typing import List, Optional, Tuple, Union
5
-
6
- import os
7
- import json
8
-
9
- import torch
10
- import torch.nn as nn
11
- import torch.utils.checkpoint
12
-
13
- from diffusers.configuration_utils import ConfigMixin, register_to_config
14
- from diffusers.modeling_utils import ModelMixin
15
- from diffusers.utils import BaseOutput, logging
16
- from diffusers.models.embeddings import TimestepEmbedding, Timesteps
17
- from .unet_blocks import (
18
- CrossAttnDownBlock3D,
19
- CrossAttnUpBlock3D,
20
- DownBlock3D,
21
- UNetMidBlock3DCrossAttn,
22
- UpBlock3D,
23
- get_down_block,
24
- get_up_block,
25
- )
26
- from .resnet import InflatedConv3d
27
-
28
-
29
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
-
31
-
32
- @dataclass
33
- class UNet3DConditionOutput(BaseOutput):
34
- sample: torch.FloatTensor
35
-
36
-
37
- class UNet3DConditionModel(ModelMixin, ConfigMixin):
38
- _supports_gradient_checkpointing = True
39
-
40
- @register_to_config
41
- def __init__(
42
- self,
43
- sample_size: Optional[int] = None,
44
- in_channels: int = 4,
45
- out_channels: int = 4,
46
- center_input_sample: bool = False,
47
- flip_sin_to_cos: bool = True,
48
- freq_shift: int = 0,
49
- down_block_types: Tuple[str] = (
50
- "CrossAttnDownBlock3D",
51
- "CrossAttnDownBlock3D",
52
- "CrossAttnDownBlock3D",
53
- "DownBlock3D",
54
- ),
55
- mid_block_type: str = "UNetMidBlock3DCrossAttn",
56
- up_block_types: Tuple[str] = (
57
- "UpBlock3D",
58
- "CrossAttnUpBlock3D",
59
- "CrossAttnUpBlock3D",
60
- "CrossAttnUpBlock3D"
61
- ),
62
- only_cross_attention: Union[bool, Tuple[bool]] = False,
63
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
64
- layers_per_block: int = 2,
65
- downsample_padding: int = 1,
66
- mid_block_scale_factor: float = 1,
67
- act_fn: str = "silu",
68
- norm_num_groups: int = 32,
69
- norm_eps: float = 1e-5,
70
- cross_attention_dim: int = 1280,
71
- attention_head_dim: Union[int, Tuple[int]] = 8,
72
- dual_cross_attention: bool = False,
73
- use_linear_projection: bool = False,
74
- class_embed_type: Optional[str] = None,
75
- num_class_embeds: Optional[int] = None,
76
- upcast_attention: bool = False,
77
- resnet_time_scale_shift: str = "default",
78
- ):
79
- super().__init__()
80
-
81
- self.sample_size = sample_size
82
- time_embed_dim = block_out_channels[0] * 4
83
-
84
- # input
85
- self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
86
-
87
- # time
88
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
89
- timestep_input_dim = block_out_channels[0]
90
-
91
- self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
92
-
93
- # class embedding
94
- if class_embed_type is None and num_class_embeds is not None:
95
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
96
- elif class_embed_type == "timestep":
97
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
98
- elif class_embed_type == "identity":
99
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
100
- else:
101
- self.class_embedding = None
102
-
103
- self.down_blocks = nn.ModuleList([])
104
- self.mid_block = None
105
- self.up_blocks = nn.ModuleList([])
106
-
107
- if isinstance(only_cross_attention, bool):
108
- only_cross_attention = [only_cross_attention] * len(down_block_types)
109
-
110
- if isinstance(attention_head_dim, int):
111
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
112
-
113
- # down
114
- output_channel = block_out_channels[0]
115
- for i, down_block_type in enumerate(down_block_types):
116
- input_channel = output_channel
117
- output_channel = block_out_channels[i]
118
- is_final_block = i == len(block_out_channels) - 1
119
-
120
- down_block = get_down_block(
121
- down_block_type,
122
- num_layers=layers_per_block,
123
- in_channels=input_channel,
124
- out_channels=output_channel,
125
- temb_channels=time_embed_dim,
126
- add_downsample=not is_final_block,
127
- resnet_eps=norm_eps,
128
- resnet_act_fn=act_fn,
129
- resnet_groups=norm_num_groups,
130
- cross_attention_dim=cross_attention_dim,
131
- attn_num_head_channels=attention_head_dim[i],
132
- downsample_padding=downsample_padding,
133
- dual_cross_attention=dual_cross_attention,
134
- use_linear_projection=use_linear_projection,
135
- only_cross_attention=only_cross_attention[i],
136
- upcast_attention=upcast_attention,
137
- resnet_time_scale_shift=resnet_time_scale_shift,
138
- )
139
- self.down_blocks.append(down_block)
140
-
141
- # mid
142
- if mid_block_type == "UNetMidBlock3DCrossAttn":
143
- self.mid_block = UNetMidBlock3DCrossAttn(
144
- in_channels=block_out_channels[-1],
145
- temb_channels=time_embed_dim,
146
- resnet_eps=norm_eps,
147
- resnet_act_fn=act_fn,
148
- output_scale_factor=mid_block_scale_factor,
149
- resnet_time_scale_shift=resnet_time_scale_shift,
150
- cross_attention_dim=cross_attention_dim,
151
- attn_num_head_channels=attention_head_dim[-1],
152
- resnet_groups=norm_num_groups,
153
- dual_cross_attention=dual_cross_attention,
154
- use_linear_projection=use_linear_projection,
155
- upcast_attention=upcast_attention,
156
- )
157
- else:
158
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
159
-
160
- # count how many layers upsample the videos
161
- self.num_upsamplers = 0
162
-
163
- # up
164
- reversed_block_out_channels = list(reversed(block_out_channels))
165
- reversed_attention_head_dim = list(reversed(attention_head_dim))
166
- only_cross_attention = list(reversed(only_cross_attention))
167
- output_channel = reversed_block_out_channels[0]
168
- for i, up_block_type in enumerate(up_block_types):
169
- is_final_block = i == len(block_out_channels) - 1
170
-
171
- prev_output_channel = output_channel
172
- output_channel = reversed_block_out_channels[i]
173
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
174
-
175
- # add upsample block for all BUT final layer
176
- if not is_final_block:
177
- add_upsample = True
178
- self.num_upsamplers += 1
179
- else:
180
- add_upsample = False
181
-
182
- up_block = get_up_block(
183
- up_block_type,
184
- num_layers=layers_per_block + 1,
185
- in_channels=input_channel,
186
- out_channels=output_channel,
187
- prev_output_channel=prev_output_channel,
188
- temb_channels=time_embed_dim,
189
- add_upsample=add_upsample,
190
- resnet_eps=norm_eps,
191
- resnet_act_fn=act_fn,
192
- resnet_groups=norm_num_groups,
193
- cross_attention_dim=cross_attention_dim,
194
- attn_num_head_channels=reversed_attention_head_dim[i],
195
- dual_cross_attention=dual_cross_attention,
196
- use_linear_projection=use_linear_projection,
197
- only_cross_attention=only_cross_attention[i],
198
- upcast_attention=upcast_attention,
199
- resnet_time_scale_shift=resnet_time_scale_shift,
200
- )
201
- self.up_blocks.append(up_block)
202
- prev_output_channel = output_channel
203
-
204
- # out
205
- self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
206
- self.conv_act = nn.SiLU()
207
- self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
208
-
209
- def set_attention_slice(self, slice_size):
210
- r"""
211
- Enable sliced attention computation.
212
-
213
- When this option is enabled, the attention module will split the input tensor in slices, to compute attention
214
- in several steps. This is useful to save some memory in exchange for a small speed decrease.
215
-
216
- Args:
217
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
218
- When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
219
- `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
220
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
221
- must be a multiple of `slice_size`.
222
- """
223
- sliceable_head_dims = []
224
-
225
- def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
226
- if hasattr(module, "set_attention_slice"):
227
- sliceable_head_dims.append(module.sliceable_head_dim)
228
-
229
- for child in module.children():
230
- fn_recursive_retrieve_slicable_dims(child)
231
-
232
- # retrieve number of attention layers
233
- for module in self.children():
234
- fn_recursive_retrieve_slicable_dims(module)
235
-
236
- num_slicable_layers = len(sliceable_head_dims)
237
-
238
- if slice_size == "auto":
239
- # half the attention head size is usually a good trade-off between
240
- # speed and memory
241
- slice_size = [dim // 2 for dim in sliceable_head_dims]
242
- elif slice_size == "max":
243
- # make smallest slice possible
244
- slice_size = num_slicable_layers * [1]
245
-
246
- slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
247
-
248
- if len(slice_size) != len(sliceable_head_dims):
249
- raise ValueError(
250
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
251
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
252
- )
253
-
254
- for i in range(len(slice_size)):
255
- size = slice_size[i]
256
- dim = sliceable_head_dims[i]
257
- if size is not None and size > dim:
258
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
259
-
260
- # Recursively walk through all the children.
261
- # Any children which exposes the set_attention_slice method
262
- # gets the message
263
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
264
- if hasattr(module, "set_attention_slice"):
265
- module.set_attention_slice(slice_size.pop())
266
-
267
- for child in module.children():
268
- fn_recursive_set_attention_slice(child, slice_size)
269
-
270
- reversed_slice_size = list(reversed(slice_size))
271
- for module in self.children():
272
- fn_recursive_set_attention_slice(module, reversed_slice_size)
273
-
274
- def _set_gradient_checkpointing(self, module, value=False):
275
- if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
276
- module.gradient_checkpointing = value
277
-
278
- def forward(
279
- self,
280
- sample: torch.FloatTensor,
281
- timestep: Union[torch.Tensor, float, int],
282
- encoder_hidden_states: torch.Tensor,
283
- class_labels: Optional[torch.Tensor] = None,
284
- attention_mask: Optional[torch.Tensor] = None,
285
- return_dict: bool = True,
286
- ) -> Union[UNet3DConditionOutput, Tuple]:
287
- r"""
288
- Args:
289
- sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
290
- timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
291
- encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
292
- return_dict (`bool`, *optional*, defaults to `True`):
293
- Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
294
-
295
- Returns:
296
- [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
297
- [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
298
- returning a tuple, the first element is the sample tensor.
299
- """
300
- # By default samples have to be AT least a multiple of the overall upsampling factor.
301
- # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
302
- # However, the upsampling interpolation output size can be forced to fit any upsampling size
303
- # on the fly if necessary.
304
- default_overall_up_factor = 2**self.num_upsamplers
305
-
306
- # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
307
- forward_upsample_size = False
308
- upsample_size = None
309
-
310
- if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
311
- logger.info("Forward upsample size to force interpolation output size.")
312
- forward_upsample_size = True
313
-
314
- # prepare attention_mask
315
- if attention_mask is not None:
316
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
317
- attention_mask = attention_mask.unsqueeze(1)
318
-
319
- # center input if necessary
320
- if self.config.center_input_sample:
321
- sample = 2 * sample - 1.0
322
-
323
- # time
324
- timesteps = timestep
325
- if not torch.is_tensor(timesteps):
326
- # This would be a good case for the `match` statement (Python 3.10+)
327
- is_mps = sample.device.type == "mps"
328
- if isinstance(timestep, float):
329
- dtype = torch.float32 if is_mps else torch.float64
330
- else:
331
- dtype = torch.int32 if is_mps else torch.int64
332
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
333
- elif len(timesteps.shape) == 0:
334
- timesteps = timesteps[None].to(sample.device)
335
-
336
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
337
- timesteps = timesteps.expand(sample.shape[0])
338
-
339
- t_emb = self.time_proj(timesteps)
340
-
341
- # timesteps does not contain any weights and will always return f32 tensors
342
- # but time_embedding might actually be running in fp16. so we need to cast here.
343
- # there might be better ways to encapsulate this.
344
- t_emb = t_emb.to(dtype=self.dtype)
345
- emb = self.time_embedding(t_emb)
346
-
347
- if self.class_embedding is not None:
348
- if class_labels is None:
349
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
350
-
351
- if self.config.class_embed_type == "timestep":
352
- class_labels = self.time_proj(class_labels)
353
-
354
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
355
- emb = emb + class_emb
356
-
357
- # pre-process
358
- sample = self.conv_in(sample)
359
-
360
- # down
361
- down_block_res_samples = (sample,)
362
- for downsample_block in self.down_blocks:
363
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
364
- sample, res_samples = downsample_block(
365
- hidden_states=sample,
366
- temb=emb,
367
- encoder_hidden_states=encoder_hidden_states,
368
- attention_mask=attention_mask,
369
- )
370
- else:
371
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
372
-
373
- down_block_res_samples += res_samples
374
-
375
- # mid
376
- sample = self.mid_block(
377
- sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
378
- )
379
-
380
- # up
381
- for i, upsample_block in enumerate(self.up_blocks):
382
- is_final_block = i == len(self.up_blocks) - 1
383
-
384
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
385
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
386
-
387
- # if we have not reached the final block and need to forward the
388
- # upsample size, we do it here
389
- if not is_final_block and forward_upsample_size:
390
- upsample_size = down_block_res_samples[-1].shape[2:]
391
-
392
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
393
- sample = upsample_block(
394
- hidden_states=sample,
395
- temb=emb,
396
- res_hidden_states_tuple=res_samples,
397
- encoder_hidden_states=encoder_hidden_states,
398
- upsample_size=upsample_size,
399
- attention_mask=attention_mask,
400
- )
401
- else:
402
- sample = upsample_block(
403
- hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
404
- )
405
- # post-process
406
- sample = self.conv_norm_out(sample)
407
- sample = self.conv_act(sample)
408
- sample = self.conv_out(sample)
409
-
410
- if not return_dict:
411
- return (sample,)
412
-
413
- return UNet3DConditionOutput(sample=sample)
414
-
415
- @classmethod
416
- def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
417
- if subfolder is not None:
418
- pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
419
-
420
- config_file = os.path.join(pretrained_model_path, 'config.json')
421
- if not os.path.isfile(config_file):
422
- raise RuntimeError(f"{config_file} does not exist")
423
- with open(config_file, "r") as f:
424
- config = json.load(f)
425
- config["_class_name"] = cls.__name__
426
- config["down_block_types"] = [
427
- "CrossAttnDownBlock3D",
428
- "CrossAttnDownBlock3D",
429
- "CrossAttnDownBlock3D",
430
- "DownBlock3D"
431
- ]
432
- config["up_block_types"] = [
433
- "UpBlock3D",
434
- "CrossAttnUpBlock3D",
435
- "CrossAttnUpBlock3D",
436
- "CrossAttnUpBlock3D"
437
- ]
438
-
439
- from diffusers.utils import WEIGHTS_NAME
440
- model = cls.from_config(config)
441
- model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
442
- if not os.path.isfile(model_file):
443
- raise RuntimeError(f"{model_file} does not exist")
444
- state_dict = torch.load(model_file, map_location="cpu")
445
- for k, v in model.state_dict().items():
446
- if '_temp.' in k:
447
- state_dict.update({k: v})
448
- model.load_state_dict(state_dict)
449
-
450
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/unet_blocks.py DELETED
@@ -1,588 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
-
3
- import torch
4
- from torch import nn
5
-
6
- from .attention import Transformer3DModel
7
- from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
-
9
-
10
- def get_down_block(
11
- down_block_type,
12
- num_layers,
13
- in_channels,
14
- out_channels,
15
- temb_channels,
16
- add_downsample,
17
- resnet_eps,
18
- resnet_act_fn,
19
- attn_num_head_channels,
20
- resnet_groups=None,
21
- cross_attention_dim=None,
22
- downsample_padding=None,
23
- dual_cross_attention=False,
24
- use_linear_projection=False,
25
- only_cross_attention=False,
26
- upcast_attention=False,
27
- resnet_time_scale_shift="default",
28
- ):
29
- down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
30
- if down_block_type == "DownBlock3D":
31
- return DownBlock3D(
32
- num_layers=num_layers,
33
- in_channels=in_channels,
34
- out_channels=out_channels,
35
- temb_channels=temb_channels,
36
- add_downsample=add_downsample,
37
- resnet_eps=resnet_eps,
38
- resnet_act_fn=resnet_act_fn,
39
- resnet_groups=resnet_groups,
40
- downsample_padding=downsample_padding,
41
- resnet_time_scale_shift=resnet_time_scale_shift,
42
- )
43
- elif down_block_type == "CrossAttnDownBlock3D":
44
- if cross_attention_dim is None:
45
- raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
46
- return CrossAttnDownBlock3D(
47
- num_layers=num_layers,
48
- in_channels=in_channels,
49
- out_channels=out_channels,
50
- temb_channels=temb_channels,
51
- add_downsample=add_downsample,
52
- resnet_eps=resnet_eps,
53
- resnet_act_fn=resnet_act_fn,
54
- resnet_groups=resnet_groups,
55
- downsample_padding=downsample_padding,
56
- cross_attention_dim=cross_attention_dim,
57
- attn_num_head_channels=attn_num_head_channels,
58
- dual_cross_attention=dual_cross_attention,
59
- use_linear_projection=use_linear_projection,
60
- only_cross_attention=only_cross_attention,
61
- upcast_attention=upcast_attention,
62
- resnet_time_scale_shift=resnet_time_scale_shift,
63
- )
64
- raise ValueError(f"{down_block_type} does not exist.")
65
-
66
-
67
- def get_up_block(
68
- up_block_type,
69
- num_layers,
70
- in_channels,
71
- out_channels,
72
- prev_output_channel,
73
- temb_channels,
74
- add_upsample,
75
- resnet_eps,
76
- resnet_act_fn,
77
- attn_num_head_channels,
78
- resnet_groups=None,
79
- cross_attention_dim=None,
80
- dual_cross_attention=False,
81
- use_linear_projection=False,
82
- only_cross_attention=False,
83
- upcast_attention=False,
84
- resnet_time_scale_shift="default",
85
- ):
86
- up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
87
- if up_block_type == "UpBlock3D":
88
- return UpBlock3D(
89
- num_layers=num_layers,
90
- in_channels=in_channels,
91
- out_channels=out_channels,
92
- prev_output_channel=prev_output_channel,
93
- temb_channels=temb_channels,
94
- add_upsample=add_upsample,
95
- resnet_eps=resnet_eps,
96
- resnet_act_fn=resnet_act_fn,
97
- resnet_groups=resnet_groups,
98
- resnet_time_scale_shift=resnet_time_scale_shift,
99
- )
100
- elif up_block_type == "CrossAttnUpBlock3D":
101
- if cross_attention_dim is None:
102
- raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
103
- return CrossAttnUpBlock3D(
104
- num_layers=num_layers,
105
- in_channels=in_channels,
106
- out_channels=out_channels,
107
- prev_output_channel=prev_output_channel,
108
- temb_channels=temb_channels,
109
- add_upsample=add_upsample,
110
- resnet_eps=resnet_eps,
111
- resnet_act_fn=resnet_act_fn,
112
- resnet_groups=resnet_groups,
113
- cross_attention_dim=cross_attention_dim,
114
- attn_num_head_channels=attn_num_head_channels,
115
- dual_cross_attention=dual_cross_attention,
116
- use_linear_projection=use_linear_projection,
117
- only_cross_attention=only_cross_attention,
118
- upcast_attention=upcast_attention,
119
- resnet_time_scale_shift=resnet_time_scale_shift,
120
- )
121
- raise ValueError(f"{up_block_type} does not exist.")
122
-
123
-
124
- class UNetMidBlock3DCrossAttn(nn.Module):
125
- def __init__(
126
- self,
127
- in_channels: int,
128
- temb_channels: int,
129
- dropout: float = 0.0,
130
- num_layers: int = 1,
131
- resnet_eps: float = 1e-6,
132
- resnet_time_scale_shift: str = "default",
133
- resnet_act_fn: str = "swish",
134
- resnet_groups: int = 32,
135
- resnet_pre_norm: bool = True,
136
- attn_num_head_channels=1,
137
- output_scale_factor=1.0,
138
- cross_attention_dim=1280,
139
- dual_cross_attention=False,
140
- use_linear_projection=False,
141
- upcast_attention=False,
142
- ):
143
- super().__init__()
144
-
145
- self.has_cross_attention = True
146
- self.attn_num_head_channels = attn_num_head_channels
147
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
148
-
149
- # there is always at least one resnet
150
- resnets = [
151
- ResnetBlock3D(
152
- in_channels=in_channels,
153
- out_channels=in_channels,
154
- temb_channels=temb_channels,
155
- eps=resnet_eps,
156
- groups=resnet_groups,
157
- dropout=dropout,
158
- time_embedding_norm=resnet_time_scale_shift,
159
- non_linearity=resnet_act_fn,
160
- output_scale_factor=output_scale_factor,
161
- pre_norm=resnet_pre_norm,
162
- )
163
- ]
164
- attentions = []
165
-
166
- for _ in range(num_layers):
167
- if dual_cross_attention:
168
- raise NotImplementedError
169
- attentions.append(
170
- Transformer3DModel(
171
- attn_num_head_channels,
172
- in_channels // attn_num_head_channels,
173
- in_channels=in_channels,
174
- num_layers=1,
175
- cross_attention_dim=cross_attention_dim,
176
- norm_num_groups=resnet_groups,
177
- use_linear_projection=use_linear_projection,
178
- upcast_attention=upcast_attention,
179
- )
180
- )
181
- resnets.append(
182
- ResnetBlock3D(
183
- in_channels=in_channels,
184
- out_channels=in_channels,
185
- temb_channels=temb_channels,
186
- eps=resnet_eps,
187
- groups=resnet_groups,
188
- dropout=dropout,
189
- time_embedding_norm=resnet_time_scale_shift,
190
- non_linearity=resnet_act_fn,
191
- output_scale_factor=output_scale_factor,
192
- pre_norm=resnet_pre_norm,
193
- )
194
- )
195
-
196
- self.attentions = nn.ModuleList(attentions)
197
- self.resnets = nn.ModuleList(resnets)
198
-
199
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
200
- hidden_states = self.resnets[0](hidden_states, temb)
201
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
202
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
203
- hidden_states = resnet(hidden_states, temb)
204
-
205
- return hidden_states
206
-
207
-
208
- class CrossAttnDownBlock3D(nn.Module):
209
- def __init__(
210
- self,
211
- in_channels: int,
212
- out_channels: int,
213
- temb_channels: int,
214
- dropout: float = 0.0,
215
- num_layers: int = 1,
216
- resnet_eps: float = 1e-6,
217
- resnet_time_scale_shift: str = "default",
218
- resnet_act_fn: str = "swish",
219
- resnet_groups: int = 32,
220
- resnet_pre_norm: bool = True,
221
- attn_num_head_channels=1,
222
- cross_attention_dim=1280,
223
- output_scale_factor=1.0,
224
- downsample_padding=1,
225
- add_downsample=True,
226
- dual_cross_attention=False,
227
- use_linear_projection=False,
228
- only_cross_attention=False,
229
- upcast_attention=False,
230
- ):
231
- super().__init__()
232
- resnets = []
233
- attentions = []
234
-
235
- self.has_cross_attention = True
236
- self.attn_num_head_channels = attn_num_head_channels
237
-
238
- for i in range(num_layers):
239
- in_channels = in_channels if i == 0 else out_channels
240
- resnets.append(
241
- ResnetBlock3D(
242
- in_channels=in_channels,
243
- out_channels=out_channels,
244
- temb_channels=temb_channels,
245
- eps=resnet_eps,
246
- groups=resnet_groups,
247
- dropout=dropout,
248
- time_embedding_norm=resnet_time_scale_shift,
249
- non_linearity=resnet_act_fn,
250
- output_scale_factor=output_scale_factor,
251
- pre_norm=resnet_pre_norm,
252
- )
253
- )
254
- if dual_cross_attention:
255
- raise NotImplementedError
256
- attentions.append(
257
- Transformer3DModel(
258
- attn_num_head_channels,
259
- out_channels // attn_num_head_channels,
260
- in_channels=out_channels,
261
- num_layers=1,
262
- cross_attention_dim=cross_attention_dim,
263
- norm_num_groups=resnet_groups,
264
- use_linear_projection=use_linear_projection,
265
- only_cross_attention=only_cross_attention,
266
- upcast_attention=upcast_attention,
267
- )
268
- )
269
- self.attentions = nn.ModuleList(attentions)
270
- self.resnets = nn.ModuleList(resnets)
271
-
272
- if add_downsample:
273
- self.downsamplers = nn.ModuleList(
274
- [
275
- Downsample3D(
276
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
277
- )
278
- ]
279
- )
280
- else:
281
- self.downsamplers = None
282
-
283
- self.gradient_checkpointing = False
284
-
285
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
286
- output_states = ()
287
-
288
- for resnet, attn in zip(self.resnets, self.attentions):
289
- if self.training and self.gradient_checkpointing:
290
-
291
- def create_custom_forward(module, return_dict=None):
292
- def custom_forward(*inputs):
293
- if return_dict is not None:
294
- return module(*inputs, return_dict=return_dict)
295
- else:
296
- return module(*inputs)
297
-
298
- return custom_forward
299
-
300
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
301
- hidden_states = torch.utils.checkpoint.checkpoint(
302
- create_custom_forward(attn, return_dict=False),
303
- hidden_states,
304
- encoder_hidden_states,
305
- )[0]
306
- else:
307
- hidden_states = resnet(hidden_states, temb)
308
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
309
-
310
- output_states += (hidden_states,)
311
-
312
- if self.downsamplers is not None:
313
- for downsampler in self.downsamplers:
314
- hidden_states = downsampler(hidden_states)
315
-
316
- output_states += (hidden_states,)
317
-
318
- return hidden_states, output_states
319
-
320
-
321
- class DownBlock3D(nn.Module):
322
- def __init__(
323
- self,
324
- in_channels: int,
325
- out_channels: int,
326
- temb_channels: int,
327
- dropout: float = 0.0,
328
- num_layers: int = 1,
329
- resnet_eps: float = 1e-6,
330
- resnet_time_scale_shift: str = "default",
331
- resnet_act_fn: str = "swish",
332
- resnet_groups: int = 32,
333
- resnet_pre_norm: bool = True,
334
- output_scale_factor=1.0,
335
- add_downsample=True,
336
- downsample_padding=1,
337
- ):
338
- super().__init__()
339
- resnets = []
340
-
341
- for i in range(num_layers):
342
- in_channels = in_channels if i == 0 else out_channels
343
- resnets.append(
344
- ResnetBlock3D(
345
- in_channels=in_channels,
346
- out_channels=out_channels,
347
- temb_channels=temb_channels,
348
- eps=resnet_eps,
349
- groups=resnet_groups,
350
- dropout=dropout,
351
- time_embedding_norm=resnet_time_scale_shift,
352
- non_linearity=resnet_act_fn,
353
- output_scale_factor=output_scale_factor,
354
- pre_norm=resnet_pre_norm,
355
- )
356
- )
357
-
358
- self.resnets = nn.ModuleList(resnets)
359
-
360
- if add_downsample:
361
- self.downsamplers = nn.ModuleList(
362
- [
363
- Downsample3D(
364
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
365
- )
366
- ]
367
- )
368
- else:
369
- self.downsamplers = None
370
-
371
- self.gradient_checkpointing = False
372
-
373
- def forward(self, hidden_states, temb=None):
374
- output_states = ()
375
-
376
- for resnet in self.resnets:
377
- if self.training and self.gradient_checkpointing:
378
-
379
- def create_custom_forward(module):
380
- def custom_forward(*inputs):
381
- return module(*inputs)
382
-
383
- return custom_forward
384
-
385
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
386
- else:
387
- hidden_states = resnet(hidden_states, temb)
388
-
389
- output_states += (hidden_states,)
390
-
391
- if self.downsamplers is not None:
392
- for downsampler in self.downsamplers:
393
- hidden_states = downsampler(hidden_states)
394
-
395
- output_states += (hidden_states,)
396
-
397
- return hidden_states, output_states
398
-
399
-
400
- class CrossAttnUpBlock3D(nn.Module):
401
- def __init__(
402
- self,
403
- in_channels: int,
404
- out_channels: int,
405
- prev_output_channel: int,
406
- temb_channels: int,
407
- dropout: float = 0.0,
408
- num_layers: int = 1,
409
- resnet_eps: float = 1e-6,
410
- resnet_time_scale_shift: str = "default",
411
- resnet_act_fn: str = "swish",
412
- resnet_groups: int = 32,
413
- resnet_pre_norm: bool = True,
414
- attn_num_head_channels=1,
415
- cross_attention_dim=1280,
416
- output_scale_factor=1.0,
417
- add_upsample=True,
418
- dual_cross_attention=False,
419
- use_linear_projection=False,
420
- only_cross_attention=False,
421
- upcast_attention=False,
422
- ):
423
- super().__init__()
424
- resnets = []
425
- attentions = []
426
-
427
- self.has_cross_attention = True
428
- self.attn_num_head_channels = attn_num_head_channels
429
-
430
- for i in range(num_layers):
431
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
432
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
433
-
434
- resnets.append(
435
- ResnetBlock3D(
436
- in_channels=resnet_in_channels + res_skip_channels,
437
- out_channels=out_channels,
438
- temb_channels=temb_channels,
439
- eps=resnet_eps,
440
- groups=resnet_groups,
441
- dropout=dropout,
442
- time_embedding_norm=resnet_time_scale_shift,
443
- non_linearity=resnet_act_fn,
444
- output_scale_factor=output_scale_factor,
445
- pre_norm=resnet_pre_norm,
446
- )
447
- )
448
- if dual_cross_attention:
449
- raise NotImplementedError
450
- attentions.append(
451
- Transformer3DModel(
452
- attn_num_head_channels,
453
- out_channels // attn_num_head_channels,
454
- in_channels=out_channels,
455
- num_layers=1,
456
- cross_attention_dim=cross_attention_dim,
457
- norm_num_groups=resnet_groups,
458
- use_linear_projection=use_linear_projection,
459
- only_cross_attention=only_cross_attention,
460
- upcast_attention=upcast_attention,
461
- )
462
- )
463
-
464
- self.attentions = nn.ModuleList(attentions)
465
- self.resnets = nn.ModuleList(resnets)
466
-
467
- if add_upsample:
468
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
469
- else:
470
- self.upsamplers = None
471
-
472
- self.gradient_checkpointing = False
473
-
474
- def forward(
475
- self,
476
- hidden_states,
477
- res_hidden_states_tuple,
478
- temb=None,
479
- encoder_hidden_states=None,
480
- upsample_size=None,
481
- attention_mask=None,
482
- ):
483
- for resnet, attn in zip(self.resnets, self.attentions):
484
- # pop res hidden states
485
- res_hidden_states = res_hidden_states_tuple[-1]
486
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
487
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
488
-
489
- if self.training and self.gradient_checkpointing:
490
-
491
- def create_custom_forward(module, return_dict=None):
492
- def custom_forward(*inputs):
493
- if return_dict is not None:
494
- return module(*inputs, return_dict=return_dict)
495
- else:
496
- return module(*inputs)
497
-
498
- return custom_forward
499
-
500
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
501
- hidden_states = torch.utils.checkpoint.checkpoint(
502
- create_custom_forward(attn, return_dict=False),
503
- hidden_states,
504
- encoder_hidden_states,
505
- )[0]
506
- else:
507
- hidden_states = resnet(hidden_states, temb)
508
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
509
-
510
- if self.upsamplers is not None:
511
- for upsampler in self.upsamplers:
512
- hidden_states = upsampler(hidden_states, upsample_size)
513
-
514
- return hidden_states
515
-
516
-
517
- class UpBlock3D(nn.Module):
518
- def __init__(
519
- self,
520
- in_channels: int,
521
- prev_output_channel: int,
522
- out_channels: int,
523
- temb_channels: int,
524
- dropout: float = 0.0,
525
- num_layers: int = 1,
526
- resnet_eps: float = 1e-6,
527
- resnet_time_scale_shift: str = "default",
528
- resnet_act_fn: str = "swish",
529
- resnet_groups: int = 32,
530
- resnet_pre_norm: bool = True,
531
- output_scale_factor=1.0,
532
- add_upsample=True,
533
- ):
534
- super().__init__()
535
- resnets = []
536
-
537
- for i in range(num_layers):
538
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
539
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
540
-
541
- resnets.append(
542
- ResnetBlock3D(
543
- in_channels=resnet_in_channels + res_skip_channels,
544
- out_channels=out_channels,
545
- temb_channels=temb_channels,
546
- eps=resnet_eps,
547
- groups=resnet_groups,
548
- dropout=dropout,
549
- time_embedding_norm=resnet_time_scale_shift,
550
- non_linearity=resnet_act_fn,
551
- output_scale_factor=output_scale_factor,
552
- pre_norm=resnet_pre_norm,
553
- )
554
- )
555
-
556
- self.resnets = nn.ModuleList(resnets)
557
-
558
- if add_upsample:
559
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
560
- else:
561
- self.upsamplers = None
562
-
563
- self.gradient_checkpointing = False
564
-
565
- def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
566
- for resnet in self.resnets:
567
- # pop res hidden states
568
- res_hidden_states = res_hidden_states_tuple[-1]
569
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
570
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
571
-
572
- if self.training and self.gradient_checkpointing:
573
-
574
- def create_custom_forward(module):
575
- def custom_forward(*inputs):
576
- return module(*inputs)
577
-
578
- return custom_forward
579
-
580
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
- else:
582
- hidden_states = resnet(hidden_states, temb)
583
-
584
- if self.upsamplers is not None:
585
- for upsampler in self.upsamplers:
586
- hidden_states = upsampler(hidden_states, upsample_size)
587
-
588
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/pipelines/pipeline_tuneavideo.py DELETED
@@ -1,407 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
2
-
3
- import inspect
4
- from typing import Callable, List, Optional, Union
5
- from dataclasses import dataclass
6
-
7
- import numpy as np
8
- import torch
9
-
10
- from diffusers.utils import is_accelerate_available
11
- from packaging import version
12
- from transformers import CLIPTextModel, CLIPTokenizer
13
-
14
- from diffusers.configuration_utils import FrozenDict
15
- from diffusers.models import AutoencoderKL
16
- from diffusers.pipeline_utils import DiffusionPipeline
17
- from diffusers.schedulers import (
18
- DDIMScheduler,
19
- DPMSolverMultistepScheduler,
20
- EulerAncestralDiscreteScheduler,
21
- EulerDiscreteScheduler,
22
- LMSDiscreteScheduler,
23
- PNDMScheduler,
24
- )
25
- from diffusers.utils import deprecate, logging, BaseOutput
26
-
27
- from einops import rearrange
28
-
29
- from ..models.unet import UNet3DConditionModel
30
-
31
-
32
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
-
34
-
35
- @dataclass
36
- class TuneAVideoPipelineOutput(BaseOutput):
37
- videos: Union[torch.Tensor, np.ndarray]
38
-
39
-
40
- class TuneAVideoPipeline(DiffusionPipeline):
41
- _optional_components = []
42
-
43
- def __init__(
44
- self,
45
- vae: AutoencoderKL,
46
- text_encoder: CLIPTextModel,
47
- tokenizer: CLIPTokenizer,
48
- unet: UNet3DConditionModel,
49
- scheduler: Union[
50
- DDIMScheduler,
51
- PNDMScheduler,
52
- LMSDiscreteScheduler,
53
- EulerDiscreteScheduler,
54
- EulerAncestralDiscreteScheduler,
55
- DPMSolverMultistepScheduler,
56
- ],
57
- ):
58
- super().__init__()
59
-
60
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
- deprecation_message = (
62
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
- " file"
68
- )
69
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
- new_config = dict(scheduler.config)
71
- new_config["steps_offset"] = 1
72
- scheduler._internal_dict = FrozenDict(new_config)
73
-
74
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
- deprecation_message = (
76
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
- )
82
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
- new_config = dict(scheduler.config)
84
- new_config["clip_sample"] = False
85
- scheduler._internal_dict = FrozenDict(new_config)
86
-
87
- is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
- version.parse(unet.config._diffusers_version).base_version
89
- ) < version.parse("0.9.0.dev0")
90
- is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
- if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
- deprecation_message = (
93
- "The configuration file of the unet has set the default `sample_size` to smaller than"
94
- " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
- " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
- " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
- " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
- " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
- " the `unet/config.json` file"
102
- )
103
- deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
- new_config = dict(unet.config)
105
- new_config["sample_size"] = 64
106
- unet._internal_dict = FrozenDict(new_config)
107
-
108
- self.register_modules(
109
- vae=vae,
110
- text_encoder=text_encoder,
111
- tokenizer=tokenizer,
112
- unet=unet,
113
- scheduler=scheduler,
114
- )
115
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
-
117
- def enable_vae_slicing(self):
118
- self.vae.enable_slicing()
119
-
120
- def disable_vae_slicing(self):
121
- self.vae.disable_slicing()
122
-
123
- def enable_sequential_cpu_offload(self, gpu_id=0):
124
- if is_accelerate_available():
125
- from accelerate import cpu_offload
126
- else:
127
- raise ImportError("Please install accelerate via `pip install accelerate`")
128
-
129
- device = torch.device(f"cuda:{gpu_id}")
130
-
131
- for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
132
- if cpu_offloaded_model is not None:
133
- cpu_offload(cpu_offloaded_model, device)
134
-
135
-
136
- @property
137
- def _execution_device(self):
138
- if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
139
- return self.device
140
- for module in self.unet.modules():
141
- if (
142
- hasattr(module, "_hf_hook")
143
- and hasattr(module._hf_hook, "execution_device")
144
- and module._hf_hook.execution_device is not None
145
- ):
146
- return torch.device(module._hf_hook.execution_device)
147
- return self.device
148
-
149
- def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
150
- batch_size = len(prompt) if isinstance(prompt, list) else 1
151
-
152
- text_inputs = self.tokenizer(
153
- prompt,
154
- padding="max_length",
155
- max_length=self.tokenizer.model_max_length,
156
- truncation=True,
157
- return_tensors="pt",
158
- )
159
- text_input_ids = text_inputs.input_ids
160
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
161
-
162
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
163
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
164
- logger.warning(
165
- "The following part of your input was truncated because CLIP can only handle sequences up to"
166
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
167
- )
168
-
169
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
170
- attention_mask = text_inputs.attention_mask.to(device)
171
- else:
172
- attention_mask = None
173
-
174
- text_embeddings = self.text_encoder(
175
- text_input_ids.to(device),
176
- attention_mask=attention_mask,
177
- )
178
- text_embeddings = text_embeddings[0]
179
-
180
- # duplicate text embeddings for each generation per prompt, using mps friendly method
181
- bs_embed, seq_len, _ = text_embeddings.shape
182
- text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
183
- text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
184
-
185
- # get unconditional embeddings for classifier free guidance
186
- if do_classifier_free_guidance:
187
- uncond_tokens: List[str]
188
- if negative_prompt is None:
189
- uncond_tokens = [""] * batch_size
190
- elif type(prompt) is not type(negative_prompt):
191
- raise TypeError(
192
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
193
- f" {type(prompt)}."
194
- )
195
- elif isinstance(negative_prompt, str):
196
- uncond_tokens = [negative_prompt]
197
- elif batch_size != len(negative_prompt):
198
- raise ValueError(
199
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
200
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
201
- " the batch size of `prompt`."
202
- )
203
- else:
204
- uncond_tokens = negative_prompt
205
-
206
- max_length = text_input_ids.shape[-1]
207
- uncond_input = self.tokenizer(
208
- uncond_tokens,
209
- padding="max_length",
210
- max_length=max_length,
211
- truncation=True,
212
- return_tensors="pt",
213
- )
214
-
215
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
216
- attention_mask = uncond_input.attention_mask.to(device)
217
- else:
218
- attention_mask = None
219
-
220
- uncond_embeddings = self.text_encoder(
221
- uncond_input.input_ids.to(device),
222
- attention_mask=attention_mask,
223
- )
224
- uncond_embeddings = uncond_embeddings[0]
225
-
226
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
227
- seq_len = uncond_embeddings.shape[1]
228
- uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
229
- uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
230
-
231
- # For classifier free guidance, we need to do two forward passes.
232
- # Here we concatenate the unconditional and text embeddings into a single batch
233
- # to avoid doing two forward passes
234
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
235
-
236
- return text_embeddings
237
-
238
- def decode_latents(self, latents):
239
- video_length = latents.shape[2]
240
- latents = 1 / 0.18215 * latents
241
- latents = rearrange(latents, "b c f h w -> (b f) c h w")
242
- video = self.vae.decode(latents).sample
243
- video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
244
- video = (video / 2 + 0.5).clamp(0, 1)
245
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
246
- video = video.cpu().float().numpy()
247
- return video
248
-
249
- def prepare_extra_step_kwargs(self, generator, eta):
250
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
251
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
252
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
253
- # and should be between [0, 1]
254
-
255
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
256
- extra_step_kwargs = {}
257
- if accepts_eta:
258
- extra_step_kwargs["eta"] = eta
259
-
260
- # check if the scheduler accepts generator
261
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
262
- if accepts_generator:
263
- extra_step_kwargs["generator"] = generator
264
- return extra_step_kwargs
265
-
266
- def check_inputs(self, prompt, height, width, callback_steps):
267
- if not isinstance(prompt, str) and not isinstance(prompt, list):
268
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
269
-
270
- if height % 8 != 0 or width % 8 != 0:
271
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
272
-
273
- if (callback_steps is None) or (
274
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
275
- ):
276
- raise ValueError(
277
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
278
- f" {type(callback_steps)}."
279
- )
280
-
281
- def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
282
- shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
283
- if isinstance(generator, list) and len(generator) != batch_size:
284
- raise ValueError(
285
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
286
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
287
- )
288
-
289
- if latents is None:
290
- rand_device = "cpu" if device.type == "mps" else device
291
-
292
- if isinstance(generator, list):
293
- shape = (1,) + shape[1:]
294
- latents = [
295
- torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
296
- for i in range(batch_size)
297
- ]
298
- latents = torch.cat(latents, dim=0).to(device)
299
- else:
300
- latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
301
- else:
302
- if latents.shape != shape:
303
- raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
304
- latents = latents.to(device)
305
-
306
- # scale the initial noise by the standard deviation required by the scheduler
307
- latents = latents * self.scheduler.init_noise_sigma
308
- return latents
309
-
310
- @torch.no_grad()
311
- def __call__(
312
- self,
313
- prompt: Union[str, List[str]],
314
- video_length: Optional[int],
315
- height: Optional[int] = None,
316
- width: Optional[int] = None,
317
- num_inference_steps: int = 50,
318
- guidance_scale: float = 7.5,
319
- negative_prompt: Optional[Union[str, List[str]]] = None,
320
- num_videos_per_prompt: Optional[int] = 1,
321
- eta: float = 0.0,
322
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
323
- latents: Optional[torch.FloatTensor] = None,
324
- output_type: Optional[str] = "tensor",
325
- return_dict: bool = True,
326
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
327
- callback_steps: Optional[int] = 1,
328
- **kwargs,
329
- ):
330
- # Default height and width to unet
331
- height = height or self.unet.config.sample_size * self.vae_scale_factor
332
- width = width or self.unet.config.sample_size * self.vae_scale_factor
333
-
334
- # Check inputs. Raise error if not correct
335
- self.check_inputs(prompt, height, width, callback_steps)
336
-
337
- # Define call parameters
338
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
339
- device = self._execution_device
340
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
341
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
342
- # corresponds to doing no classifier free guidance.
343
- do_classifier_free_guidance = guidance_scale > 1.0
344
-
345
- # Encode input prompt
346
- text_embeddings = self._encode_prompt(
347
- prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
348
- )
349
-
350
- # Prepare timesteps
351
- self.scheduler.set_timesteps(num_inference_steps, device=device)
352
- timesteps = self.scheduler.timesteps
353
-
354
- # Prepare latent variables
355
- num_channels_latents = self.unet.in_channels
356
- latents = self.prepare_latents(
357
- batch_size * num_videos_per_prompt,
358
- num_channels_latents,
359
- video_length,
360
- height,
361
- width,
362
- text_embeddings.dtype,
363
- device,
364
- generator,
365
- latents,
366
- )
367
- latents_dtype = latents.dtype
368
-
369
- # Prepare extra step kwargs.
370
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
371
-
372
- # Denoising loop
373
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
374
- with self.progress_bar(total=num_inference_steps) as progress_bar:
375
- for i, t in enumerate(timesteps):
376
- # expand the latents if we are doing classifier free guidance
377
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
378
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
379
-
380
- # predict the noise residual
381
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
382
-
383
- # perform guidance
384
- if do_classifier_free_guidance:
385
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
386
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
387
-
388
- # compute the previous noisy sample x_t -> x_t-1
389
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
390
-
391
- # call the callback, if provided
392
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
393
- progress_bar.update()
394
- if callback is not None and i % callback_steps == 0:
395
- callback(i, t, latents)
396
-
397
- # Post-processing
398
- video = self.decode_latents(latents)
399
-
400
- # Convert to tensor
401
- if output_type == "tensor":
402
- video = torch.from_numpy(video)
403
-
404
- if not return_dict:
405
- return video
406
-
407
- return TuneAVideoPipelineOutput(videos=video)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/util.py DELETED
@@ -1,84 +0,0 @@
1
- import os
2
- import imageio
3
- import numpy as np
4
- from typing import Union
5
-
6
- import torch
7
- import torchvision
8
-
9
- from tqdm import tqdm
10
- from einops import rearrange
11
-
12
-
13
- def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
14
- videos = rearrange(videos, "b c t h w -> t b c h w")
15
- outputs = []
16
- for x in videos:
17
- x = torchvision.utils.make_grid(x, nrow=n_rows)
18
- x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
19
- if rescale:
20
- x = (x + 1.0) / 2.0 # -1,1 -> 0,1
21
- x = (x * 255).numpy().astype(np.uint8)
22
- outputs.append(x)
23
-
24
- os.makedirs(os.path.dirname(path), exist_ok=True)
25
- imageio.mimsave(path, outputs, fps=fps)
26
-
27
-
28
- # DDIM Inversion
29
- @torch.no_grad()
30
- def init_prompt(prompt, pipeline):
31
- uncond_input = pipeline.tokenizer(
32
- [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
33
- return_tensors="pt"
34
- )
35
- uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
36
- text_input = pipeline.tokenizer(
37
- [prompt],
38
- padding="max_length",
39
- max_length=pipeline.tokenizer.model_max_length,
40
- truncation=True,
41
- return_tensors="pt",
42
- )
43
- text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
44
- context = torch.cat([uncond_embeddings, text_embeddings])
45
-
46
- return context
47
-
48
-
49
- def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
50
- sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
51
- timestep, next_timestep = min(
52
- timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
53
- alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
54
- alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
55
- beta_prod_t = 1 - alpha_prod_t
56
- next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
57
- next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
58
- next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
59
- return next_sample
60
-
61
-
62
- def get_noise_pred_single(latents, t, context, unet):
63
- noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
64
- return noise_pred
65
-
66
-
67
- @torch.no_grad()
68
- def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
69
- context = init_prompt(prompt, pipeline)
70
- uncond_embeddings, cond_embeddings = context.chunk(2)
71
- all_latent = [latent]
72
- latent = latent.clone().detach()
73
- for i in tqdm(range(num_inv_steps)):
74
- t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
75
- noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
76
- latent = next_step(noise_pred, t, latent, ddim_scheduler)
77
- all_latent.append(latent)
78
- return all_latent
79
-
80
-
81
- @torch.no_grad()
82
- def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
83
- ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
84
- return ddim_latents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{Tune-A-Video → Video-P2P}/configs/man-skiing.yaml RENAMED
@@ -4,19 +4,16 @@ output_dir: "./outputs/man-skiing"
4
  train_data:
5
  video_path: "data/man-skiing.mp4"
6
  prompt: "a man is skiing"
7
- n_sample_frames: 24
8
  width: 512
9
  height: 512
10
  sample_start_idx: 0
11
- sample_frame_rate: 2
12
 
13
  validation_data:
14
  prompts:
15
- - "mickey mouse is skiing on the snow"
16
- - "spider man is skiing on the beach, cartoon style"
17
- - "wonder woman, wearing a cowboy hat, is skiing"
18
- - "a man, wearing pink clothes, is skiing at sunset"
19
- video_length: 24
20
  width: 512
21
  height: 512
22
  num_inference_steps: 50
@@ -26,7 +23,7 @@ validation_data:
26
 
27
  learning_rate: 3e-5
28
  train_batch_size: 1
29
- max_train_steps: 500
30
  checkpointing_steps: 1000
31
  validation_steps: 100
32
  trainable_modules:
@@ -39,3 +36,17 @@ mixed_precision: fp16
39
  use_8bit_adam: False
40
  gradient_checkpointing: True
41
  enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  train_data:
5
  video_path: "data/man-skiing.mp4"
6
  prompt: "a man is skiing"
7
+ n_sample_frames: 8
8
  width: 512
9
  height: 512
10
  sample_start_idx: 0
11
+ sample_frame_rate: 1
12
 
13
  validation_data:
14
  prompts:
15
+ - "a panda is skiing"
16
+ video_length: 8
 
 
 
17
  width: 512
18
  height: 512
19
  num_inference_steps: 50
 
23
 
24
  learning_rate: 3e-5
25
  train_batch_size: 1
26
+ max_train_steps: 100
27
  checkpointing_steps: 1000
28
  validation_steps: 100
29
  trainable_modules:
 
36
  use_8bit_adam: False
37
  gradient_checkpointing: True
38
  enable_xformers_memory_efficient_attention: True
39
+
40
+ prompts:
41
+ - "a man is skiing"
42
+ - "a Spider-Man is skiing"
43
+ blend_word:
44
+ - 'man'
45
+ - 'Spider-Man'
46
+ eq_params:
47
+ words:
48
+ - "Spider-Man"
49
+ values:
50
+ - 4
51
+ save_name: "spider"
52
+ is_word_swap: True
Tune-A-Video-debug/train_tuneavideo.py → Video-P2P/run.py RENAMED
@@ -4,7 +4,7 @@ import logging
4
  import inspect
5
  import math
6
  import os
7
- from typing import Dict, Optional, Tuple
8
  from omegaconf import OmegaConf
9
 
10
  import torch
@@ -21,7 +21,7 @@ from diffusers.optimization import get_scheduler
21
  from diffusers.utils import check_min_version
22
  from diffusers.utils.import_utils import is_xformers_available
23
  from tqdm.auto import tqdm
24
- from transformers import CLIPTextModel, CLIPTokenizer
25
 
26
  from tuneavideo.models.unet import UNet3DConditionModel
27
  from tuneavideo.data.dataset import TuneAVideoDataset
@@ -29,6 +29,16 @@ from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
29
  from tuneavideo.util import save_videos_grid, ddim_inversion
30
  from einops import rearrange
31
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
34
  check_min_version("0.10.0.dev0")
@@ -66,6 +76,19 @@ def main(
66
  use_8bit_adam: bool = False,
67
  enable_xformers_memory_efficient_attention: bool = True,
68
  seed: Optional[int] = None,
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  ):
70
  *_, config = inspect.getargvalues(inspect.currentframe())
71
 
@@ -358,10 +381,611 @@ def main(
358
 
359
  accelerator.end_training()
360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
 
362
  if __name__ == "__main__":
363
  parser = argparse.ArgumentParser()
364
  parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
 
365
  args = parser.parse_args()
366
 
367
- main(**OmegaConf.load(args.config))
 
4
  import inspect
5
  import math
6
  import os
7
+ from typing import Optional, Union, Tuple, List, Callable, Dict
8
  from omegaconf import OmegaConf
9
 
10
  import torch
 
21
  from diffusers.utils import check_min_version
22
  from diffusers.utils.import_utils import is_xformers_available
23
  from tqdm.auto import tqdm
24
+ from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer
25
 
26
  from tuneavideo.models.unet import UNet3DConditionModel
27
  from tuneavideo.data.dataset import TuneAVideoDataset
 
29
  from tuneavideo.util import save_videos_grid, ddim_inversion
30
  from einops import rearrange
31
 
32
+ import cv2
33
+ import abc
34
+ import ptp_utils
35
+ import seq_aligner
36
+ import shutil
37
+ from torch.optim.adam import Adam
38
+ from PIL import Image
39
+ import numpy as np
40
+ import decord
41
+ decord.bridge.set_bridge('torch')
42
 
43
  # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
44
  check_min_version("0.10.0.dev0")
 
76
  use_8bit_adam: bool = False,
77
  enable_xformers_memory_efficient_attention: bool = True,
78
  seed: Optional[int] = None,
79
+ # pretrained_model_path: str,
80
+ # image_path: str = None,
81
+ # prompt: str = None,
82
+ prompts: Tuple[str] = None,
83
+ eq_params: Dict = None,
84
+ save_name: str = None,
85
+ is_word_swap: bool = None,
86
+ blend_word: Tuple[str] = None,
87
+ cross_replace_steps: float = 0.2,
88
+ self_replace_steps: float = 0.5,
89
+ video_len: int = 8,
90
+ fast: bool = False,
91
+ mixed_precision_p2p: str = 'fp32',
92
  ):
93
  *_, config = inspect.getargvalues(inspect.currentframe())
94
 
 
381
 
382
  accelerator.end_training()
383
 
384
+ # Video-P2P
385
+ scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
386
+ MY_TOKEN = ''
387
+ LOW_RESOURCE = False
388
+ NUM_DDIM_STEPS = 50
389
+ GUIDANCE_SCALE = 7.5
390
+ MAX_NUM_WORDS = 77
391
+ device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
392
+
393
+ # need to adjust sometimes
394
+ mask_th = (.3, .3)
395
+
396
+
397
+ pretrained_model_path = output_dir
398
+ image_path = train_data['video_path']
399
+ prompt = train_data['prompt']
400
+ # prompts = [prompt, ]
401
+ output_folder = os.path.join(pretrained_model_path, 'results')
402
+ if fast:
403
+ save_name_1 = os.path.join(output_folder, 'inversion_fast.gif')
404
+ save_name_2 = os.path.join(output_folder, '{}_fast.gif'.format(save_name))
405
+ else:
406
+ save_name_1 = os.path.join(output_folder, 'inversion.gif')
407
+ save_name_2 = os.path.join(output_folder, '{}.gif'.format(save_name))
408
+ if blend_word:
409
+ blend_word = (((blend_word[0],), (blend_word[1],)))
410
+ eq_params = dict(eq_params)
411
+ prompts = list(prompts)
412
+ cross_replace_steps = {'default_': cross_replace_steps,}
413
+
414
+ weight_dtype = torch.float32
415
+ if mixed_precision_p2p == "fp16":
416
+ weight_dtype = torch.float16
417
+ elif mixed_precision_p2p == "bf16":
418
+ weight_dtype = torch.bfloat16
419
+
420
+ if not os.path.exists(output_folder):
421
+ os.makedirs(output_folder)
422
+
423
+ # Load the tokenizer
424
+ tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
425
+ # Load models and create wrapper for stable diffusion
426
+ text_encoder = CLIPTextModel.from_pretrained(
427
+ pretrained_model_path,
428
+ subfolder="text_encoder",
429
+ ).to(device, dtype=weight_dtype)
430
+ vae = AutoencoderKL.from_pretrained(
431
+ pretrained_model_path,
432
+ subfolder="vae",
433
+ ).to(device, dtype=weight_dtype)
434
+ unet = UNet3DConditionModel.from_pretrained(
435
+ pretrained_model_path, subfolder="unet"
436
+ ).to(device)
437
+ ldm_stable = TuneAVideoPipeline(
438
+ vae=vae,
439
+ text_encoder=text_encoder,
440
+ tokenizer=tokenizer,
441
+ unet=unet,
442
+ scheduler=scheduler,
443
+ ).to(device)
444
+
445
+ try:
446
+ ldm_stable.disable_xformers_memory_efficient_attention()
447
+ except AttributeError:
448
+ print("Attribute disable_xformers_memory_efficient_attention() is missing")
449
+ tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
450
+ # A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).
451
+
452
+ class LocalBlend:
453
+
454
+ def get_mask(self, maps, alpha, use_pool):
455
+ k = 1
456
+ maps = (maps * alpha).sum(-1).mean(2)
457
+ if use_pool:
458
+ maps = F.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
459
+ mask = F.interpolate(maps, size=(x_t.shape[3:]))
460
+ mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
461
+ mask = mask.gt(self.th[1-int(use_pool)])
462
+ mask = mask[:1] + mask
463
+ return mask
464
+
465
+ def __call__(self, x_t, attention_store, step):
466
+ self.counter += 1
467
+ if self.counter > self.start_blend:
468
+ maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
469
+ maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps]
470
+ maps = torch.cat(maps, dim=2)
471
+ mask = self.get_mask(maps, self.alpha_layers, True)
472
+ if self.substruct_layers is not None:
473
+ maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
474
+ mask = mask * maps_sub
475
+ mask = mask.float()
476
+ mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1])
477
+ x_t = x_t[:1] + mask * (x_t - x_t[:1])
478
+ return x_t
479
+
480
+ def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
481
+ alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
482
+ for i, (prompt, words_) in enumerate(zip(prompts, words)):
483
+ if type(words_) is str:
484
+ words_ = [words_]
485
+ for word in words_:
486
+ ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
487
+ alpha_layers[i, :, :, :, :, ind] = 1
488
+
489
+ if substruct_words is not None:
490
+ substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
491
+ for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
492
+ if type(words_) is str:
493
+ words_ = [words_]
494
+ for word in words_:
495
+ ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
496
+ substruct_layers[i, :, :, :, :, ind] = 1
497
+ self.substruct_layers = substruct_layers.to(device)
498
+ else:
499
+ self.substruct_layers = None
500
+ self.alpha_layers = alpha_layers.to(device)
501
+ self.start_blend = int(start_blend * NUM_DDIM_STEPS)
502
+ self.counter = 0
503
+ self.th=th
504
+
505
+
506
+ class EmptyControl:
507
+
508
+
509
+ def step_callback(self, x_t):
510
+ return x_t
511
+
512
+ def between_steps(self):
513
+ return
514
+
515
+ def __call__(self, attn, is_cross: bool, place_in_unet: str):
516
+ return attn
517
+
518
+
519
+ class AttentionControl(abc.ABC):
520
+
521
+ def step_callback(self, x_t):
522
+ return x_t
523
+
524
+ def between_steps(self):
525
+ return
526
+
527
+ @property
528
+ def num_uncond_att_layers(self):
529
+ return self.num_att_layers if LOW_RESOURCE else 0
530
+
531
+ @abc.abstractmethod
532
+ def forward (self, attn, is_cross: bool, place_in_unet: str):
533
+ raise NotImplementedError
534
+
535
+ def __call__(self, attn, is_cross: bool, place_in_unet: str):
536
+ if self.cur_att_layer >= self.num_uncond_att_layers:
537
+ if LOW_RESOURCE:
538
+ attn = self.forward(attn, is_cross, place_in_unet)
539
+ else:
540
+ h = attn.shape[0]
541
+ attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
542
+ self.cur_att_layer += 1
543
+ if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
544
+ self.cur_att_layer = 0
545
+ self.cur_step += 1
546
+ self.between_steps()
547
+ return attn
548
+
549
+ def reset(self):
550
+ self.cur_step = 0
551
+ self.cur_att_layer = 0
552
+
553
+ def __init__(self):
554
+ self.cur_step = 0
555
+ self.num_att_layers = -1
556
+ self.cur_att_layer = 0
557
+
558
+ class SpatialReplace(EmptyControl):
559
+
560
+ def step_callback(self, x_t):
561
+ if self.cur_step < self.stop_inject:
562
+ b = x_t.shape[0]
563
+ x_t = x_t[:1].expand(b, *x_t.shape[1:])
564
+ return x_t
565
+
566
+ def __init__(self, stop_inject: float):
567
+ super(SpatialReplace, self).__init__()
568
+ self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
569
+
570
+
571
+ class AttentionStore(AttentionControl):
572
+
573
+ @staticmethod
574
+ def get_empty_store():
575
+ return {"down_cross": [], "mid_cross": [], "up_cross": [],
576
+ "down_self": [], "mid_self": [], "up_self": []}
577
+
578
+ def forward(self, attn, is_cross: bool, place_in_unet: str):
579
+ key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
580
+ if attn.shape[1] <= 32 ** 2:
581
+ self.step_store[key].append(attn)
582
+ return attn
583
+
584
+ def between_steps(self):
585
+ if len(self.attention_store) == 0:
586
+ self.attention_store = self.step_store
587
+ else:
588
+ for key in self.attention_store:
589
+ for i in range(len(self.attention_store[key])):
590
+ self.attention_store[key][i] += self.step_store[key][i]
591
+ self.step_store = self.get_empty_store()
592
+
593
+ def get_average_attention(self):
594
+ average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
595
+ return average_attention
596
+
597
+
598
+ def reset(self):
599
+ super(AttentionStore, self).reset()
600
+ self.step_store = self.get_empty_store()
601
+ self.attention_store = {}
602
+
603
+ def __init__(self):
604
+ super(AttentionStore, self).__init__()
605
+ self.step_store = self.get_empty_store()
606
+ self.attention_store = {}
607
+
608
+
609
+ class AttentionControlEdit(AttentionStore, abc.ABC):
610
+
611
+ def step_callback(self, x_t):
612
+ if self.local_blend is not None:
613
+ x_t = self.local_blend(x_t, self.attention_store, self.cur_step)
614
+ return x_t
615
+
616
+ def replace_self_attention(self, attn_base, att_replace, place_in_unet):
617
+ if att_replace.shape[2] <= 32 ** 2:
618
+ attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
619
+ return attn_base
620
+ else:
621
+ return att_replace
622
+
623
+ @abc.abstractmethod
624
+ def replace_cross_attention(self, attn_base, att_replace):
625
+ raise NotImplementedError
626
+
627
+ def forward(self, attn, is_cross: bool, place_in_unet: str):
628
+ super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
629
+ if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
630
+ h = attn.shape[0] // (self.batch_size)
631
+ attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
632
+ attn_base, attn_repalce = attn[0], attn[1:]
633
+ if is_cross:
634
+ alpha_words = self.cross_replace_alpha[self.cur_step]
635
+ attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
636
+ attn[1:] = attn_repalce_new
637
+ else:
638
+ attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
639
+ attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
640
+ return attn
641
+
642
+ def __init__(self, prompts, num_steps: int,
643
+ cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
644
+ self_replace_steps: Union[float, Tuple[float, float]],
645
+ local_blend: Optional[LocalBlend]):
646
+ super(AttentionControlEdit, self).__init__()
647
+ self.batch_size = len(prompts)
648
+ self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
649
+ if type(self_replace_steps) is float:
650
+ self_replace_steps = 0, self_replace_steps
651
+ self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
652
+ self.local_blend = local_blend
653
+
654
+ class AttentionReplace(AttentionControlEdit):
655
+
656
+ def replace_cross_attention(self, attn_base, att_replace):
657
+ return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
658
+
659
+ def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
660
+ local_blend: Optional[LocalBlend] = None):
661
+ super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
662
+ self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
663
+
664
+
665
+ class AttentionRefine(AttentionControlEdit):
666
+
667
+ def replace_cross_attention(self, attn_base, att_replace):
668
+ attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
669
+ attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
670
+ return attn_replace
671
+
672
+ def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
673
+ local_blend: Optional[LocalBlend] = None):
674
+ super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
675
+ self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
676
+ self.mapper, alphas = self.mapper.to(device), alphas.to(device)
677
+ self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
678
+
679
+
680
+ class AttentionReweight(AttentionControlEdit):
681
+
682
+ def replace_cross_attention(self, attn_base, att_replace):
683
+ if self.prev_controller is not None:
684
+ attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
685
+ attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
686
+ return attn_replace
687
+
688
+ def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
689
+ local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
690
+ super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
691
+ self.equalizer = equalizer.to(device)
692
+ self.prev_controller = controller
693
+
694
+
695
+ def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
696
+ Tuple[float, ...]]):
697
+ if type(word_select) is int or type(word_select) is str:
698
+ word_select = (word_select,)
699
+ equalizer = torch.ones(1, 77)
700
+
701
+ for word, val in zip(word_select, values):
702
+ inds = ptp_utils.get_word_inds(text, word, tokenizer)
703
+ equalizer[:, inds] = val
704
+ return equalizer
705
+
706
+ def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
707
+ out = []
708
+ attention_maps = attention_store.get_average_attention()
709
+ num_pixels = res ** 2
710
+ for location in from_where:
711
+ for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
712
+ if item.shape[1] == num_pixels:
713
+ cross_maps = item.reshape(8, 8, res, res, item.shape[-1])
714
+ out.append(cross_maps)
715
+ out = torch.cat(out, dim=1)
716
+ out = out.sum(1) / out.shape[1]
717
+ return out.cpu()
718
+
719
+
720
+ def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit:
721
+ if blend_words is None:
722
+ lb = None
723
+ else:
724
+ lb = LocalBlend(prompts, blend_word, th=mask_th)
725
+ if is_replace_controller:
726
+ controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
727
+ else:
728
+ controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
729
+ if equilizer_params is not None:
730
+ eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
731
+ controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
732
+ self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
733
+ return controller
734
+
735
+
736
+ def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1):
737
+ vr = decord.VideoReader(image_path, width=512, height=512)
738
+ sample_index = list(range(0, len(vr), sampling_rate))[:n_sample_frame]
739
+ video = vr.get_batch(sample_index)
740
+ return video.numpy()
741
+
742
+
743
+ class NullInversion:
744
+
745
+ def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
746
+ prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
747
+ alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
748
+ alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
749
+ beta_prod_t = 1 - alpha_prod_t
750
+ pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
751
+ pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
752
+ prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
753
+ return prev_sample
754
+
755
+ def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
756
+ timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
757
+ alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
758
+ alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
759
+ beta_prod_t = 1 - alpha_prod_t
760
+ next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
761
+ next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
762
+ next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
763
+ return next_sample
764
+
765
+ def get_noise_pred_single(self, latents, t, context):
766
+ noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
767
+ return noise_pred
768
+
769
+ def get_noise_pred(self, latents, t, is_forward=True, context=None):
770
+ latents_input = torch.cat([latents] * 2)
771
+ if context is None:
772
+ context = self.context
773
+ guidance_scale = 1 if is_forward else GUIDANCE_SCALE
774
+ noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
775
+ noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
776
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
777
+ if is_forward:
778
+ latents = self.next_step(noise_pred, t, latents)
779
+ else:
780
+ latents = self.prev_step(noise_pred, t, latents)
781
+ return latents
782
+
783
+ @torch.no_grad()
784
+ def latent2image(self, latents, return_type='np'):
785
+ latents = 1 / 0.18215 * latents.detach()
786
+ image = self.model.vae.decode(latents)['sample']
787
+ if return_type == 'np':
788
+ image = (image / 2 + 0.5).clamp(0, 1)
789
+ image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
790
+ image = (image * 255).astype(np.uint8)
791
+ return image
792
+
793
+ @torch.no_grad()
794
+ def latent2image_video(self, latents, return_type='np'):
795
+ latents = 1 / 0.18215 * latents.detach()
796
+ latents = latents[0].permute(1, 0, 2, 3)
797
+ image = self.model.vae.decode(latents)['sample']
798
+ if return_type == 'np':
799
+ image = (image / 2 + 0.5).clamp(0, 1)
800
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
801
+ image = (image * 255).astype(np.uint8)
802
+ return image
803
+
804
+ @torch.no_grad()
805
+ def image2latent(self, image):
806
+ with torch.no_grad():
807
+ if type(image) is Image:
808
+ image = np.array(image)
809
+ if type(image) is torch.Tensor and image.dim() == 4:
810
+ latents = image
811
+ else:
812
+ image = torch.from_numpy(image).float() / 127.5 - 1
813
+ image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype=weight_dtype)
814
+ latents = self.model.vae.encode(image)['latent_dist'].mean
815
+ latents = latents * 0.18215
816
+ return latents
817
+
818
+ @torch.no_grad()
819
+ def image2latent_video(self, image):
820
+ with torch.no_grad():
821
+ image = torch.from_numpy(image).float() / 127.5 - 1
822
+ image = image.permute(0, 3, 1, 2).to(device).to(device, dtype=weight_dtype)
823
+ latents = self.model.vae.encode(image)['latent_dist'].mean
824
+ latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1)
825
+ latents = latents * 0.18215
826
+ return latents
827
+
828
+ @torch.no_grad()
829
+ def init_prompt(self, prompt: str):
830
+ uncond_input = self.model.tokenizer(
831
+ [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
832
+ return_tensors="pt"
833
+ )
834
+ uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
835
+ text_input = self.model.tokenizer(
836
+ [prompt],
837
+ padding="max_length",
838
+ max_length=self.model.tokenizer.model_max_length,
839
+ truncation=True,
840
+ return_tensors="pt",
841
+ )
842
+ text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
843
+ self.context = torch.cat([uncond_embeddings, text_embeddings])
844
+ self.prompt = prompt
845
+
846
+ @torch.no_grad()
847
+ def ddim_loop(self, latent):
848
+ uncond_embeddings, cond_embeddings = self.context.chunk(2)
849
+ all_latent = [latent]
850
+ latent = latent.clone().detach()
851
+ for i in range(NUM_DDIM_STEPS):
852
+ t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
853
+ noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings)
854
+ latent = self.next_step(noise_pred, t, latent)
855
+ all_latent.append(latent)
856
+ return all_latent
857
+
858
+ @property
859
+ def scheduler(self):
860
+ return self.model.scheduler
861
+
862
+ @torch.no_grad()
863
+ def ddim_inversion(self, image):
864
+ latent = self.image2latent_video(image)
865
+ image_rec = self.latent2image_video(latent)
866
+ ddim_latents = self.ddim_loop(latent)
867
+ return image_rec, ddim_latents
868
+
869
+ def null_optimization(self, latents, num_inner_steps, epsilon):
870
+ uncond_embeddings, cond_embeddings = self.context.chunk(2)
871
+ uncond_embeddings_list = []
872
+ latent_cur = latents[-1]
873
+ # bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
874
+ for i in range(NUM_DDIM_STEPS):
875
+ uncond_embeddings = uncond_embeddings.clone().detach()
876
+ uncond_embeddings.requires_grad = True
877
+ optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
878
+ latent_prev = latents[len(latents) - i - 2]
879
+ t = self.model.scheduler.timesteps[i]
880
+ with torch.no_grad():
881
+ noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
882
+ for j in range(num_inner_steps):
883
+ noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
884
+ noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
885
+ latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
886
+ loss = F.mse_loss(latents_prev_rec, latent_prev)
887
+ optimizer.zero_grad()
888
+ loss.backward()
889
+ optimizer.step()
890
+ loss_item = loss.item()
891
+ # bar.update()
892
+ if loss_item < epsilon + i * 2e-5:
893
+ break
894
+ # for j in range(j + 1, num_inner_steps):
895
+ # bar.update()
896
+ uncond_embeddings_list.append(uncond_embeddings[:1].detach())
897
+ with torch.no_grad():
898
+ context = torch.cat([uncond_embeddings, cond_embeddings])
899
+ latent_cur = self.get_noise_pred(latent_cur, t, False, context)
900
+ # bar.close()
901
+ return uncond_embeddings_list
902
+
903
+ def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
904
+ self.init_prompt(prompt)
905
+ ptp_utils.register_attention_control(self.model, None)
906
+ image_gt = load_512_seq(image_path, *offsets)
907
+ if verbose:
908
+ print("DDIM inversion...")
909
+ image_rec, ddim_latents = self.ddim_inversion(image_gt)
910
+ if verbose:
911
+ print("Null-text optimization...")
912
+ uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)
913
+ return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings
914
+
915
+ def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
916
+ self.init_prompt(prompt)
917
+ ptp_utils.register_attention_control(self.model, None)
918
+ image_gt = load_512_seq(image_path, *offsets)
919
+ if verbose:
920
+ print("DDIM inversion...")
921
+ image_rec, ddim_latents = self.ddim_inversion(image_gt)
922
+ if verbose:
923
+ print("Null-text optimization...")
924
+ return (image_gt, image_rec), ddim_latents[-1], None
925
+
926
+ def __init__(self, model):
927
+ scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
928
+ set_alpha_to_one=False)
929
+ self.model = model
930
+ self.tokenizer = self.model.tokenizer
931
+ self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
932
+ self.prompt = None
933
+ self.context = None
934
+
935
+ null_inversion = NullInversion(ldm_stable)
936
+
937
+ ###############
938
+ # Custom APIs:
939
+
940
+ ldm_stable.enable_xformers_memory_efficient_attention()
941
+
942
+ if fast:
943
+ (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert_(image_path, prompt, offsets=(0,0,0,0), verbose=True)
944
+ else:
945
+ (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, prompt, offsets=(0,0,0,0), verbose=True)
946
+
947
+ ##### load uncond #####
948
+ # uncond_embeddings_load = np.load(uncond_embeddings_path)
949
+ # uncond_embeddings = []
950
+ # for i in range(uncond_embeddings_load.shape[0]):
951
+ # uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device))
952
+ #######################
953
+
954
+ ##### save uncond #####
955
+ # uncond_embeddings = torch.cat(uncond_embeddings)
956
+ # uncond_embeddings = uncond_embeddings.cpu().numpy()
957
+ #######################
958
+
959
+ print("Start Video-P2P!")
960
+ controller = make_controller(prompts, is_word_swap, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th)
961
+ ptp_utils.register_attention_control(ldm_stable, controller)
962
+ generator = torch.Generator(device=device)
963
+ with torch.no_grad():
964
+ sequence = ldm_stable(
965
+ prompts,
966
+ generator=generator,
967
+ latents=x_t,
968
+ uncond_embeddings_pre=uncond_embeddings,
969
+ controller = controller,
970
+ video_length=video_len,
971
+ fast=fast,
972
+ ).videos
973
+ sequence1 = rearrange(sequence[0], "c t h w -> t h w c")
974
+ sequence2 = rearrange(sequence[1], "c t h w -> t h w c")
975
+ inversion = []
976
+ videop2p = []
977
+ for i in range(sequence1.shape[0]):
978
+ inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) )
979
+ videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) )
980
+
981
+ inversion[0].save(save_name_1, save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250)
982
+ videop2p[0].save(save_name_2, save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250)
983
+
984
 
985
  if __name__ == "__main__":
986
  parser = argparse.ArgumentParser()
987
  parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
988
+ parser.add_argument("--fast", action='store_true')
989
  args = parser.parse_args()
990
 
991
+ main(**OmegaConf.load(args.config), fast=args.fast)
app_training.py CHANGED
@@ -23,7 +23,7 @@ def create_training_demo(trainer: Trainer,
23
  training_prompt = gr.Textbox(
24
  label='Training prompt',
25
  max_lines=1,
26
- placeholder='A man is surfing')
27
  gr.Markdown('''
28
  - Upload a video and write a `Training Prompt` that describes the video.
29
  ''')
@@ -80,12 +80,28 @@ def create_training_demo(trainer: Trainer,
80
  with gr.Column():
81
  gr.Markdown('Output Model')
82
  output_model_name = gr.Text(label='Name of your model',
83
- placeholder='The surfer man',
84
  max_lines=1)
85
  validation_prompt = gr.Text(
86
  label='Validation Prompt',
87
  placeholder=
88
- 'prompt to test the model, e.g: a dog is surfing')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  with gr.Column():
90
  gr.Markdown('Upload Settings')
91
  with gr.Row():
@@ -122,7 +138,7 @@ def create_training_demo(trainer: Trainer,
122
  gradient_accumulation, seed, fp16, use_8bit_adam,
123
  checkpointing_steps, validation_epochs, upload_to_hub,
124
  use_private_repo, delete_existing_repo, upload_to,
125
- remove_gpu_after_training, input_token
126
  ],
127
  outputs=output_message)
128
  return demo
 
23
  training_prompt = gr.Textbox(
24
  label='Training prompt',
25
  max_lines=1,
26
+ placeholder='A man is skiing')
27
  gr.Markdown('''
28
  - Upload a video and write a `Training Prompt` that describes the video.
29
  ''')
 
80
  with gr.Column():
81
  gr.Markdown('Output Model')
82
  output_model_name = gr.Text(label='Name of your model',
83
+ placeholder='The skiing man',
84
  max_lines=1)
85
  validation_prompt = gr.Text(
86
  label='Validation Prompt',
87
  placeholder=
88
+ 'prompt to test the model, e.g: a Iron-man is surfing')
89
+ blend_word_1 = gr.Text(
90
+ label='blend_word(input)',
91
+ placeholder=
92
+ 'man')
93
+ blend_word_2 = gr.Text(
94
+ label='blend_word(output)',
95
+ placeholder=
96
+ 'Iron-Man')
97
+ eq_params_1 = gr.Text(
98
+ label='reweight_word',
99
+ placeholder=
100
+ 'Iron-Man')
101
+ eq_params_2 = gr.Text(
102
+ label='reweight_value',
103
+ placeholder=
104
+ '4')
105
  with gr.Column():
106
  gr.Markdown('Upload Settings')
107
  with gr.Row():
 
138
  gradient_accumulation, seed, fp16, use_8bit_adam,
139
  checkpointing_steps, validation_epochs, upload_to_hub,
140
  use_private_repo, delete_existing_repo, upload_to,
141
+ remove_gpu_after_training, input_token, blend_word_1, blend_word_2, eq_params_1, eq_params_2
142
  ],
143
  outputs=output_message)
144
  return demo
trainer.py CHANGED
@@ -73,6 +73,10 @@ class Trainer:
73
  upload_to: str,
74
  remove_gpu_after_training: bool,
75
  input_token: str,
 
 
 
 
76
  ) -> str:
77
  # if SPACE_ID == ORIGINAL_SPACE_ID:
78
  # raise gr.Error(
@@ -91,7 +95,7 @@ class Trainer:
91
 
92
  if not output_model_name:
93
  timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
94
- output_model_name = f'tune-a-video-{timestamp}'
95
  output_model_name = slugify.slugify(output_model_name)
96
 
97
  repo_dir = pathlib.Path(__file__).parent
@@ -104,9 +108,7 @@ class Trainer:
104
  self.join_model_library_org(
105
  self.hf_token if self.hf_token else input_token)
106
 
107
- # config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
108
- config = OmegaConf.load('Video-P2P/configs/man-surfing-tune.yaml')
109
- # config = OmegaConf.load('Tune-A-Video-debug/configs/man-surfing.yaml')
110
  config.pretrained_model_path = self.download_base_model(base_model)
111
  config.output_dir = output_dir.as_posix()
112
  config.train_data.video_path = training_video.name # type: ignore
@@ -131,15 +133,15 @@ class Trainer:
131
  config.seed = seed
132
  config.mixed_precision = 'fp16' if fp16 else ''
133
  config.use_8bit_adam = use_8bit_adam
 
 
 
134
 
135
  config_path = output_dir / 'config.yaml'
136
  with open(config_path, 'w') as f:
137
  OmegaConf.save(config, f)
138
 
139
- # command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
140
- command = f'accelerate launch Video-P2P/run_tuning.py --config {config_path}'
141
- # command = f'accelerate launch Video-P2P/train_tuneavideo.py --config {config_path}'
142
- # command = f'accelerate launch Tune-A-Video-debug/train_tuneavideo.py --config {config_path}'
143
  subprocess.run(shlex.split(command))
144
  save_model_card(save_dir=output_dir,
145
  base_model=base_model,
 
73
  upload_to: str,
74
  remove_gpu_after_training: bool,
75
  input_token: str,
76
+ blend_word_1: str,
77
+ blend_word_2: str,
78
+ eq_params_1: str,
79
+ eq_params_2: str,
80
  ) -> str:
81
  # if SPACE_ID == ORIGINAL_SPACE_ID:
82
  # raise gr.Error(
 
95
 
96
  if not output_model_name:
97
  timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
98
+ output_model_name = f'video-p2p-{timestamp}'
99
  output_model_name = slugify.slugify(output_model_name)
100
 
101
  repo_dir = pathlib.Path(__file__).parent
 
108
  self.join_model_library_org(
109
  self.hf_token if self.hf_token else input_token)
110
 
111
+ config = OmegaConf.load('Video-P2P/configs/man-skiing.yaml')
 
 
112
  config.pretrained_model_path = self.download_base_model(base_model)
113
  config.output_dir = output_dir.as_posix()
114
  config.train_data.video_path = training_video.name # type: ignore
 
133
  config.seed = seed
134
  config.mixed_precision = 'fp16' if fp16 else ''
135
  config.use_8bit_adam = use_8bit_adam
136
+ config.prompts = [training_prompt, validation_prompt]
137
+ config.blend_word = [blend_word_1, blend_word_2]
138
+ config.eq_params = {"words":eq_params_1, "values":int(eq_params_2)}
139
 
140
  config_path = output_dir / 'config.yaml'
141
  with open(config_path, 'w') as f:
142
  OmegaConf.save(config, f)
143
 
144
+ command = f'accelerate launch Video-P2P/run.py --config {config_path} --fast'
 
 
 
145
  subprocess.run(shlex.split(command))
146
  save_model_card(save_dir=output_dir,
147
  base_model=base_model,