File size: 6,122 Bytes
58f1b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np

import cv2

from insightface.utils import face_align
from insightface import model_zoo
from dofaker.utils import download_file, get_model_url


class GFPGAN:

    def __init__(self, name='gfpgan', root='weights/models') -> None:
        _, model_file = download_file(get_model_url(name),
                                      save_dir=root,
                                      overwrite=False)
        providers = model_zoo.model_zoo.get_default_providers()
        self.session = model_zoo.model_zoo.PickableInferenceSession(
            model_file, providers=providers)

        self.input_mean = 127.5
        self.input_std = 127.5
        inputs = self.session.get_inputs()
        self.input_names = []
        for inp in inputs:
            self.input_names.append(inp.name)
        outputs = self.session.get_outputs()
        output_names = []
        for out in outputs:
            output_names.append(out.name)
        self.output_names = output_names
        assert len(
            self.output_names
        ) == 1, "The output number of GFPGAN model should be 1, but got {}, please check your model.".format(
            len(self.output_names))
        output_shape = outputs[0].shape
        input_cfg = inputs[0]
        input_shape = input_cfg.shape
        self.input_shape = input_shape
        print('face_enhance-shape:', self.input_shape)
        self.input_size = tuple(input_shape[2:4][::-1])

    def forward(self, image, image_format='bgr'):
        if isinstance(image, str):
            image = cv2.imread(image, 1)
        elif isinstance(image, np.ndarray):
            if image_format == 'bgr':
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            elif image_format == 'rgb':
                pass
            else:
                raise UserWarning(
                    "gfpgan not support image format {}".format(image_format))
        else:
            raise UserWarning(
                "gfpgan input must be str or np.ndarray, but got {}.".format(
                    type(image)))
        img = (image - self.input_mean) / self.input_std
        pred = self.session.run(self.output_names,
                                {self.input_names[0]: img})[0]
        return pred

    def _get(self, img, image_format='bgr'):
        if image_format.lower() == 'bgr':
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        elif image_format.lower() == 'rgb':
            pass
        else:
            raise UserWarning(
                "gfpgan not support image format {}".format(image_format))
        h, w, c = img.shape
        img = cv2.resize(img, (self.input_shape[-1], self.input_shape[-2]))
        blob = cv2.dnn.blobFromImage(
            img,
            1.0 / self.input_std,
            self.input_size,
            (self.input_mean, self.input_mean, self.input_mean),
            swapRB=False)
        pred = self.session.run(self.output_names,
                                {self.input_names[0]: blob})[0]
        image_aug = pred.transpose((0, 2, 3, 1))[0]
        rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0,
                          255).astype(np.uint8)
        rgb_aug = cv2.resize(rgb_aug, (w, h))
        bgr_image = rgb_aug[:, :, ::-1]
        return bgr_image

    def get(self, img, target_face, paste_back=True, image_format='bgr'):
        aimg, M = face_align.norm_crop2(img, target_face.kps,
                                        self.input_size[0])
        bgr_fake = self._get(aimg, image_format='bgr')
        if not paste_back:
            return bgr_fake, M
        else:
            target_img = img
            fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
            fake_diff = np.abs(fake_diff).mean(axis=2)
            fake_diff[:2, :] = 0
            fake_diff[-2:, :] = 0
            fake_diff[:, :2] = 0
            fake_diff[:, -2:] = 0
            IM = cv2.invertAffineTransform(M)
            img_white = np.full((aimg.shape[0], aimg.shape[1]),
                                255,
                                dtype=np.float32)
            bgr_fake = cv2.warpAffine(
                bgr_fake,
                IM, (target_img.shape[1], target_img.shape[0]),
                borderValue=0.0)
            img_white = cv2.warpAffine(
                img_white,
                IM, (target_img.shape[1], target_img.shape[0]),
                borderValue=0.0)
            fake_diff = cv2.warpAffine(
                fake_diff,
                IM, (target_img.shape[1], target_img.shape[0]),
                borderValue=0.0)
            img_white[img_white > 20] = 255
            fthresh = 10
            fake_diff[fake_diff < fthresh] = 0
            fake_diff[fake_diff >= fthresh] = 255
            img_mask = img_white
            mask_h_inds, mask_w_inds = np.where(img_mask == 255)
            mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
            mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
            mask_size = int(np.sqrt(mask_h * mask_w))
            k = max(mask_size // 10, 10)
            #k = max(mask_size//20, 6)
            #k = 6
            kernel = np.ones((k, k), np.uint8)
            img_mask = cv2.erode(img_mask, kernel, iterations=1)
            kernel = np.ones((2, 2), np.uint8)
            fake_diff = cv2.dilate(fake_diff, kernel, iterations=1)
            k = max(mask_size // 20, 5)
            kernel_size = (k, k)
            blur_size = tuple(2 * i + 1 for i in kernel_size)
            img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
            k = 5
            kernel_size = (k, k)
            blur_size = tuple(2 * i + 1 for i in kernel_size)
            fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
            img_mask /= 255
            fake_diff /= 255
            img_mask = np.reshape(img_mask,
                                  [img_mask.shape[0], img_mask.shape[1], 1])
            fake_merged = img_mask * bgr_fake + (
                1 - img_mask) * target_img.astype(np.float32)
            fake_merged = fake_merged.astype(np.uint8)
            return fake_merged