victorisgeek commited on
Commit
58f1b8f
·
verified ·
1 Parent(s): e937279

Upload 2 files

Browse files
dofaker/face_enhance/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .gfpgan import GFPGAN
dofaker/face_enhance/gfpgan.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ import cv2
4
+
5
+ from insightface.utils import face_align
6
+ from insightface import model_zoo
7
+ from dofaker.utils import download_file, get_model_url
8
+
9
+
10
+ class GFPGAN:
11
+
12
+ def __init__(self, name='gfpgan', root='weights/models') -> None:
13
+ _, model_file = download_file(get_model_url(name),
14
+ save_dir=root,
15
+ overwrite=False)
16
+ providers = model_zoo.model_zoo.get_default_providers()
17
+ self.session = model_zoo.model_zoo.PickableInferenceSession(
18
+ model_file, providers=providers)
19
+
20
+ self.input_mean = 127.5
21
+ self.input_std = 127.5
22
+ inputs = self.session.get_inputs()
23
+ self.input_names = []
24
+ for inp in inputs:
25
+ self.input_names.append(inp.name)
26
+ outputs = self.session.get_outputs()
27
+ output_names = []
28
+ for out in outputs:
29
+ output_names.append(out.name)
30
+ self.output_names = output_names
31
+ assert len(
32
+ self.output_names
33
+ ) == 1, "The output number of GFPGAN model should be 1, but got {}, please check your model.".format(
34
+ len(self.output_names))
35
+ output_shape = outputs[0].shape
36
+ input_cfg = inputs[0]
37
+ input_shape = input_cfg.shape
38
+ self.input_shape = input_shape
39
+ print('face_enhance-shape:', self.input_shape)
40
+ self.input_size = tuple(input_shape[2:4][::-1])
41
+
42
+ def forward(self, image, image_format='bgr'):
43
+ if isinstance(image, str):
44
+ image = cv2.imread(image, 1)
45
+ elif isinstance(image, np.ndarray):
46
+ if image_format == 'bgr':
47
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
48
+ elif image_format == 'rgb':
49
+ pass
50
+ else:
51
+ raise UserWarning(
52
+ "gfpgan not support image format {}".format(image_format))
53
+ else:
54
+ raise UserWarning(
55
+ "gfpgan input must be str or np.ndarray, but got {}.".format(
56
+ type(image)))
57
+ img = (image - self.input_mean) / self.input_std
58
+ pred = self.session.run(self.output_names,
59
+ {self.input_names[0]: img})[0]
60
+ return pred
61
+
62
+ def _get(self, img, image_format='bgr'):
63
+ if image_format.lower() == 'bgr':
64
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
65
+ elif image_format.lower() == 'rgb':
66
+ pass
67
+ else:
68
+ raise UserWarning(
69
+ "gfpgan not support image format {}".format(image_format))
70
+ h, w, c = img.shape
71
+ img = cv2.resize(img, (self.input_shape[-1], self.input_shape[-2]))
72
+ blob = cv2.dnn.blobFromImage(
73
+ img,
74
+ 1.0 / self.input_std,
75
+ self.input_size,
76
+ (self.input_mean, self.input_mean, self.input_mean),
77
+ swapRB=False)
78
+ pred = self.session.run(self.output_names,
79
+ {self.input_names[0]: blob})[0]
80
+ image_aug = pred.transpose((0, 2, 3, 1))[0]
81
+ rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0,
82
+ 255).astype(np.uint8)
83
+ rgb_aug = cv2.resize(rgb_aug, (w, h))
84
+ bgr_image = rgb_aug[:, :, ::-1]
85
+ return bgr_image
86
+
87
+ def get(self, img, target_face, paste_back=True, image_format='bgr'):
88
+ aimg, M = face_align.norm_crop2(img, target_face.kps,
89
+ self.input_size[0])
90
+ bgr_fake = self._get(aimg, image_format='bgr')
91
+ if not paste_back:
92
+ return bgr_fake, M
93
+ else:
94
+ target_img = img
95
+ fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
96
+ fake_diff = np.abs(fake_diff).mean(axis=2)
97
+ fake_diff[:2, :] = 0
98
+ fake_diff[-2:, :] = 0
99
+ fake_diff[:, :2] = 0
100
+ fake_diff[:, -2:] = 0
101
+ IM = cv2.invertAffineTransform(M)
102
+ img_white = np.full((aimg.shape[0], aimg.shape[1]),
103
+ 255,
104
+ dtype=np.float32)
105
+ bgr_fake = cv2.warpAffine(
106
+ bgr_fake,
107
+ IM, (target_img.shape[1], target_img.shape[0]),
108
+ borderValue=0.0)
109
+ img_white = cv2.warpAffine(
110
+ img_white,
111
+ IM, (target_img.shape[1], target_img.shape[0]),
112
+ borderValue=0.0)
113
+ fake_diff = cv2.warpAffine(
114
+ fake_diff,
115
+ IM, (target_img.shape[1], target_img.shape[0]),
116
+ borderValue=0.0)
117
+ img_white[img_white > 20] = 255
118
+ fthresh = 10
119
+ fake_diff[fake_diff < fthresh] = 0
120
+ fake_diff[fake_diff >= fthresh] = 255
121
+ img_mask = img_white
122
+ mask_h_inds, mask_w_inds = np.where(img_mask == 255)
123
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
124
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
125
+ mask_size = int(np.sqrt(mask_h * mask_w))
126
+ k = max(mask_size // 10, 10)
127
+ #k = max(mask_size//20, 6)
128
+ #k = 6
129
+ kernel = np.ones((k, k), np.uint8)
130
+ img_mask = cv2.erode(img_mask, kernel, iterations=1)
131
+ kernel = np.ones((2, 2), np.uint8)
132
+ fake_diff = cv2.dilate(fake_diff, kernel, iterations=1)
133
+ k = max(mask_size // 20, 5)
134
+ kernel_size = (k, k)
135
+ blur_size = tuple(2 * i + 1 for i in kernel_size)
136
+ img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
137
+ k = 5
138
+ kernel_size = (k, k)
139
+ blur_size = tuple(2 * i + 1 for i in kernel_size)
140
+ fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
141
+ img_mask /= 255
142
+ fake_diff /= 255
143
+ img_mask = np.reshape(img_mask,
144
+ [img_mask.shape[0], img_mask.shape[1], 1])
145
+ fake_merged = img_mask * bgr_fake + (
146
+ 1 - img_mask) * target_img.astype(np.float32)
147
+ fake_merged = fake_merged.astype(np.uint8)
148
+ return fake_merged