Spaces:
Running
on
T4
Running
on
T4
File size: 18,949 Bytes
2df1399 5624190 2df1399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
#!/usr/bin/env python3
import torch
from PIL import Image
import numpy as np
from typing import cast
import pprint
from pathlib import Path
import base64
from io import BytesIO
from typing import Union, Tuple
import matplotlib
import re
from colpali_engine.models import ColPali, ColPaliProcessor
from colpali_engine.utils.torch_utils import get_torch_device
from einops import rearrange
from vidore_benchmark.interpretability.plot_utils import plot_similarity_heatmap
from vidore_benchmark.interpretability.torch_utils import (
normalize_similarity_map_per_query_token,
)
from vidore_benchmark.interpretability.vit_configs import VIT_CONFIG
from vidore_benchmark.utils.image_utils import scale_image
from vespa.application import Vespa
from vespa.io import VespaQueryResponse
matplotlib.use("Agg")
MAX_QUERY_TERMS = 64
# OUTPUT_DIR = Path(__file__).parent.parent / "output" / "sim_maps"
# OUTPUT_DIR.mkdir(exist_ok=True)
COLPALI_GEMMA_MODEL_ID = "vidore--colpaligemma-3b-pt-448-base"
COLPALI_GEMMA_MODEL_SNAPSHOT = "12c59eb7e23bc4c26876f7be7c17760d5d3a1ffa"
COLPALI_GEMMA_MODEL_PATH = (
Path().home()
/ f".cache/huggingface/hub/models--{COLPALI_GEMMA_MODEL_ID}/snapshots/{COLPALI_GEMMA_MODEL_SNAPSHOT}"
)
COLPALI_MODEL_ID = "vidore--colpali-v1.2"
COLPALI_MODEL_SNAPSHOT = "9912ce6f8a462d8cf2269f5606eabbd2784e764f"
COLPALI_MODEL_PATH = (
Path().home()
/ f".cache/huggingface/hub/models--{COLPALI_MODEL_ID}/snapshots/{COLPALI_MODEL_SNAPSHOT}"
)
COLPALI_GEMMA_MODEL_NAME = COLPALI_GEMMA_MODEL_ID.replace("--", "/")
def load_model() -> Tuple[ColPali, ColPaliProcessor]:
model_name = "vidore/colpali-v1.2"
device = get_torch_device("auto")
print(f"Using device: {device}")
# Load the model
model = cast(
ColPali,
ColPali.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map=device,
),
).eval()
# Load the processor
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
return model, processor
def load_vit_config(model):
# Load the ViT config
print(f"VIT config: {VIT_CONFIG}")
vit_config = VIT_CONFIG[COLPALI_GEMMA_MODEL_NAME]
return vit_config
# Create dummy image
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
def gen_similarity_map(
model, processor, device, vit_config, query, image: Union[Path, str]
):
# Should take in the b64 image from Vespa query result
# And possibly the tensor representing the output_image
if isinstance(image, Path):
# image is a file path
try:
image = Image.open(image)
except Exception as e:
raise ValueError(f"Failed to open image from path: {e}")
elif isinstance(image, str):
# image is b64 string
try:
image = Image.open(BytesIO(base64.b64decode(image)))
except Exception as e:
raise ValueError(f"Failed to open image from b64: {e}")
# Preview the image
scale_image(image, 512)
# Preprocess inputs
input_text_processed = processor.process_queries([query]).to(device)
input_image_processed = processor.process_images([image]).to(device)
# Forward passes
with torch.no_grad():
output_text = model.forward(**input_text_processed)
output_image = model.forward(**input_image_processed)
# output_image is the tensor that we could get from the Vespa query
# Print shape of output_text and output_image
# Output image shape: torch.Size([1, 1030, 128])
# Remove the special tokens from the output
output_image = output_image[
:, : processor.image_seq_length, :
] # (1, n_patches_x * n_patches_y, dim)
# Rearrange the output image tensor to explicitly represent the 2D grid of patches
output_image = rearrange(
output_image,
"b (h w) c -> b h w c",
h=vit_config.n_patch_per_dim,
w=vit_config.n_patch_per_dim,
) # (1, n_patches_x, n_patches_y, dim)
# Get the similarity map
similarity_map = torch.einsum(
"bnk,bijk->bnij", output_text, output_image
) # (1, query_tokens, n_patches_x, n_patches_y)
# Normalize the similarity map
similarity_map_normalized = normalize_similarity_map_per_query_token(
similarity_map
) # (1, query_tokens, n_patches_x, n_patches_y)
# Use this cell output to choose a token using its index
query_tokens = processor.tokenizer.tokenize(
processor.decode(input_text_processed.input_ids[0])
)
# Choose a token
token_idx = (
10 # e.g. if "12: '▁Kazakhstan',", set 12 to choose the token 'Kazakhstan'
)
selected_token = processor.decode(input_text_processed.input_ids[0, token_idx])
# strip whitespace
selected_token = selected_token.strip()
print(f"Selected token: `{selected_token}`")
# Retrieve the similarity map for the chosen token
pprint.pprint({idx: val for idx, val in enumerate(query_tokens)})
# Resize the image to square
input_image_square = image.resize((vit_config.resolution, vit_config.resolution))
# Plot the similarity map
fig, ax = plot_similarity_heatmap(
input_image_square,
patch_size=vit_config.patch_size,
image_resolution=vit_config.resolution,
similarity_map=similarity_map_normalized[0, token_idx, :, :],
)
ax = annotate_plot(ax, selected_token)
return fig, ax
# def save_figure(fig, filename: str = "similarity_map.png"):
# fig.savefig(
# OUTPUT_DIR / filename,
# bbox_inches="tight",
# pad_inches=0,
# )
def annotate_plot(ax, query, selected_token):
# Add the query text
ax.set_title(query, fontsize=18)
# Add annotation with selected token
ax.annotate(
f"Selected token:`{selected_token}`",
xy=(0.5, 0.95),
xycoords="axes fraction",
ha="center",
va="center",
fontsize=18,
color="black",
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1),
)
return ax
def gen_similarity_map_new(
processor: ColPaliProcessor,
model: ColPali,
device,
vit_config,
query: str,
query_embs: torch.Tensor,
token_idx_map: dict,
token_to_show: str,
image: Union[Path, str],
):
if isinstance(image, Path):
# image is a file path
try:
image = Image.open(image)
except Exception as e:
raise ValueError(f"Failed to open image from path: {e}")
elif isinstance(image, str):
# image is b64 string
try:
image = Image.open(BytesIO(base64.b64decode(image)))
except Exception as e:
raise ValueError(f"Failed to open image from b64: {e}")
token_idx = token_idx_map[token_to_show]
print(f"Selected token: `{token_to_show}`")
# strip whitespace
# Preview the image
# scale_image(image, 512)
# Preprocess inputs
input_image_processed = processor.process_images([image]).to(device)
# Forward passes
with torch.no_grad():
output_image = model.forward(**input_image_processed)
# output_image is the tensor that we could get from the Vespa query
# Print shape of output_text and output_image
# Output image shape: torch.Size([1, 1030, 128])
# Remove the special tokens from the output
print(f"Output image shape before dim: {output_image.shape}")
output_image = output_image[
:, : processor.image_seq_length, :
] # (1, n_patches_x * n_patches_y, dim)
print(f"Output image shape after dim: {output_image.shape}")
# Rearrange the output image tensor to explicitly represent the 2D grid of patches
output_image = rearrange(
output_image,
"b (h w) c -> b h w c",
h=vit_config.n_patch_per_dim,
w=vit_config.n_patch_per_dim,
) # (1, n_patches_x, n_patches_y, dim)
# Get the similarity map
print(f"Query embs shape: {query_embs.shape}")
# Add 1 extra dim to start of query_embs
query_embs = query_embs.unsqueeze(0).to(device)
print(f"Output image shape: {output_image.shape}")
similarity_map = torch.einsum(
"bnk,bijk->bnij", query_embs, output_image
) # (1, query_tokens, n_patches_x, n_patches_y)
print(f"Similarity map shape: {similarity_map.shape}")
# Normalize the similarity map
similarity_map_normalized = normalize_similarity_map_per_query_token(
similarity_map
) # (1, query_tokens, n_patches_x, n_patches_y)
print(f"Similarity map normalized shape: {similarity_map_normalized.shape}")
# Use this cell output to choose a token using its index
input_image_square = image.resize((vit_config.resolution, vit_config.resolution))
# Plot the similarity map
fig, ax = plot_similarity_heatmap(
input_image_square,
patch_size=vit_config.patch_size,
image_resolution=vit_config.resolution,
similarity_map=similarity_map_normalized[0, token_idx, :, :],
)
ax = annotate_plot(ax, query, token_to_show)
# save the figure
# save_figure(fig, f"similarity_map_{token_to_show}.png")
return fig, ax
def get_query_embeddings_and_token_map(
processor, model, query, image
) -> Tuple[torch.Tensor, dict]:
inputs = processor.process_queries([query]).to(model.device)
with torch.no_grad():
embeddings_query = model(**inputs)
q_emb = embeddings_query.to("cpu")[0] # Extract the single embedding
# Use this cell output to choose a token using its index
query_tokens = processor.tokenizer.tokenize(processor.decode(inputs.input_ids[0]))
# reverse key, values in dictionary
print(query_tokens)
token_to_idx = {val: idx for idx, val in enumerate(query_tokens)}
return q_emb, token_to_idx
def format_query_results(query, response, hits=5) -> dict:
query_time = response.json.get("timing", {}).get("searchtime", -1)
query_time = round(query_time, 2)
count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"
print(result_text)
return response.json
async def query_vespa_default(
app: Vespa,
query: str,
q_emb: torch.Tensor,
hits: int = 3,
timeout: str = "10s",
**kwargs,
) -> dict:
async with app.asyncio(connections=1, total_timeout=120) as session:
query_embedding = format_q_embs(q_emb)
response: VespaQueryResponse = await session.query(
body={
"yql": "select id,title,url,image,page_number,text from pdf_page where userQuery();",
"ranking": "default",
"query": query,
"timeout": timeout,
"hits": hits,
"input.query(qt)": query_embedding,
"presentation.timing": True,
**kwargs,
},
)
assert response.is_successful(), response.json
return format_query_results(query, response)
def float_to_binary_embedding(float_query_embedding: dict) -> dict:
binary_query_embeddings = {}
for k, v in float_query_embedding.items():
binary_vector = (
np.packbits(np.where(np.array(v) > 0, 1, 0)).astype(np.int8).tolist()
)
binary_query_embeddings[k] = binary_vector
if len(binary_query_embeddings) >= MAX_QUERY_TERMS:
print(f"Warning: Query has more than {MAX_QUERY_TERMS} terms. Truncating.")
break
return binary_query_embeddings
def create_nn_query_strings(
binary_query_embeddings: dict, target_hits_per_query_tensor: int = 20
) -> Tuple[str, dict]:
# Query tensors for nearest neighbor calculations
nn_query_dict = {}
for i in range(len(binary_query_embeddings)):
nn_query_dict[f"input.query(rq{i})"] = binary_query_embeddings[i]
nn = " OR ".join(
[
f"({{targetHits:{target_hits_per_query_tensor}}}nearestNeighbor(embedding,rq{i}))"
for i in range(len(binary_query_embeddings))
]
)
return nn, nn_query_dict
def format_q_embs(q_embs: torch.Tensor) -> dict:
float_query_embedding = {k: v.tolist() for k, v in enumerate(q_embs)}
return float_query_embedding
async def query_vespa_nearest_neighbor(
app: Vespa,
query: str,
q_emb: torch.Tensor,
target_hits_per_query_tensor: int = 20,
hits: int = 3,
timeout: str = "10s",
**kwargs,
) -> dict:
# Hyperparameter for speed vs. accuracy
async with app.asyncio(connections=1, total_timeout=180) as session:
float_query_embedding = format_q_embs(q_emb)
binary_query_embeddings = float_to_binary_embedding(float_query_embedding)
# Mixed tensors for MaxSim calculations
query_tensors = {
"input.query(qtb)": binary_query_embeddings,
"input.query(qt)": float_query_embedding,
}
nn_string, nn_query_dict = create_nn_query_strings(
binary_query_embeddings, target_hits_per_query_tensor
)
query_tensors.update(nn_query_dict)
response: VespaQueryResponse = await session.query(
body={
**query_tensors,
"presentation.timing": True,
"yql": f"select id,title,text,url,image,page_number from pdf_page where {nn_string}",
"ranking.profile": "retrieval-and-rerank",
"timeout": timeout,
"hits": hits,
**kwargs,
},
)
assert response.is_successful(), response.json
return format_query_results(query, response)
def is_special_token(token: str) -> bool:
# Pattern for tokens that start with '<', numbers, whitespace, or single characters
pattern = re.compile(r"^<.*$|^\d+$|^\s+$|^.$")
if pattern.match(token):
return True
return False
async def get_result_from_query(
app: Vespa,
processor: ColPaliProcessor,
model: ColPali,
query: str,
nn=False,
gen_sim_map=False,
):
# Get the query embeddings and token map
print(query)
q_embs, token_to_idx = get_query_embeddings_and_token_map(
processor, model, query, dummy_image
)
print(token_to_idx)
# Use the token map to choose a token randomly for now
# Dynamically select a token containing 'water'
if nn:
result = await query_vespa_nearest_neighbor(app, query, q_embs)
else:
result = await query_vespa_default(app, query, q_embs)
# Print score, title id and text of the results
for idx, child in enumerate(result["root"]["children"]):
print(
f"Result {idx+1}: {child['relevance']}, {child['fields']['title']}, {child['fields']['id']}"
)
if gen_sim_map:
for single_result in result["root"]["children"]:
img = single_result["fields"]["image"]
for token in token_to_idx:
if is_special_token(token):
print(f"Skipping special token: {token}")
continue
fig, ax = gen_similarity_map_new(
processor,
model,
model.device,
load_vit_config(model),
query,
q_embs,
token_to_idx,
token,
img,
)
sim_map = base64.b64encode(fig.canvas.tostring_rgb()).decode("utf-8")
single_result["fields"][f"sim_map_{token}"] = sim_map
return result
def get_result_dummy(query: str, nn: bool = False):
result = {}
result["timing"] = {}
result["timing"]["querytime"] = 0.23700000000000002
result["timing"]["summaryfetchtime"] = 0.001
result["timing"]["searchtime"] = 0.23900000000000002
result["root"] = {}
result["root"]["id"] = "toplevel"
result["root"]["relevance"] = 1
result["root"]["fields"] = {}
result["root"]["fields"]["totalCount"] = 59
result["root"]["coverage"] = {}
result["root"]["coverage"]["coverage"] = 100
result["root"]["coverage"]["documents"] = 155
result["root"]["coverage"]["full"] = True
result["root"]["coverage"]["nodes"] = 1
result["root"]["coverage"]["results"] = 1
result["root"]["coverage"]["resultsFull"] = 1
result["root"]["children"] = []
elt0 = {}
elt0["id"] = "index:colpalidemo_content/0/424c85e7dece761d226f060f"
elt0["relevance"] = 2354.050122871995
elt0["source"] = "colpalidemo_content"
elt0["fields"] = {}
elt0["fields"]["id"] = "a767cb1868be9a776cd56b768347b089"
elt0["fields"]["url"] = (
"https://static.conocophillips.com/files/resources/conocophillips-2023-sustainability-report.pdf"
)
elt0["fields"]["title"] = "ConocoPhillips 2023 Sustainability Report"
elt0["fields"]["page_number"] = 50
elt0["fields"]["image"] = "empty for now - is base64 encoded image"
result["root"]["children"].append(elt0)
elt1 = {}
elt1["id"] = "index:colpalidemo_content/0/b927c4979f0beaf0d7fab8e9"
elt1["relevance"] = 2313.7529950886965
elt1["source"] = "colpalidemo_content"
elt1["fields"] = {}
elt1["fields"]["id"] = "9f2fc0aa02c9561adfaa1451c875658f"
elt1["fields"]["url"] = (
"https://static.conocophillips.com/files/resources/conocophillips-2023-managing-climate-related-risks.pdf"
)
elt1["fields"]["title"] = "ConocoPhillips Managing Climate Related Risks"
elt1["fields"]["page_number"] = 44
elt1["fields"]["image"] = "empty for now - is base64 encoded image"
result["root"]["children"].append(elt1)
elt2 = {}
elt2["id"] = "index:colpalidemo_content/0/9632d72238829d6afefba6c9"
elt2["relevance"] = 2312.230182081461
elt2["source"] = "colpalidemo_content"
elt2["fields"] = {}
elt2["fields"]["id"] = "d638ded1ddcb446268b289b3f65430fd"
elt2["fields"]["url"] = (
"https://static.conocophillips.com/files/resources/24-0976-sustainability-highlights_nature.pdf"
)
elt2["fields"]["title"] = (
"ConocoPhillips Sustainability Highlights - Nature (24-0976)"
)
elt2["fields"]["page_number"] = 0
elt2["fields"]["image"] = "empty for now - is base64 encoded image"
result["root"]["children"].append(elt2)
return result
if __name__ == "__main__":
model, processor = load_model()
vit_config = load_vit_config(model)
query = "How many percent of source water is fresh water?"
image_filepath = (
Path(__file__).parent.parent
/ "static"
/ "assets"
/ "ConocoPhillips Sustainability Highlights - Nature (24-0976).png"
)
gen_similarity_map(
model, processor, model.device, vit_config, query=query, image=image_filepath
)
result = get_result_dummy("dummy query")
print(result)
print("Done")
|