Spaces:
Running
on
T4
Running
on
T4
thomasht86
commited on
Commit
β’
2df1399
1
Parent(s):
ecc0caa
Upload colpali.py with huggingface_hub
Browse files- colpali.py +521 -0
colpali.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from typing import cast
|
7 |
+
import pprint
|
8 |
+
from pathlib import Path
|
9 |
+
import base64
|
10 |
+
from io import BytesIO
|
11 |
+
from typing import Union, Tuple
|
12 |
+
import matplotlib
|
13 |
+
import re
|
14 |
+
|
15 |
+
from colpali_engine.models import ColPali, ColPaliProcessor
|
16 |
+
from colpali_engine.utils.torch_utils import get_torch_device
|
17 |
+
from einops import rearrange
|
18 |
+
from vidore_benchmark.interpretability.plot_utils import plot_similarity_heatmap
|
19 |
+
from vidore_benchmark.interpretability.torch_utils import (
|
20 |
+
normalize_similarity_map_per_query_token,
|
21 |
+
)
|
22 |
+
from vidore_benchmark.interpretability.vit_configs import VIT_CONFIG
|
23 |
+
from vidore_benchmark.utils.image_utils import scale_image
|
24 |
+
from vespa.application import Vespa
|
25 |
+
from vespa.io import VespaQueryResponse
|
26 |
+
|
27 |
+
matplotlib.use("Agg")
|
28 |
+
|
29 |
+
MAX_QUERY_TERMS = 64
|
30 |
+
# OUTPUT_DIR = Path(__file__).parent.parent / "output" / "sim_maps"
|
31 |
+
# OUTPUT_DIR.mkdir(exist_ok=True)
|
32 |
+
|
33 |
+
COLPALI_GEMMA_MODEL_ID = "vidore--colpaligemma-3b-pt-448-base"
|
34 |
+
COLPALI_GEMMA_MODEL_SNAPSHOT = "12c59eb7e23bc4c26876f7be7c17760d5d3a1ffa"
|
35 |
+
COLPALI_GEMMA_MODEL_PATH = (
|
36 |
+
Path().home()
|
37 |
+
/ f".cache/huggingface/hub/models--{COLPALI_GEMMA_MODEL_ID}/snapshots/{COLPALI_GEMMA_MODEL_SNAPSHOT}"
|
38 |
+
)
|
39 |
+
COLPALI_MODEL_ID = "vidore--colpali-v1.2"
|
40 |
+
COLPALI_MODEL_SNAPSHOT = "9912ce6f8a462d8cf2269f5606eabbd2784e764f"
|
41 |
+
COLPALI_MODEL_PATH = (
|
42 |
+
Path().home()
|
43 |
+
/ f".cache/huggingface/hub/models--{COLPALI_MODEL_ID}/snapshots/{COLPALI_MODEL_SNAPSHOT}"
|
44 |
+
)
|
45 |
+
COLPALI_GEMMA_MODEL_NAME = COLPALI_GEMMA_MODEL_ID.replace("--", "/")
|
46 |
+
|
47 |
+
|
48 |
+
def load_model() -> Tuple[ColPali, ColPaliProcessor]:
|
49 |
+
model_name = "vidore/colpali-v1.2"
|
50 |
+
|
51 |
+
device = get_torch_device("auto")
|
52 |
+
print(f"Using device: {device}")
|
53 |
+
|
54 |
+
# Load the model
|
55 |
+
model = cast(
|
56 |
+
ColPali,
|
57 |
+
ColPali.from_pretrained(
|
58 |
+
model_name,
|
59 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
60 |
+
device_map=device,
|
61 |
+
),
|
62 |
+
).eval()
|
63 |
+
|
64 |
+
# Load the processor
|
65 |
+
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
66 |
+
return model, processor
|
67 |
+
|
68 |
+
|
69 |
+
def load_vit_config(model):
|
70 |
+
# Load the ViT config
|
71 |
+
print(f"VIT config: {VIT_CONFIG}")
|
72 |
+
vit_config = VIT_CONFIG[COLPALI_GEMMA_MODEL_NAME]
|
73 |
+
return vit_config
|
74 |
+
|
75 |
+
|
76 |
+
# Create dummy image
|
77 |
+
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
78 |
+
|
79 |
+
|
80 |
+
def gen_similarity_map(
|
81 |
+
model, processor, device, vit_config, query, image: Union[Path, str]
|
82 |
+
):
|
83 |
+
# Should take in the b64 image from Vespa query result
|
84 |
+
# And possibly the tensor representing the output_image
|
85 |
+
if isinstance(image, Path):
|
86 |
+
# image is a file path
|
87 |
+
try:
|
88 |
+
image = Image.open(image)
|
89 |
+
except Exception as e:
|
90 |
+
raise ValueError(f"Failed to open image from path: {e}")
|
91 |
+
elif isinstance(image, str):
|
92 |
+
# image is b64 string
|
93 |
+
try:
|
94 |
+
image = Image.open(BytesIO(base64.b64decode(image)))
|
95 |
+
except Exception as e:
|
96 |
+
raise ValueError(f"Failed to open image from b64: {e}")
|
97 |
+
|
98 |
+
# Preview the image
|
99 |
+
scale_image(image, 512)
|
100 |
+
# Preprocess inputs
|
101 |
+
input_text_processed = processor.process_queries([query]).to(device)
|
102 |
+
input_image_processed = processor.process_images([image]).to(device)
|
103 |
+
# Forward passes
|
104 |
+
with torch.no_grad():
|
105 |
+
output_text = model.forward(**input_text_processed)
|
106 |
+
output_image = model.forward(**input_image_processed)
|
107 |
+
# output_image is the tensor that we could get from the Vespa query
|
108 |
+
# Print shape of output_text and output_image
|
109 |
+
# Output image shape: torch.Size([1, 1030, 128])
|
110 |
+
# Remove the special tokens from the output
|
111 |
+
output_image = output_image[
|
112 |
+
:, : processor.image_seq_length, :
|
113 |
+
] # (1, n_patches_x * n_patches_y, dim)
|
114 |
+
|
115 |
+
# Rearrange the output image tensor to explicitly represent the 2D grid of patches
|
116 |
+
output_image = rearrange(
|
117 |
+
output_image,
|
118 |
+
"b (h w) c -> b h w c",
|
119 |
+
h=vit_config.n_patch_per_dim,
|
120 |
+
w=vit_config.n_patch_per_dim,
|
121 |
+
) # (1, n_patches_x, n_patches_y, dim)
|
122 |
+
# Get the similarity map
|
123 |
+
similarity_map = torch.einsum(
|
124 |
+
"bnk,bijk->bnij", output_text, output_image
|
125 |
+
) # (1, query_tokens, n_patches_x, n_patches_y)
|
126 |
+
|
127 |
+
# Normalize the similarity map
|
128 |
+
similarity_map_normalized = normalize_similarity_map_per_query_token(
|
129 |
+
similarity_map
|
130 |
+
) # (1, query_tokens, n_patches_x, n_patches_y)
|
131 |
+
# Use this cell output to choose a token using its index
|
132 |
+
query_tokens = processor.tokenizer.tokenize(
|
133 |
+
processor.decode(input_text_processed.input_ids[0])
|
134 |
+
)
|
135 |
+
# Choose a token
|
136 |
+
token_idx = (
|
137 |
+
10 # e.g. if "12: 'βKazakhstan',", set 12 to choose the token 'Kazakhstan'
|
138 |
+
)
|
139 |
+
selected_token = processor.decode(input_text_processed.input_ids[0, token_idx])
|
140 |
+
# strip whitespace
|
141 |
+
selected_token = selected_token.strip()
|
142 |
+
print(f"Selected token: `{selected_token}`")
|
143 |
+
# Retrieve the similarity map for the chosen token
|
144 |
+
pprint.pprint({idx: val for idx, val in enumerate(query_tokens)})
|
145 |
+
# Resize the image to square
|
146 |
+
input_image_square = image.resize((vit_config.resolution, vit_config.resolution))
|
147 |
+
|
148 |
+
# Plot the similarity map
|
149 |
+
fig, ax = plot_similarity_heatmap(
|
150 |
+
input_image_square,
|
151 |
+
patch_size=vit_config.patch_size,
|
152 |
+
image_resolution=vit_config.resolution,
|
153 |
+
similarity_map=similarity_map_normalized[0, token_idx, :, :],
|
154 |
+
)
|
155 |
+
ax = annotate_plot(ax, selected_token)
|
156 |
+
return fig, ax
|
157 |
+
|
158 |
+
|
159 |
+
# def save_figure(fig, filename: str = "similarity_map.png"):
|
160 |
+
# fig.savefig(
|
161 |
+
# OUTPUT_DIR / filename,
|
162 |
+
# bbox_inches="tight",
|
163 |
+
# pad_inches=0,
|
164 |
+
# )
|
165 |
+
|
166 |
+
|
167 |
+
def annotate_plot(ax, query, selected_token):
|
168 |
+
# Add the query text
|
169 |
+
ax.set_title(query, fontsize=18)
|
170 |
+
# Add annotation with selected token
|
171 |
+
ax.annotate(
|
172 |
+
f"Selected token:`{selected_token}`",
|
173 |
+
xy=(0.5, 0.95),
|
174 |
+
xycoords="axes fraction",
|
175 |
+
ha="center",
|
176 |
+
va="center",
|
177 |
+
fontsize=18,
|
178 |
+
color="black",
|
179 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1),
|
180 |
+
)
|
181 |
+
return ax
|
182 |
+
|
183 |
+
|
184 |
+
def gen_similarity_map_new(
|
185 |
+
processor: ColPaliProcessor,
|
186 |
+
model: ColPali,
|
187 |
+
device,
|
188 |
+
vit_config,
|
189 |
+
query: str,
|
190 |
+
query_embs: torch.Tensor,
|
191 |
+
token_idx_map: dict,
|
192 |
+
token_to_show: str,
|
193 |
+
image: Union[Path, str],
|
194 |
+
):
|
195 |
+
if isinstance(image, Path):
|
196 |
+
# image is a file path
|
197 |
+
try:
|
198 |
+
image = Image.open(image)
|
199 |
+
except Exception as e:
|
200 |
+
raise ValueError(f"Failed to open image from path: {e}")
|
201 |
+
elif isinstance(image, str):
|
202 |
+
# image is b64 string
|
203 |
+
try:
|
204 |
+
image = Image.open(BytesIO(base64.b64decode(image)))
|
205 |
+
except Exception as e:
|
206 |
+
raise ValueError(f"Failed to open image from b64: {e}")
|
207 |
+
token_idx = token_idx_map[token_to_show]
|
208 |
+
print(f"Selected token: `{token_to_show}`")
|
209 |
+
# strip whitespace
|
210 |
+
# Preview the image
|
211 |
+
# scale_image(image, 512)
|
212 |
+
# Preprocess inputs
|
213 |
+
input_image_processed = processor.process_images([image]).to(device)
|
214 |
+
# Forward passes
|
215 |
+
with torch.no_grad():
|
216 |
+
output_image = model.forward(**input_image_processed)
|
217 |
+
# output_image is the tensor that we could get from the Vespa query
|
218 |
+
# Print shape of output_text and output_image
|
219 |
+
# Output image shape: torch.Size([1, 1030, 128])
|
220 |
+
# Remove the special tokens from the output
|
221 |
+
print(f"Output image shape before dim: {output_image.shape}")
|
222 |
+
output_image = output_image[
|
223 |
+
:, : processor.image_seq_length, :
|
224 |
+
] # (1, n_patches_x * n_patches_y, dim)
|
225 |
+
print(f"Output image shape after dim: {output_image.shape}")
|
226 |
+
# Rearrange the output image tensor to explicitly represent the 2D grid of patches
|
227 |
+
output_image = rearrange(
|
228 |
+
output_image,
|
229 |
+
"b (h w) c -> b h w c",
|
230 |
+
h=vit_config.n_patch_per_dim,
|
231 |
+
w=vit_config.n_patch_per_dim,
|
232 |
+
) # (1, n_patches_x, n_patches_y, dim)
|
233 |
+
# Get the similarity map
|
234 |
+
print(f"Query embs shape: {query_embs.shape}")
|
235 |
+
# Add 1 extra dim to start of query_embs
|
236 |
+
query_embs = query_embs.unsqueeze(0).to(device)
|
237 |
+
print(f"Output image shape: {output_image.shape}")
|
238 |
+
similarity_map = torch.einsum(
|
239 |
+
"bnk,bijk->bnij", query_embs, output_image
|
240 |
+
) # (1, query_tokens, n_patches_x, n_patches_y)
|
241 |
+
print(f"Similarity map shape: {similarity_map.shape}")
|
242 |
+
# Normalize the similarity map
|
243 |
+
similarity_map_normalized = normalize_similarity_map_per_query_token(
|
244 |
+
similarity_map
|
245 |
+
) # (1, query_tokens, n_patches_x, n_patches_y)
|
246 |
+
print(f"Similarity map normalized shape: {similarity_map_normalized.shape}")
|
247 |
+
# Use this cell output to choose a token using its index
|
248 |
+
input_image_square = image.resize((vit_config.resolution, vit_config.resolution))
|
249 |
+
|
250 |
+
# Plot the similarity map
|
251 |
+
fig, ax = plot_similarity_heatmap(
|
252 |
+
input_image_square,
|
253 |
+
patch_size=vit_config.patch_size,
|
254 |
+
image_resolution=vit_config.resolution,
|
255 |
+
similarity_map=similarity_map_normalized[0, token_idx, :, :],
|
256 |
+
)
|
257 |
+
ax = annotate_plot(ax, query, token_to_show)
|
258 |
+
# save the figure
|
259 |
+
save_figure(fig, f"similarity_map_{token_to_show}.png")
|
260 |
+
return fig, ax
|
261 |
+
|
262 |
+
|
263 |
+
def get_query_embeddings_and_token_map(
|
264 |
+
processor, model, query, image
|
265 |
+
) -> Tuple[torch.Tensor, dict]:
|
266 |
+
inputs = processor.process_queries([query]).to(model.device)
|
267 |
+
with torch.no_grad():
|
268 |
+
embeddings_query = model(**inputs)
|
269 |
+
q_emb = embeddings_query.to("cpu")[0] # Extract the single embedding
|
270 |
+
# Use this cell output to choose a token using its index
|
271 |
+
query_tokens = processor.tokenizer.tokenize(processor.decode(inputs.input_ids[0]))
|
272 |
+
# reverse key, values in dictionary
|
273 |
+
print(query_tokens)
|
274 |
+
token_to_idx = {val: idx for idx, val in enumerate(query_tokens)}
|
275 |
+
return q_emb, token_to_idx
|
276 |
+
|
277 |
+
|
278 |
+
def format_query_results(query, response, hits=5) -> dict:
|
279 |
+
query_time = response.json.get("timing", {}).get("searchtime", -1)
|
280 |
+
query_time = round(query_time, 2)
|
281 |
+
count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
|
282 |
+
result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"
|
283 |
+
print(result_text)
|
284 |
+
return response.json
|
285 |
+
|
286 |
+
|
287 |
+
async def query_vespa_default(
|
288 |
+
app: Vespa,
|
289 |
+
query: str,
|
290 |
+
q_emb: torch.Tensor,
|
291 |
+
hits: int = 3,
|
292 |
+
timeout: str = "10s",
|
293 |
+
**kwargs,
|
294 |
+
) -> dict:
|
295 |
+
async with app.asyncio(connections=1, total_timeout=120) as session:
|
296 |
+
query_embedding = format_q_embs(q_emb)
|
297 |
+
response: VespaQueryResponse = await session.query(
|
298 |
+
body={
|
299 |
+
"yql": "select id,title,url,image,page_number,text from pdf_page where userQuery();",
|
300 |
+
"ranking": "default",
|
301 |
+
"query": query,
|
302 |
+
"timeout": timeout,
|
303 |
+
"hits": hits,
|
304 |
+
"input.query(qt)": query_embedding,
|
305 |
+
"presentation.timing": True,
|
306 |
+
**kwargs,
|
307 |
+
},
|
308 |
+
)
|
309 |
+
assert response.is_successful(), response.json
|
310 |
+
return format_query_results(query, response)
|
311 |
+
|
312 |
+
|
313 |
+
def float_to_binary_embedding(float_query_embedding: dict) -> dict:
|
314 |
+
binary_query_embeddings = {}
|
315 |
+
for k, v in float_query_embedding.items():
|
316 |
+
binary_vector = (
|
317 |
+
np.packbits(np.where(np.array(v) > 0, 1, 0)).astype(np.int8).tolist()
|
318 |
+
)
|
319 |
+
binary_query_embeddings[k] = binary_vector
|
320 |
+
if len(binary_query_embeddings) >= MAX_QUERY_TERMS:
|
321 |
+
print(f"Warning: Query has more than {MAX_QUERY_TERMS} terms. Truncating.")
|
322 |
+
break
|
323 |
+
return binary_query_embeddings
|
324 |
+
|
325 |
+
|
326 |
+
def create_nn_query_strings(
|
327 |
+
binary_query_embeddings: dict, target_hits_per_query_tensor: int = 20
|
328 |
+
) -> Tuple[str, dict]:
|
329 |
+
# Query tensors for nearest neighbor calculations
|
330 |
+
nn_query_dict = {}
|
331 |
+
for i in range(len(binary_query_embeddings)):
|
332 |
+
nn_query_dict[f"input.query(rq{i})"] = binary_query_embeddings[i]
|
333 |
+
nn = " OR ".join(
|
334 |
+
[
|
335 |
+
f"({{targetHits:{target_hits_per_query_tensor}}}nearestNeighbor(embedding,rq{i}))"
|
336 |
+
for i in range(len(binary_query_embeddings))
|
337 |
+
]
|
338 |
+
)
|
339 |
+
return nn, nn_query_dict
|
340 |
+
|
341 |
+
|
342 |
+
def format_q_embs(q_embs: torch.Tensor) -> dict:
|
343 |
+
float_query_embedding = {k: v.tolist() for k, v in enumerate(q_embs)}
|
344 |
+
return float_query_embedding
|
345 |
+
|
346 |
+
|
347 |
+
async def query_vespa_nearest_neighbor(
|
348 |
+
app: Vespa,
|
349 |
+
query: str,
|
350 |
+
q_emb: torch.Tensor,
|
351 |
+
target_hits_per_query_tensor: int = 20,
|
352 |
+
hits: int = 3,
|
353 |
+
timeout: str = "10s",
|
354 |
+
**kwargs,
|
355 |
+
) -> dict:
|
356 |
+
# Hyperparameter for speed vs. accuracy
|
357 |
+
async with app.asyncio(connections=1, total_timeout=180) as session:
|
358 |
+
float_query_embedding = format_q_embs(q_emb)
|
359 |
+
binary_query_embeddings = float_to_binary_embedding(float_query_embedding)
|
360 |
+
|
361 |
+
# Mixed tensors for MaxSim calculations
|
362 |
+
query_tensors = {
|
363 |
+
"input.query(qtb)": binary_query_embeddings,
|
364 |
+
"input.query(qt)": float_query_embedding,
|
365 |
+
}
|
366 |
+
nn_string, nn_query_dict = create_nn_query_strings(
|
367 |
+
binary_query_embeddings, target_hits_per_query_tensor
|
368 |
+
)
|
369 |
+
query_tensors.update(nn_query_dict)
|
370 |
+
response: VespaQueryResponse = await session.query(
|
371 |
+
body={
|
372 |
+
**query_tensors,
|
373 |
+
"presentation.timing": True,
|
374 |
+
"yql": f"select id,title,text,url,image,page_number from pdf_page where {nn_string}",
|
375 |
+
"ranking.profile": "retrieval-and-rerank",
|
376 |
+
"timeout": timeout,
|
377 |
+
"hits": hits,
|
378 |
+
**kwargs,
|
379 |
+
},
|
380 |
+
)
|
381 |
+
assert response.is_successful(), response.json
|
382 |
+
return format_query_results(query, response)
|
383 |
+
|
384 |
+
|
385 |
+
def is_special_token(token: str) -> bool:
|
386 |
+
# Pattern for tokens that start with '<', numbers, whitespace, or single characters
|
387 |
+
pattern = re.compile(r"^<.*$|^\d+$|^\s+$|^.$")
|
388 |
+
if pattern.match(token):
|
389 |
+
return True
|
390 |
+
return False
|
391 |
+
|
392 |
+
|
393 |
+
async def get_result_from_query(
|
394 |
+
app: Vespa,
|
395 |
+
processor: ColPaliProcessor,
|
396 |
+
model: ColPali,
|
397 |
+
query: str,
|
398 |
+
nn=False,
|
399 |
+
gen_sim_map=False,
|
400 |
+
):
|
401 |
+
# Get the query embeddings and token map
|
402 |
+
print(query)
|
403 |
+
q_embs, token_to_idx = get_query_embeddings_and_token_map(
|
404 |
+
processor, model, query, dummy_image
|
405 |
+
)
|
406 |
+
print(token_to_idx)
|
407 |
+
# Use the token map to choose a token randomly for now
|
408 |
+
# Dynamically select a token containing 'water'
|
409 |
+
|
410 |
+
if nn:
|
411 |
+
result = await query_vespa_nearest_neighbor(app, query, q_embs)
|
412 |
+
else:
|
413 |
+
result = await query_vespa_default(app, query, q_embs)
|
414 |
+
# Print score, title id and text of the results
|
415 |
+
for idx, child in enumerate(result["root"]["children"]):
|
416 |
+
print(
|
417 |
+
f"Result {idx+1}: {child['relevance']}, {child['fields']['title']}, {child['fields']['id']}"
|
418 |
+
)
|
419 |
+
|
420 |
+
if gen_sim_map:
|
421 |
+
for single_result in result["root"]["children"]:
|
422 |
+
img = single_result["fields"]["image"]
|
423 |
+
for token in token_to_idx:
|
424 |
+
if is_special_token(token):
|
425 |
+
print(f"Skipping special token: {token}")
|
426 |
+
continue
|
427 |
+
fig, ax = gen_similarity_map_new(
|
428 |
+
processor,
|
429 |
+
model,
|
430 |
+
model.device,
|
431 |
+
load_vit_config(model),
|
432 |
+
query,
|
433 |
+
q_embs,
|
434 |
+
token_to_idx,
|
435 |
+
token,
|
436 |
+
img,
|
437 |
+
)
|
438 |
+
sim_map = base64.b64encode(fig.canvas.tostring_rgb()).decode("utf-8")
|
439 |
+
single_result["fields"][f"sim_map_{token}"] = sim_map
|
440 |
+
return result
|
441 |
+
|
442 |
+
|
443 |
+
def get_result_dummy(query: str, nn: bool = False):
|
444 |
+
result = {}
|
445 |
+
result["timing"] = {}
|
446 |
+
result["timing"]["querytime"] = 0.23700000000000002
|
447 |
+
result["timing"]["summaryfetchtime"] = 0.001
|
448 |
+
result["timing"]["searchtime"] = 0.23900000000000002
|
449 |
+
result["root"] = {}
|
450 |
+
result["root"]["id"] = "toplevel"
|
451 |
+
result["root"]["relevance"] = 1
|
452 |
+
result["root"]["fields"] = {}
|
453 |
+
result["root"]["fields"]["totalCount"] = 59
|
454 |
+
result["root"]["coverage"] = {}
|
455 |
+
result["root"]["coverage"]["coverage"] = 100
|
456 |
+
result["root"]["coverage"]["documents"] = 155
|
457 |
+
result["root"]["coverage"]["full"] = True
|
458 |
+
result["root"]["coverage"]["nodes"] = 1
|
459 |
+
result["root"]["coverage"]["results"] = 1
|
460 |
+
result["root"]["coverage"]["resultsFull"] = 1
|
461 |
+
result["root"]["children"] = []
|
462 |
+
elt0 = {}
|
463 |
+
elt0["id"] = "index:colpalidemo_content/0/424c85e7dece761d226f060f"
|
464 |
+
elt0["relevance"] = 2354.050122871995
|
465 |
+
elt0["source"] = "colpalidemo_content"
|
466 |
+
elt0["fields"] = {}
|
467 |
+
elt0["fields"]["id"] = "a767cb1868be9a776cd56b768347b089"
|
468 |
+
elt0["fields"]["url"] = (
|
469 |
+
"https://static.conocophillips.com/files/resources/conocophillips-2023-sustainability-report.pdf"
|
470 |
+
)
|
471 |
+
elt0["fields"]["title"] = "ConocoPhillips 2023 Sustainability Report"
|
472 |
+
elt0["fields"]["page_number"] = 50
|
473 |
+
elt0["fields"]["image"] = "empty for now - is base64 encoded image"
|
474 |
+
result["root"]["children"].append(elt0)
|
475 |
+
elt1 = {}
|
476 |
+
elt1["id"] = "index:colpalidemo_content/0/b927c4979f0beaf0d7fab8e9"
|
477 |
+
elt1["relevance"] = 2313.7529950886965
|
478 |
+
elt1["source"] = "colpalidemo_content"
|
479 |
+
elt1["fields"] = {}
|
480 |
+
elt1["fields"]["id"] = "9f2fc0aa02c9561adfaa1451c875658f"
|
481 |
+
elt1["fields"]["url"] = (
|
482 |
+
"https://static.conocophillips.com/files/resources/conocophillips-2023-managing-climate-related-risks.pdf"
|
483 |
+
)
|
484 |
+
elt1["fields"]["title"] = "ConocoPhillips Managing Climate Related Risks"
|
485 |
+
elt1["fields"]["page_number"] = 44
|
486 |
+
elt1["fields"]["image"] = "empty for now - is base64 encoded image"
|
487 |
+
result["root"]["children"].append(elt1)
|
488 |
+
elt2 = {}
|
489 |
+
elt2["id"] = "index:colpalidemo_content/0/9632d72238829d6afefba6c9"
|
490 |
+
elt2["relevance"] = 2312.230182081461
|
491 |
+
elt2["source"] = "colpalidemo_content"
|
492 |
+
elt2["fields"] = {}
|
493 |
+
elt2["fields"]["id"] = "d638ded1ddcb446268b289b3f65430fd"
|
494 |
+
elt2["fields"]["url"] = (
|
495 |
+
"https://static.conocophillips.com/files/resources/24-0976-sustainability-highlights_nature.pdf"
|
496 |
+
)
|
497 |
+
elt2["fields"]["title"] = (
|
498 |
+
"ConocoPhillips Sustainability Highlights - Nature (24-0976)"
|
499 |
+
)
|
500 |
+
elt2["fields"]["page_number"] = 0
|
501 |
+
elt2["fields"]["image"] = "empty for now - is base64 encoded image"
|
502 |
+
result["root"]["children"].append(elt2)
|
503 |
+
return result
|
504 |
+
|
505 |
+
|
506 |
+
if __name__ == "__main__":
|
507 |
+
model, processor = load_model()
|
508 |
+
vit_config = load_vit_config(model)
|
509 |
+
query = "How many percent of source water is fresh water?"
|
510 |
+
image_filepath = (
|
511 |
+
Path(__file__).parent.parent
|
512 |
+
/ "static"
|
513 |
+
/ "assets"
|
514 |
+
/ "ConocoPhillips Sustainability Highlights - Nature (24-0976).png"
|
515 |
+
)
|
516 |
+
gen_similarity_map(
|
517 |
+
model, processor, model.device, vit_config, query=query, image=image_filepath
|
518 |
+
)
|
519 |
+
result = get_result_dummy("dummy query")
|
520 |
+
print(result)
|
521 |
+
print("Done")
|