Spaces:
Build error
Build error
Perturbation testing
#1
by
sharmaarushi17
- opened
- app.py +1 -2
- codenet_4000_CasingClassVariable/java/input.in +0 -0
- codenet_4000_CasingClassVariable/java/layer12/kmeans/clusters-kmeans-350.txt +0 -0
- codenet_4000_Example/java/input.in +0 -0
- codenet_4000_Example/java/layer12/kmeans/clusters-kmeans-350.txt +0 -0
- codenet_4000_Onecase/java/input.in +0 -0
- codenet_4000_Onecase/java/layer12/kmeans/clusters-kmeans-350.txt +0 -0
- codenet_4000_exactNameClassVariable/java/input.in +0 -0
- codenet_4000_finetuned_compile_error/java/input.in +0 -0
- codenet_4000_finetuned_compile_error/java/layer12/kmeans/clusters-kmeans-350.txt +0 -0
- codenet_4000_finetuned_language_classification/java/input.in +0 -0
- codenet_4000_finetuned_language_classification/java/layer12/kmeans/clusters-kmeans-350.txt +0 -0
- codenet_4000_lexical_similar/java/input.in +0 -0
- {codenet_4000_exactNameClassVariable → codenet_4000_lexical_similar}/java/layer12/kmeans/clusters-kmeans-350.txt +0 -0
- convert.py +0 -0
- pert.py +0 -182
- remove.py +224 -0
- results/csi_summary.csv +0 -15
app.py
CHANGED
@@ -964,13 +964,12 @@ def create_wordcloud(tokens, token1=None, token2=None):
|
|
964 |
if token2:
|
965 |
normalized_freq[token2] = normalized_freq.get(token2, 0) + 5
|
966 |
|
967 |
-
# Custom colormap with dark shades of brown, green, and blue
|
968 |
wc = WordCloud(
|
969 |
width=800, height=400,
|
970 |
background_color='white',
|
971 |
max_words=100,
|
972 |
prefer_horizontal=1.0, # Make all words horizontal
|
973 |
-
colormap='
|
974 |
).generate_from_frequencies(normalized_freq)
|
975 |
|
976 |
return wc
|
|
|
964 |
if token2:
|
965 |
normalized_freq[token2] = normalized_freq.get(token2, 0) + 5
|
966 |
|
|
|
967 |
wc = WordCloud(
|
968 |
width=800, height=400,
|
969 |
background_color='white',
|
970 |
max_words=100,
|
971 |
prefer_horizontal=1.0, # Make all words horizontal
|
972 |
+
colormap='BrBG' # Using Set3 colormap which has muted, professional colors
|
973 |
).generate_from_frequencies(normalized_freq)
|
974 |
|
975 |
return wc
|
codenet_4000_CasingClassVariable/java/input.in
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_CasingClassVariable/java/layer12/kmeans/clusters-kmeans-350.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_Example/java/input.in
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_Example/java/layer12/kmeans/clusters-kmeans-350.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_Onecase/java/input.in
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_Onecase/java/layer12/kmeans/clusters-kmeans-350.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_exactNameClassVariable/java/input.in
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_finetuned_compile_error/java/input.in
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_finetuned_compile_error/java/layer12/kmeans/clusters-kmeans-350.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_finetuned_language_classification/java/input.in
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_finetuned_language_classification/java/layer12/kmeans/clusters-kmeans-350.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
codenet_4000_lexical_similar/java/input.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
{codenet_4000_exactNameClassVariable → codenet_4000_lexical_similar}/java/layer12/kmeans/clusters-kmeans-350.txt
RENAMED
The diff for this file is too large to render.
See raw diff
|
|
convert.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pert.py
DELETED
@@ -1,182 +0,0 @@
|
|
1 |
-
import csv
|
2 |
-
import numpy as np
|
3 |
-
from collections import defaultdict
|
4 |
-
from scipy.optimize import linear_sum_assignment
|
5 |
-
import os
|
6 |
-
|
7 |
-
def load_clusters(path):
|
8 |
-
cluster_to_tokens = defaultdict(set)
|
9 |
-
with open(path, "r", encoding="utf-8") as f:
|
10 |
-
for line in f:
|
11 |
-
parts = line.strip().split("|||")
|
12 |
-
if len(parts) < 2:
|
13 |
-
continue
|
14 |
-
token = parts[0]
|
15 |
-
cluster_id = parts[-1]
|
16 |
-
cluster_to_tokens[cluster_id].add(token)
|
17 |
-
return cluster_to_tokens
|
18 |
-
|
19 |
-
def compute_jaccard_matrix(clusters_a, clusters_b):
|
20 |
-
a_keys = list(clusters_a.keys())
|
21 |
-
b_keys = list(clusters_b.keys())
|
22 |
-
matrix = np.zeros((len(a_keys), len(b_keys)))
|
23 |
-
|
24 |
-
for i, ca in enumerate(a_keys):
|
25 |
-
for j, cb in enumerate(b_keys):
|
26 |
-
set_a = clusters_a[ca]
|
27 |
-
set_b = clusters_b[cb]
|
28 |
-
intersection = len(set_a & set_b)
|
29 |
-
union = len(set_a | set_b)
|
30 |
-
matrix[i, j] = intersection / union if union > 0 else 0.0
|
31 |
-
|
32 |
-
return matrix, a_keys, b_keys
|
33 |
-
|
34 |
-
# Dictionary mapping perturbation names to their descriptions
|
35 |
-
perturbation_descriptions = {
|
36 |
-
"Scope Modification": "Identifies variables in complex scopes and moves them to unrelated blocks.",
|
37 |
-
"Log Modification": "Adds logging statements to blocks of code for tracking execution flow.",
|
38 |
-
"Operator Modification": "Modifies boolean expressions by negating them in various contexts.",
|
39 |
-
"Pointer Modification": "Add C style pointer to the code.",
|
40 |
-
"POS finetuned": "Clusters based on finetuned POS codebert model",
|
41 |
-
"Random Modification": "Permutes statements within basic blocks, allowing different execution orders.",
|
42 |
-
"Try Catch Modification": "Converts switch statements into equivalent if statements.",
|
43 |
-
"Unused Statement Modification": "Inserts unused statements into blocks of code for testing/debugging.",
|
44 |
-
"Exact Name Class Variable Modification": "Renames classes and variables to a specific randomly generated name.",
|
45 |
-
"Casing Class Variable Modification": "Generates lexical variations of class and variable names with different casing.",
|
46 |
-
"Onecase Modification": "Generates lexical variations of class and variable names with just 1 letter uppercase wither for class anme or variable name.",
|
47 |
-
"Example Modification": "Generates lexical variations of class and variable names with Example being the class name and example being the variable name or vice versa.",
|
48 |
-
"Finetuned on compile error": "Clusters based on finetuned codebert model on compile errors",
|
49 |
-
"Finetuned on language classification": "Clusters based on finetuned codebert model on language classification",
|
50 |
-
|
51 |
-
}
|
52 |
-
|
53 |
-
def compute_and_log_csi(file_orig, file_pert, perturbation_name, output_csv="results/csi_summary.csv"):
|
54 |
-
clusters_orig = load_clusters(file_orig)
|
55 |
-
clusters_pert = load_clusters(file_pert)
|
56 |
-
|
57 |
-
if len(clusters_orig) != len(clusters_pert):
|
58 |
-
raise ValueError(f"Cluster count mismatch: {len(clusters_orig)} (original) vs {len(clusters_pert)} (perturbed)")
|
59 |
-
|
60 |
-
jaccard_matrix, orig_ids, pert_ids = compute_jaccard_matrix(clusters_orig, clusters_pert)
|
61 |
-
|
62 |
-
row_ind, col_ind = linear_sum_assignment(-jaccard_matrix)
|
63 |
-
|
64 |
-
matched_similarities = [jaccard_matrix[i, j] for i, j in zip(row_ind, col_ind)]
|
65 |
-
avg_jaccard = np.mean(matched_similarities)
|
66 |
-
csi = 1.0 - avg_jaccard
|
67 |
-
|
68 |
-
print(f"Perturbation: {perturbation_name}")
|
69 |
-
print(f" Average Jaccard Similarity: {avg_jaccard:.4f}")
|
70 |
-
print(f" Cluster Sensitivity Index (CSI): {csi:.4f}")
|
71 |
-
|
72 |
-
# Append to CSV
|
73 |
-
os.makedirs(os.path.dirname(output_csv), exist_ok=True)
|
74 |
-
file_exists = os.path.isfile(output_csv)
|
75 |
-
|
76 |
-
with open(output_csv, mode="a", newline='', encoding="utf-8") as file:
|
77 |
-
writer = csv.writer(file)
|
78 |
-
if not file_exists:
|
79 |
-
writer.writerow(["Perturbation", "Average Jaccard", "CSI", "Description"])
|
80 |
-
writer.writerow([perturbation_name, avg_jaccard, csi, perturbation_descriptions.get(perturbation_name, "No description available")])
|
81 |
-
|
82 |
-
return avg_jaccard, csi
|
83 |
-
|
84 |
-
# Example usage
|
85 |
-
compute_and_log_csi(
|
86 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
87 |
-
"codenet_4000_scope_error/java/layer12/kmeans/clusters-kmeans-350.txt",
|
88 |
-
perturbation_name="Scope Modification",
|
89 |
-
output_csv="results/csi_summary.csv"
|
90 |
-
)
|
91 |
-
|
92 |
-
compute_and_log_csi(
|
93 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
94 |
-
"codenet_4000_log/java/layer12/kmeans/clusters-kmeans-350.txt",
|
95 |
-
perturbation_name="Log Modification",
|
96 |
-
output_csv="results/csi_summary.csv"
|
97 |
-
)
|
98 |
-
|
99 |
-
compute_and_log_csi(
|
100 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
101 |
-
"codenet_4000_operator/java/layer12/kmeans/clusters-kmeans-350.txt",
|
102 |
-
perturbation_name="Operator Modification",
|
103 |
-
output_csv="results/csi_summary.csv"
|
104 |
-
)
|
105 |
-
|
106 |
-
compute_and_log_csi(
|
107 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
108 |
-
"codenet_4000_pointer/java/layer12/kmeans/clusters-kmeans-350.txt",
|
109 |
-
perturbation_name="Pointer Modification",
|
110 |
-
output_csv="results/csi_summary.csv"
|
111 |
-
)
|
112 |
-
|
113 |
-
compute_and_log_csi(
|
114 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
115 |
-
"codenet_4000_POS/java/layer12/kmeans/clusters-kmeans-350.txt",
|
116 |
-
perturbation_name="POS finetuned",
|
117 |
-
output_csv="results/csi_summary.csv"
|
118 |
-
)
|
119 |
-
|
120 |
-
compute_and_log_csi(
|
121 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
122 |
-
"codenet_4000_random/java/layer12/kmeans/clusters-kmeans-350.txt",
|
123 |
-
perturbation_name="Random Modification",
|
124 |
-
output_csv="results/csi_summary.csv"
|
125 |
-
)
|
126 |
-
|
127 |
-
compute_and_log_csi(
|
128 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
129 |
-
"codenet_4000_trycatch/java/layer12/kmeans/clusters-kmeans-350.txt",
|
130 |
-
perturbation_name="Try Catch Modification",
|
131 |
-
output_csv="results/csi_summary.csv"
|
132 |
-
)
|
133 |
-
|
134 |
-
compute_and_log_csi(
|
135 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
136 |
-
"codenet_4000_unusedStatement/java/layer12/kmeans/clusters-kmeans-350.txt",
|
137 |
-
perturbation_name="Unused Statement Modification",
|
138 |
-
output_csv="results/csi_summary.csv"
|
139 |
-
)
|
140 |
-
|
141 |
-
compute_and_log_csi(
|
142 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
143 |
-
"codenet_4000_exactNameClassVariable/java/layer12/kmeans/clusters-kmeans-350.txt",
|
144 |
-
perturbation_name="Exact Name Class Variable Modification",
|
145 |
-
output_csv="results/csi_summary.csv"
|
146 |
-
)
|
147 |
-
|
148 |
-
compute_and_log_csi(
|
149 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
150 |
-
"codenet_4000_CasingClassVariable/java/layer12/kmeans/clusters-kmeans-350.txt",
|
151 |
-
perturbation_name="Casing Class Variable Modification",
|
152 |
-
output_csv="results/csi_summary.csv"
|
153 |
-
)
|
154 |
-
|
155 |
-
compute_and_log_csi(
|
156 |
-
"codenet_4000_del_15000/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
157 |
-
"codenet_4000_Onecase/java/layer12/kmeans/clusters-kmeans-350.txt",
|
158 |
-
perturbation_name="Onecase Modification",
|
159 |
-
output_csv="results/csi_summary.csv"
|
160 |
-
)
|
161 |
-
|
162 |
-
compute_and_log_csi(
|
163 |
-
"codenet_4000_Example/Java/layer12/kmeans/clusters-kmeans-350.txt",
|
164 |
-
"codenet_4000_Example/java/layer12/kmeans/clusters-kmeans-350.txt",
|
165 |
-
perturbation_name="Example Modification",
|
166 |
-
output_csv="results/csi_summary.csv"
|
167 |
-
)
|
168 |
-
|
169 |
-
compute_and_log_csi(
|
170 |
-
"codenet_4000_finetuned_compile_error/java/layer12/kmeans/clusters-kmeans-350.txt",
|
171 |
-
"codenet_4000_finetuned_compile_error/java/layer12/kmeans/clusters-kmeans-350.txt",
|
172 |
-
perturbation_name="Finetuned on compile error",
|
173 |
-
output_csv="results/csi_summary.csv"
|
174 |
-
)
|
175 |
-
|
176 |
-
compute_and_log_csi(
|
177 |
-
"codenet_4000_finetuned_language_classification/java/layer12/kmeans/clusters-kmeans-350.txt",
|
178 |
-
"codenet_4000_finetuned_language_classification/java/layer12/kmeans/clusters-kmeans-350.txt",
|
179 |
-
perturbation_name="Finetuned on language classification",
|
180 |
-
output_csv="results/csi_summary.csv"
|
181 |
-
)
|
182 |
-
# You can now call compute_and_log_csi again and again for other perturbations!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
remove.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def remove_lines(filepath, lines_to_remove):
|
2 |
+
# Read the file
|
3 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
4 |
+
file_content = f.read()
|
5 |
+
|
6 |
+
# Split content into lines
|
7 |
+
lines = file_content.split('\n')
|
8 |
+
|
9 |
+
# Create a set of line numbers to remove for O(1) lookup
|
10 |
+
remove_set = set(lines_to_remove)
|
11 |
+
|
12 |
+
# Keep lines that aren't in the remove set
|
13 |
+
filtered_lines = [line for i, line in enumerate(lines, 1) if i not in remove_set]
|
14 |
+
|
15 |
+
# Join lines back together
|
16 |
+
new_content = '\n'.join(filtered_lines)
|
17 |
+
|
18 |
+
# Write back to the same file
|
19 |
+
with open(filepath, 'w', encoding='utf-8') as f:
|
20 |
+
f.write(new_content)
|
21 |
+
|
22 |
+
lines_to_remove = [
|
23 |
+
5,
|
24 |
+
11,
|
25 |
+
26,
|
26 |
+
46,
|
27 |
+
53,
|
28 |
+
84,
|
29 |
+
117,
|
30 |
+
174,
|
31 |
+
175,
|
32 |
+
209,
|
33 |
+
212,
|
34 |
+
219,
|
35 |
+
220,
|
36 |
+
268,
|
37 |
+
272,
|
38 |
+
277,
|
39 |
+
294,
|
40 |
+
319,
|
41 |
+
322,
|
42 |
+
333,
|
43 |
+
369,
|
44 |
+
402,
|
45 |
+
437,
|
46 |
+
451,
|
47 |
+
471,
|
48 |
+
471,
|
49 |
+
471,
|
50 |
+
480,
|
51 |
+
494,
|
52 |
+
502,
|
53 |
+
514,
|
54 |
+
564,
|
55 |
+
569,
|
56 |
+
579,
|
57 |
+
592,
|
58 |
+
599,
|
59 |
+
602,
|
60 |
+
602,
|
61 |
+
619,
|
62 |
+
647,
|
63 |
+
679,
|
64 |
+
681,
|
65 |
+
685,
|
66 |
+
688,
|
67 |
+
781,
|
68 |
+
795,
|
69 |
+
833,
|
70 |
+
843,
|
71 |
+
859,
|
72 |
+
860,
|
73 |
+
899,
|
74 |
+
911,
|
75 |
+
941,
|
76 |
+
947,
|
77 |
+
989,
|
78 |
+
993,
|
79 |
+
1100,
|
80 |
+
1111,
|
81 |
+
1120,
|
82 |
+
1123,
|
83 |
+
1126,
|
84 |
+
1153,
|
85 |
+
1165,
|
86 |
+
1173,
|
87 |
+
1183,
|
88 |
+
1186,
|
89 |
+
1186,
|
90 |
+
1220,
|
91 |
+
1230,
|
92 |
+
1238,
|
93 |
+
1242,
|
94 |
+
1247,
|
95 |
+
1274,
|
96 |
+
1285,
|
97 |
+
1289,
|
98 |
+
1324,
|
99 |
+
1358,
|
100 |
+
1385,
|
101 |
+
1397,
|
102 |
+
1402,
|
103 |
+
1465,
|
104 |
+
1474,
|
105 |
+
1504,
|
106 |
+
1507,
|
107 |
+
1517,
|
108 |
+
1563,
|
109 |
+
1592,
|
110 |
+
1605,
|
111 |
+
1614,
|
112 |
+
1626,
|
113 |
+
1648,
|
114 |
+
1648,
|
115 |
+
1689,
|
116 |
+
1702,
|
117 |
+
1730,
|
118 |
+
1730,
|
119 |
+
1737,
|
120 |
+
1769,
|
121 |
+
1784,
|
122 |
+
1799,
|
123 |
+
1824,
|
124 |
+
1834,
|
125 |
+
1840,
|
126 |
+
1853,
|
127 |
+
1860,
|
128 |
+
1872,
|
129 |
+
1941,
|
130 |
+
2038,
|
131 |
+
2045,
|
132 |
+
2081,
|
133 |
+
2096,
|
134 |
+
2108,
|
135 |
+
2115,
|
136 |
+
2115,
|
137 |
+
2147,
|
138 |
+
2149,
|
139 |
+
2165,
|
140 |
+
2167,
|
141 |
+
2173,
|
142 |
+
2195,
|
143 |
+
2216,
|
144 |
+
2275,
|
145 |
+
2278,
|
146 |
+
2282,
|
147 |
+
2285,
|
148 |
+
2327,
|
149 |
+
2339,
|
150 |
+
2347,
|
151 |
+
2348,
|
152 |
+
2348,
|
153 |
+
2425,
|
154 |
+
2444,
|
155 |
+
2476,
|
156 |
+
2477,
|
157 |
+
2482,
|
158 |
+
2482,
|
159 |
+
2486,
|
160 |
+
2499,
|
161 |
+
2515,
|
162 |
+
2529,
|
163 |
+
2529,
|
164 |
+
2559,
|
165 |
+
2565,
|
166 |
+
2567,
|
167 |
+
2573,
|
168 |
+
2582,
|
169 |
+
2633,
|
170 |
+
2641,
|
171 |
+
2677,
|
172 |
+
2705,
|
173 |
+
2719,
|
174 |
+
2744,
|
175 |
+
2756,
|
176 |
+
2821,
|
177 |
+
2860,
|
178 |
+
2864,
|
179 |
+
2936,
|
180 |
+
2955,
|
181 |
+
2992,
|
182 |
+
3022,
|
183 |
+
3041,
|
184 |
+
3064,
|
185 |
+
3074,
|
186 |
+
3121,
|
187 |
+
3123,
|
188 |
+
3160,
|
189 |
+
3170,
|
190 |
+
3172,
|
191 |
+
3179,
|
192 |
+
3180,
|
193 |
+
3195,
|
194 |
+
3199,
|
195 |
+
3208,
|
196 |
+
3208,
|
197 |
+
3259,
|
198 |
+
3269,
|
199 |
+
3280,
|
200 |
+
3299,
|
201 |
+
3300,
|
202 |
+
3323,
|
203 |
+
3334,
|
204 |
+
3352,
|
205 |
+
3364,
|
206 |
+
3365,
|
207 |
+
3378,
|
208 |
+
3405,
|
209 |
+
3424,
|
210 |
+
3438,
|
211 |
+
3492,
|
212 |
+
3511,
|
213 |
+
3512,
|
214 |
+
3533,
|
215 |
+
3572,
|
216 |
+
3579,
|
217 |
+
3710,
|
218 |
+
3730,
|
219 |
+
3735,
|
220 |
+
3759,
|
221 |
+
3787,
|
222 |
+
3793
|
223 |
+
]
|
224 |
+
remove_lines('input.in', lines_to_remove)
|
results/csi_summary.csv
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
Perturbation,Average Jaccard,CSI,Description
|
2 |
-
Scope Modification,0.6788942354152336,0.32110576458476636,Identifies variables in complex scopes and moves them to unrelated blocks.
|
3 |
-
Log Modification,0.5597545985057552,0.44024540149424485,Adds logging statements to blocks of code for tracking execution flow.
|
4 |
-
Operator Modification,0.7675911973340813,0.23240880266591868,Modifies boolean expressions by negating them in various contexts.
|
5 |
-
Pointer Modification,0.7341816285924795,0.2658183714075205,Add C style pointer to the code.
|
6 |
-
POS finetuned,0.39399085068850775,0.6060091493114923,Clusters based on finetuned POS codebert model
|
7 |
-
Random Modification,0.5314837325594708,0.4685162674405292,"Permutes statements within basic blocks, allowing different execution orders."
|
8 |
-
Try Catch Modification,0.6985673658171294,0.3014326341828706,Converts switch statements into equivalent if statements.
|
9 |
-
Unused Statement Modification,0.5844954343120634,0.4155045656879366,Inserts unused statements into blocks of code for testing/debugging.
|
10 |
-
Exact Name Class Variable Modification,0.675121649837896,0.324878350162104,Renames classes and variables to a specific randomly generated name.
|
11 |
-
Casing Class Variable Modification,0.6722713965133429,0.3277286034866571,Generates lexical variations of class and variable names with different casing.
|
12 |
-
Onecase Modification,0.665697304921991,0.334302695078009,Generates lexical variations of class and variable names with just 1 letter uppercase wither for class anme or variable name.
|
13 |
-
Example Modification,1.0,0.0,Generates lexical variations of class and variable names with Example being the class name and example being the variable name or vice versa.
|
14 |
-
Finetuned on compile error,1.0,0.0,Clusters based on finetuned codebert model on compile errors
|
15 |
-
Finetuned on language classification,1.0,0.0,Clusters based on finetuned codebert model on language classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|