File size: 19,879 Bytes
04a2c17 6058372 6ecf2db 04a2c17 5f5eb85 e01feae d58fc7b e51ae04 16d3c27 cfffc31 16d3c27 0b04461 984590a 43fad47 04a2c17 16d3c27 04a2c17 c255cf4 04a2c17 ee6e792 0b04461 ee6e792 3950f25 f7b82f6 3950f25 04a2c17 8cb40a4 04a2c17 681e0a4 0621b0b 0120490 6058372 6ecf2db 5f5eb85 6ecf2db 5f5eb85 6ecf2db 5f5eb85 f7c2ff7 5f5eb85 ed33e36 278fab8 f7c2ff7 3950f25 d0c9622 5f5eb85 278fab8 5f5eb85 278fab8 5f5eb85 278fab8 d0c9622 ff9989e 5a096cc 278fab8 e01feae 04a2c17 ff9989e f7c2ff7 711723d d0c9622 c52bc65 5f5eb85 3950f25 ed33e36 061956a c388c12 061956a 278fab8 d0c9622 278fab8 da55889 f7c2ff7 711723d 04a2c17 cfffc31 8cb40a4 278fab8 8cb40a4 04a2c17 c255cf4 5f5eb85 53ce693 04a2c17 5f5eb85 04a2c17 681e0a4 5216b90 e51ae04 5216b90 e51ae04 681e0a4 ac8ae1f 681e0a4 ac8ae1f e51ae04 ac8ae1f e51ae04 ac8ae1f e51ae04 ac8ae1f e51ae04 ac8ae1f e51ae04 5216b90 f4470aa 5216b90 e51ae04 5216b90 0b04461 5216b90 43fad47 5216b90 43fad47 f9ef62b 5216b90 f4470aa 5216b90 e51ae04 ac8ae1f e51ae04 f7c2ff7 e51ae04 f7c2ff7 e51ae04 f7c2ff7 e51ae04 f9ef62b e51ae04 f7c2ff7 e51ae04 ac8ae1f e51ae04 f7c2ff7 e51ae04 f7c2ff7 e51ae04 ac8ae1f e51ae04 ac8ae1f e51ae04 f7c2ff7 e51ae04 f7c2ff7 e51ae04 ac8ae1f e51ae04 f9ef62b e51ae04 f7c2ff7 e51ae04 ac8ae1f e51ae04 f7c2ff7 be3f31a f9ef62b be3f31a f7c2ff7 be3f31a f9ef62b be3f31a f7c2ff7 be3f31a f7c2ff7 be3f31a f7c2ff7 e51ae04 cfffc31 ed77665 cfffc31 f7c2ff7 ac8ae1f cfffc31 ed77665 cfffc31 ac8ae1f cfffc31 ed77665 cfffc31 04a2c17 0621b0b 04a2c17 0621b0b c255cf4 0b04461 04a2c17 0b04461 c255cf4 0b04461 04a2c17 c255cf4 04a2c17 5f5eb85 04a2c17 0621b0b 5f5eb85 04a2c17 5f5eb85 04a2c17 c255cf4 04a2c17 c255cf4 04a2c17 5f5eb85 04a2c17 3d5e7d2 45e36b4 c7ab4d8 ee6e792 45e36b4 04a2c17 45e36b4 0b04461 ee6e792 d0c9622 c7ab4d8 23fcc73 ee6e792 45e36b4 d977853 45e36b4 d0c9622 0b04461 d0c9622 3950f25 4d0d684 3950f25 cdbc522 3950f25 f7b82f6 3950f25 04a2c17 0621b0b 04a2c17 8cb40a4 04a2c17 0621b0b 04a2c17 5f5eb85 04a2c17 8cb40a4 04a2c17 8cb40a4 04a2c17 5f5eb85 04a2c17 3d5e7d2 04a2c17 0621b0b 04a2c17 8cb40a4 04a2c17 5f5eb85 04a2c17 8cb40a4 04a2c17 8cb40a4 04a2c17 5f5eb85 04a2c17 3d5e7d2 04a2c17 3d5e7d2 04a2c17 0621b0b 04a2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
import gradio as gr
import pandas as pd
import duckdb
import logging
from tabs.trades import (
prepare_trades,
get_overall_trades,
get_overall_by_market_trades,
get_overall_winning_by_market_trades,
integrated_plot_trades_per_market_by_week_v2,
integrated_plot_winning_trades_per_market_by_week_v2,
)
from tabs.staking import plot_staking_trades_per_market_by_week
from tabs.metrics import (
trade_metric_choices,
tool_metric_choices,
default_trade_metric,
default_tool_metric,
plot_trade_metrics,
get_trade_metrics_text,
)
from tabs.tool_win import (
integrated_plot_tool_winnings_overall_per_market_by_week,
integrated_tool_winnings_by_tool_per_market,
)
from tabs.tool_accuracy import (
plot_tools_weighted_accuracy_rotated_graph,
plot_tools_accuracy_rotated_graph,
compute_weighted_accuracy,
)
from tabs.invalid_markets import (
plot_daily_dist_invalid_trades,
plot_top_invalid_markets,
plotly_daily_nr_invalid_markets,
)
from tabs.error import (
plot_week_error_data_by_market,
plot_error_data_by_market,
get_error_data_overall_by_market,
plot_tool_error_data_by_market,
)
from tabs.about import about_olas_predict, about_this_dashboard
from scripts.utils import INC_TOOLS
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get all data from the parquet files
"""
logger.info("Getting all data")
con = duckdb.connect(":memory:")
query6 = f"""
SELECT *
FROM read_parquet('./data/winning_df.parquet')
"""
df6 = con.execute(query6).fetchdf()
query5 = f"""
SELECT *
FROM read_parquet('./data/unknown_traders.parquet')
"""
df5 = con.execute(query5).fetchdf()
# Query to fetch invalid trades data
query4 = f"""
SELECT *
FROM read_parquet('./data/invalid_trades.parquet')
"""
df4 = con.execute(query4).fetchdf()
# Query to fetch tools accuracy data
query3 = f"""
SELECT *
FROM read_csv('./data/tools_accuracy.csv')
"""
df3 = con.execute(query3).fetchdf()
# Query to fetch data from all_trades_profitability.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
query1 = f"""
SELECT *
FROM read_parquet('./data/error_by_markets.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from error_by_markets.parquet")
con.close()
return df1, df2, df3, df4, df5, df6
def prepare_data():
"""
Prepare the data for the dashboard
"""
(
error_by_markets,
trades_df,
tools_accuracy_info,
invalid_trades,
unknown_trades,
winning_df,
) = get_all_data()
print(trades_df.info())
trades_df = prepare_trades(trades_df)
unknown_trades = prepare_trades(unknown_trades)
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
print("weighted accuracy info")
print(tools_accuracy_info.head())
invalid_trades["creation_timestamp"] = pd.to_datetime(
invalid_trades["creation_timestamp"]
)
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
# discovering outliers for ROI
outliers = trades_df.loc[trades_df["roi"] >= 1000]
if len(outliers) > 0:
outliers.to_parquet("./data/outliers.parquet")
trades_df = trades_df.loc[trades_df["roi"] < 1000]
return (
error_by_markets,
trades_df,
tools_accuracy_info,
invalid_trades,
unknown_trades,
winning_df,
)
(
error_by_markets,
trades_df,
tools_accuracy_info,
invalid_trades,
unknown_trades,
winning_df,
) = prepare_data()
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)
demo = gr.Blocks()
# preparing data for the errors
error_overall_by_markets = get_error_data_overall_by_market(error_df=error_by_markets)
# preparing data for the trades graph
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
winning_trades_by_market = get_overall_winning_by_market_trades(trades_df=trades_df)
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown(
"This app shows the actual performance of Olas Predict tools on the live market."
)
with gr.Tabs():
with gr.TabItem("π₯ Weekly Trades Dashboard"):
with gr.Row():
gr.Markdown("# Trend of weekly trades")
with gr.Row():
trades_by_week = integrated_plot_trades_per_market_by_week_v2(
trades_df=trades_df
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"# Weekly percentage of winning for trades based on π Olas traders"
)
olas_winning_trades = (
integrated_plot_winning_trades_per_market_by_week_v2(
trades_df=trades_df, trader_filter="Olas"
)
)
with gr.Column(scale=1):
gr.Markdown(
"# Weekly percentage of winning for trades based on non-Olas traders"
)
non_Olas_winning_trades = (
integrated_plot_winning_trades_per_market_by_week_v2(
trades_df=trades_df, trader_filter="non_Olas"
)
)
def update_trade_details(trade_detail, trade_details_plot):
new_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
)
return new_plot
with gr.Row():
gr.Markdown("# βοΈ Weekly trading metrics for all trades")
with gr.Row():
trade_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text(trader_type=None)
trade_details_selector.change(
update_trade_details,
inputs=[trade_details_selector, trade_details_plot],
outputs=[trade_details_plot],
)
# Agentic traders graph
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from π Olas traders"
)
with gr.Row():
trade_o_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_o_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
trader_filter="Olas",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text(trader_type="Olas")
def update_a_trade_details(trade_detail, trade_o_details_plot):
new_a_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
trader_filter="Olas",
)
return new_a_plot
trade_o_details_selector.change(
update_a_trade_details,
inputs=[trade_o_details_selector, trade_o_details_plot],
outputs=[trade_o_details_plot],
)
# Non-Olasic traders graph
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from Non-Olas traders"
)
with gr.Row():
trade_no_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_no_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
trader_filter="non_Olas",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text("non_Olas")
def update_na_trade_details(trade_detail, trade_details_plot):
new_no_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
trader_filter="non_Olas",
)
return new_no_plot
trade_no_details_selector.change(
update_na_trade_details,
inputs=[trade_no_details_selector, trade_no_details_plot],
outputs=[trade_no_details_plot],
)
# Unknown traders graph
if len(unknown_trades) > 0:
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from Unclassified traders"
)
with gr.Row():
trade_u_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_u_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=unknown_trades,
trader_filter="all",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text(
trader_type="unclassified"
)
def update_na_trade_details(trade_detail, trade_u_details_plot):
new_u_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=unknown_trades,
trader_filter="all",
)
return new_u_plot
trade_u_details_selector.change(
update_na_trade_details,
inputs=[trade_u_details_selector, trade_u_details_plot],
outputs=[trade_u_details_plot],
)
with gr.TabItem("π Staking traders"):
with gr.Row():
gr.Markdown("# Trades conducted at the Pearl markets")
with gr.Row():
print("Calling plot staking with pearl")
staking_pearl_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="pearl"
)
with gr.Row():
gr.Markdown("# Trades conducted at the Quickstart markets")
with gr.Row():
staking_qs_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="quickstart"
)
with gr.Row():
gr.Markdown("# Trades conducted irrespective of the market")
with gr.Row():
staking_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="all"
)
with gr.TabItem("π Tool Winning Dashboard"):
with gr.Row():
gr.Markdown("# All tools winning performance")
with gr.Row():
winning_selector = gr.Dropdown(
label="Select the tool metric",
choices=list(tool_metric_choices.keys()),
value=default_tool_metric,
)
with gr.Row():
# plot_tool_metrics
winning_plot = integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df=winning_df,
winning_selector=default_tool_metric,
)
def update_tool_winnings_overall_plot(winning_selector):
return integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df=winning_df, winning_selector=winning_selector
)
winning_selector.change(
update_tool_winnings_overall_plot,
inputs=winning_selector,
outputs=winning_plot,
)
with gr.Row():
winning_selector
with gr.Row():
winning_plot
with gr.Row():
gr.Markdown("# Winning performance by each tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_winnings_by_tool_plot = (
integrated_tool_winnings_by_tool_per_market(
wins_df=winning_df, tool=INC_TOOLS[0]
)
)
def update_tool_winnings_by_tool_plot(tool):
return integrated_tool_winnings_by_tool_per_market(
wins_df=winning_df, tool=tool
)
sel_tool.change(
update_tool_winnings_by_tool_plot,
inputs=sel_tool,
outputs=tool_winnings_by_tool_plot,
)
with gr.Row():
sel_tool
with gr.Row():
tool_winnings_by_tool_plot
with gr.TabItem("π― Tool Accuracy Dashboard"):
with gr.Row():
gr.Markdown("# Tools accuracy ranking")
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
)
with gr.Row():
_ = plot_tools_accuracy_rotated_graph(tools_accuracy_info)
with gr.Row():
gr.Markdown("# Weighted accuracy ranking per tool")
with gr.Row():
gr.Markdown(
"This metric is an approximation to the real metric used by the trader since some parameters are only dynamically generated."
)
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool. The minimum value of this custom metric is 0 and the maximum value is 1. The higher the better is the tool."
)
with gr.Row():
_ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)
with gr.TabItem("β Invalid Markets Dashboard"):
with gr.Row():
gr.Markdown("# Daily distribution of invalid trades")
with gr.Row():
daily_trades = plot_daily_dist_invalid_trades(invalid_trades)
with gr.Row():
gr.Markdown("# Top markets with invalid trades")
with gr.Row():
top_invalid_markets = plot_top_invalid_markets(invalid_trades)
with gr.Row():
gr.Markdown("# Daily distribution of invalid markets")
with gr.Row():
invalid_markets = plotly_daily_nr_invalid_markets(invalid_trades)
with gr.TabItem("π₯ Tool Error Dashboard"):
with gr.Row():
gr.Markdown("# All tools errors")
with gr.Row():
error_overall_plot = plot_error_data_by_market(
error_all_df=error_overall_by_markets
)
with gr.Row():
gr.Markdown("# Error percentage per tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_error_plot = plot_tool_error_data_by_market(
error_df=error_by_markets, tool=INC_TOOLS[0]
)
def update_tool_error_plot(tool):
return plot_tool_error_data_by_market(
error_df=error_by_markets, tool=tool
)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
gr.Markdown("# Tools distribution of errors per week")
with gr.Row():
choices = (
error_overall_by_markets["request_month_year_week"]
.unique()
.tolist()
)
# sort the choices by the latest week to be on the top
choices = sorted(choices)
sel_week = gr.Dropdown(
label="Select a week", choices=choices, value=choices[-1]
)
with gr.Row():
week_error_plot = plot_week_error_data_by_market(
error_df=error_by_markets, week=choices[-1]
)
def update_week_error_plot(selected_week):
return plot_week_error_data_by_market(
error_df=error_by_markets, week=selected_week
)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
sel_week.change(
update_week_error_plot, inputs=sel_week, outputs=week_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
sel_week
with gr.Row():
week_error_plot
with gr.TabItem("βΉοΈ About"):
with gr.Accordion("About Olas Predict"):
gr.Markdown(about_olas_predict)
with gr.Accordion("About this dashboard"):
gr.Markdown(about_this_dashboard)
demo.queue(default_concurrency_limit=40).launch()
|