File size: 19,879 Bytes
04a2c17
 
6058372
6ecf2db
04a2c17
5f5eb85
 
e01feae
 
d58fc7b
e51ae04
16d3c27
cfffc31
16d3c27
 
0b04461
 
 
 
984590a
43fad47
04a2c17
16d3c27
04a2c17
c255cf4
 
04a2c17
ee6e792
 
0b04461
 
ee6e792
 
3950f25
 
 
 
f7b82f6
3950f25
 
04a2c17
8cb40a4
 
 
 
04a2c17
681e0a4
0621b0b
0120490
 
6058372
6ecf2db
 
 
 
 
 
5f5eb85
 
 
6ecf2db
 
 
 
5f5eb85
6ecf2db
 
5f5eb85
 
 
f7c2ff7
5f5eb85
 
 
ed33e36
278fab8
 
 
 
 
 
f7c2ff7
 
 
 
 
 
3950f25
 
 
 
 
 
 
d0c9622
 
 
 
 
 
 
5f5eb85
 
 
 
 
 
 
 
 
 
278fab8
5f5eb85
 
278fab8
5f5eb85
 
 
278fab8
d0c9622
 
ff9989e
5a096cc
 
 
278fab8
 
 
 
 
 
 
 
e01feae
04a2c17
ff9989e
f7c2ff7
711723d
d0c9622
c52bc65
 
5f5eb85
3950f25
 
 
 
ed33e36
061956a
 
 
c388c12
061956a
 
278fab8
 
 
 
 
 
 
 
d0c9622
 
278fab8
 
 
 
 
 
 
 
da55889
f7c2ff7
711723d
04a2c17
cfffc31
8cb40a4
278fab8
8cb40a4
04a2c17
c255cf4
5f5eb85
53ce693
 
04a2c17
 
5f5eb85
 
 
04a2c17
 
681e0a4
5216b90
 
 
e51ae04
5216b90
 
 
 
e51ae04
681e0a4
ac8ae1f
681e0a4
ac8ae1f
e51ae04
ac8ae1f
e51ae04
 
 
 
ac8ae1f
e51ae04
ac8ae1f
e51ae04
ac8ae1f
e51ae04
 
5216b90
f4470aa
 
 
 
 
 
 
5216b90
e51ae04
5216b90
 
 
0b04461
 
5216b90
43fad47
5216b90
43fad47
 
 
 
 
 
f9ef62b
5216b90
 
 
f4470aa
 
5216b90
e51ae04
 
 
ac8ae1f
 
 
e51ae04
f7c2ff7
e51ae04
 
 
 
 
 
 
f7c2ff7
e51ae04
 
f7c2ff7
e51ae04
 
f9ef62b
e51ae04
f7c2ff7
e51ae04
 
 
ac8ae1f
e51ae04
 
 
f7c2ff7
e51ae04
f7c2ff7
 
e51ae04
 
ac8ae1f
e51ae04
 
ac8ae1f
e51ae04
 
f7c2ff7
e51ae04
 
 
 
 
 
 
f7c2ff7
e51ae04
 
ac8ae1f
e51ae04
 
f9ef62b
e51ae04
 
f7c2ff7
e51ae04
 
ac8ae1f
e51ae04
f7c2ff7
 
 
 
 
 
 
 
be3f31a
 
 
f9ef62b
be3f31a
 
 
 
 
 
 
f7c2ff7
be3f31a
 
 
 
 
 
 
 
f9ef62b
 
 
be3f31a
 
 
 
f7c2ff7
 
 
be3f31a
f7c2ff7
be3f31a
 
 
 
f7c2ff7
e51ae04
cfffc31
 
ed77665
cfffc31
f7c2ff7
ac8ae1f
cfffc31
 
 
ed77665
cfffc31
ac8ae1f
cfffc31
 
 
ed77665
cfffc31
 
 
 
04a2c17
 
0621b0b
04a2c17
 
 
0621b0b
c255cf4
0b04461
04a2c17
 
 
0b04461
c255cf4
 
0b04461
04a2c17
 
 
c255cf4
 
04a2c17
 
 
 
5f5eb85
 
04a2c17
 
 
 
 
 
 
 
0621b0b
5f5eb85
04a2c17
 
5f5eb85
04a2c17
 
 
c255cf4
 
 
 
04a2c17
 
 
c255cf4
 
 
04a2c17
 
 
5f5eb85
 
04a2c17
 
 
 
 
3d5e7d2
45e36b4
 
c7ab4d8
ee6e792
45e36b4
 
 
04a2c17
45e36b4
0b04461
ee6e792
d0c9622
c7ab4d8
23fcc73
 
 
 
ee6e792
45e36b4
d977853
45e36b4
d0c9622
0b04461
d0c9622
3950f25
 
 
 
4d0d684
3950f25
 
 
 
cdbc522
3950f25
 
 
 
f7b82f6
3950f25
04a2c17
 
0621b0b
04a2c17
8cb40a4
 
 
04a2c17
0621b0b
04a2c17
 
5f5eb85
04a2c17
 
 
8cb40a4
 
04a2c17
 
 
8cb40a4
 
 
04a2c17
 
5f5eb85
04a2c17
 
 
 
3d5e7d2
04a2c17
 
0621b0b
04a2c17
 
8cb40a4
 
 
 
 
04a2c17
 
 
5f5eb85
 
04a2c17
 
8cb40a4
 
04a2c17
 
 
8cb40a4
 
 
04a2c17
5f5eb85
 
 
 
 
 
04a2c17
 
 
 
3d5e7d2
04a2c17
 
 
3d5e7d2
04a2c17
 
 
 
 
0621b0b
 
 
04a2c17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import gradio as gr
import pandas as pd
import duckdb
import logging
from tabs.trades import (
    prepare_trades,
    get_overall_trades,
    get_overall_by_market_trades,
    get_overall_winning_by_market_trades,
    integrated_plot_trades_per_market_by_week_v2,
    integrated_plot_winning_trades_per_market_by_week_v2,
)
from tabs.staking import plot_staking_trades_per_market_by_week

from tabs.metrics import (
    trade_metric_choices,
    tool_metric_choices,
    default_trade_metric,
    default_tool_metric,
    plot_trade_metrics,
    get_trade_metrics_text,
)

from tabs.tool_win import (
    integrated_plot_tool_winnings_overall_per_market_by_week,
    integrated_tool_winnings_by_tool_per_market,
)

from tabs.tool_accuracy import (
    plot_tools_weighted_accuracy_rotated_graph,
    plot_tools_accuracy_rotated_graph,
    compute_weighted_accuracy,
)

from tabs.invalid_markets import (
    plot_daily_dist_invalid_trades,
    plot_top_invalid_markets,
    plotly_daily_nr_invalid_markets,
)

from tabs.error import (
    plot_week_error_data_by_market,
    plot_error_data_by_market,
    get_error_data_overall_by_market,
    plot_tool_error_data_by_market,
)

from tabs.about import about_olas_predict, about_this_dashboard
from scripts.utils import INC_TOOLS


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger


logger = get_logger()


def get_all_data():
    """
    Get all data from the parquet files
    """
    logger.info("Getting all data")

    con = duckdb.connect(":memory:")
    query6 = f"""
    SELECT *
    FROM read_parquet('./data/winning_df.parquet')
    """
    df6 = con.execute(query6).fetchdf()

    query5 = f"""
    SELECT *
    FROM read_parquet('./data/unknown_traders.parquet')
    """
    df5 = con.execute(query5).fetchdf()

    # Query to fetch invalid trades data
    query4 = f"""
    SELECT *
    FROM read_parquet('./data/invalid_trades.parquet')
    """
    df4 = con.execute(query4).fetchdf()

    # Query to fetch tools accuracy data
    query3 = f"""
    SELECT *
    FROM read_csv('./data/tools_accuracy.csv')
    """
    df3 = con.execute(query3).fetchdf()

    # Query to fetch data from all_trades_profitability.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got all data from all_trades_profitability.parquet")

    query1 = f"""
    SELECT *
    FROM read_parquet('./data/error_by_markets.parquet')
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got all data from error_by_markets.parquet")

    con.close()

    return df1, df2, df3, df4, df5, df6


def prepare_data():
    """
    Prepare the data for the dashboard
    """
    (
        error_by_markets,
        trades_df,
        tools_accuracy_info,
        invalid_trades,
        unknown_trades,
        winning_df,
    ) = get_all_data()
    print(trades_df.info())

    trades_df = prepare_trades(trades_df)
    unknown_trades = prepare_trades(unknown_trades)

    tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
    print("weighted accuracy info")
    print(tools_accuracy_info.head())

    invalid_trades["creation_timestamp"] = pd.to_datetime(
        invalid_trades["creation_timestamp"]
    )
    invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date

    # discovering outliers for ROI
    outliers = trades_df.loc[trades_df["roi"] >= 1000]
    if len(outliers) > 0:
        outliers.to_parquet("./data/outliers.parquet")
        trades_df = trades_df.loc[trades_df["roi"] < 1000]

    return (
        error_by_markets,
        trades_df,
        tools_accuracy_info,
        invalid_trades,
        unknown_trades,
        winning_df,
    )


(
    error_by_markets,
    trades_df,
    tools_accuracy_info,
    invalid_trades,
    unknown_trades,
    winning_df,
) = prepare_data()
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)

demo = gr.Blocks()

# preparing data for the errors

error_overall_by_markets = get_error_data_overall_by_market(error_df=error_by_markets)

# preparing data for the trades graph
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
winning_trades_by_market = get_overall_winning_by_market_trades(trades_df=trades_df)
with demo:
    gr.HTML("<h1>Olas Predict Actual Performance</h1>")
    gr.Markdown(
        "This app shows the actual performance of Olas Predict tools on the live market."
    )

    with gr.Tabs():
        with gr.TabItem("πŸ”₯ Weekly Trades Dashboard"):
            with gr.Row():
                gr.Markdown("# Trend of weekly trades")
            with gr.Row():
                trades_by_week = integrated_plot_trades_per_market_by_week_v2(
                    trades_df=trades_df
                )

            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(
                        "# Weekly percentage of winning for trades based on 🌊 Olas traders"
                    )
                    olas_winning_trades = (
                        integrated_plot_winning_trades_per_market_by_week_v2(
                            trades_df=trades_df, trader_filter="Olas"
                        )
                    )
                with gr.Column(scale=1):
                    gr.Markdown(
                        "# Weekly percentage of winning for trades based on non-Olas traders"
                    )
                    non_Olas_winning_trades = (
                        integrated_plot_winning_trades_per_market_by_week_v2(
                            trades_df=trades_df, trader_filter="non_Olas"
                        )
                    )

            def update_trade_details(trade_detail, trade_details_plot):
                new_plot = plot_trade_metrics(
                    metric_name=trade_detail,
                    trades_df=trades_df,
                )
                return new_plot

            with gr.Row():
                gr.Markdown("# βš–οΈ Weekly trading metrics for all trades")
            with gr.Row():
                trade_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=trade_metric_choices,
                    value=default_trade_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_details_plot = plot_trade_metrics(
                        metric_name=default_trade_metric,
                        trades_df=trades_df,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_trade_metrics_text(trader_type=None)

            trade_details_selector.change(
                update_trade_details,
                inputs=[trade_details_selector, trade_details_plot],
                outputs=[trade_details_plot],
            )

            # Agentic traders graph
            with gr.Row():
                gr.Markdown(
                    "# Weekly trading metrics for trades coming from 🌊 Olas traders"
                )
            with gr.Row():
                trade_o_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=trade_metric_choices,
                    value=default_trade_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_o_details_plot = plot_trade_metrics(
                        metric_name=default_trade_metric,
                        trades_df=trades_df,
                        trader_filter="Olas",
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_trade_metrics_text(trader_type="Olas")

            def update_a_trade_details(trade_detail, trade_o_details_plot):
                new_a_plot = plot_trade_metrics(
                    metric_name=trade_detail,
                    trades_df=trades_df,
                    trader_filter="Olas",
                )
                return new_a_plot

            trade_o_details_selector.change(
                update_a_trade_details,
                inputs=[trade_o_details_selector, trade_o_details_plot],
                outputs=[trade_o_details_plot],
            )

            # Non-Olasic traders graph
            with gr.Row():
                gr.Markdown(
                    "# Weekly trading metrics for trades coming from Non-Olas traders"
                )
            with gr.Row():
                trade_no_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=trade_metric_choices,
                    value=default_trade_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_no_details_plot = plot_trade_metrics(
                        metric_name=default_trade_metric,
                        trades_df=trades_df,
                        trader_filter="non_Olas",
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_trade_metrics_text("non_Olas")

            def update_na_trade_details(trade_detail, trade_details_plot):
                new_no_plot = plot_trade_metrics(
                    metric_name=trade_detail,
                    trades_df=trades_df,
                    trader_filter="non_Olas",
                )
                return new_no_plot

            trade_no_details_selector.change(
                update_na_trade_details,
                inputs=[trade_no_details_selector, trade_no_details_plot],
                outputs=[trade_no_details_plot],
            )
            # Unknown traders graph
            if len(unknown_trades) > 0:
                with gr.Row():
                    gr.Markdown(
                        "# Weekly trading metrics for trades coming from Unclassified traders"
                    )
                with gr.Row():
                    trade_u_details_selector = gr.Dropdown(
                        label="Select a trade metric",
                        choices=trade_metric_choices,
                        value=default_trade_metric,
                    )

                with gr.Row():
                    with gr.Column(scale=3):
                        trade_u_details_plot = plot_trade_metrics(
                            metric_name=default_trade_metric,
                            trades_df=unknown_trades,
                            trader_filter="all",
                        )
                    with gr.Column(scale=1):
                        trade_details_text = get_trade_metrics_text(
                            trader_type="unclassified"
                        )

                def update_na_trade_details(trade_detail, trade_u_details_plot):
                    new_u_plot = plot_trade_metrics(
                        metric_name=trade_detail,
                        trades_df=unknown_trades,
                        trader_filter="all",
                    )
                    return new_u_plot

                trade_u_details_selector.change(
                    update_na_trade_details,
                    inputs=[trade_u_details_selector, trade_u_details_plot],
                    outputs=[trade_u_details_plot],
                )

        with gr.TabItem("πŸ”’ Staking traders"):
            with gr.Row():
                gr.Markdown("# Trades conducted at the Pearl markets")
            with gr.Row():
                print("Calling plot staking with pearl")
                staking_pearl_trades_by_week = plot_staking_trades_per_market_by_week(
                    trades_df=trades_df, market_creator="pearl"
                )
            with gr.Row():
                gr.Markdown("# Trades conducted at the Quickstart markets")
            with gr.Row():
                staking_qs_trades_by_week = plot_staking_trades_per_market_by_week(
                    trades_df=trades_df, market_creator="quickstart"
                )
            with gr.Row():
                gr.Markdown("# Trades conducted irrespective of the market")
            with gr.Row():
                staking_trades_by_week = plot_staking_trades_per_market_by_week(
                    trades_df=trades_df, market_creator="all"
                )
        with gr.TabItem("πŸš€ Tool Winning Dashboard"):
            with gr.Row():
                gr.Markdown("# All tools winning performance")

            with gr.Row():
                winning_selector = gr.Dropdown(
                    label="Select the tool metric",
                    choices=list(tool_metric_choices.keys()),
                    value=default_tool_metric,
                )

            with gr.Row():
                # plot_tool_metrics
                winning_plot = integrated_plot_tool_winnings_overall_per_market_by_week(
                    winning_df=winning_df,
                    winning_selector=default_tool_metric,
                )

            def update_tool_winnings_overall_plot(winning_selector):
                return integrated_plot_tool_winnings_overall_per_market_by_week(
                    winning_df=winning_df, winning_selector=winning_selector
                )

            winning_selector.change(
                update_tool_winnings_overall_plot,
                inputs=winning_selector,
                outputs=winning_plot,
            )

            with gr.Row():
                winning_selector
            with gr.Row():
                winning_plot

            with gr.Row():
                gr.Markdown("# Winning performance by each tool")

            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_winnings_by_tool_plot = (
                    integrated_tool_winnings_by_tool_per_market(
                        wins_df=winning_df, tool=INC_TOOLS[0]
                    )
                )

            def update_tool_winnings_by_tool_plot(tool):
                return integrated_tool_winnings_by_tool_per_market(
                    wins_df=winning_df, tool=tool
                )

            sel_tool.change(
                update_tool_winnings_by_tool_plot,
                inputs=sel_tool,
                outputs=tool_winnings_by_tool_plot,
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_winnings_by_tool_plot
        with gr.TabItem("🎯 Tool Accuracy Dashboard"):
            with gr.Row():
                gr.Markdown("# Tools accuracy ranking")
            with gr.Row():
                gr.Markdown(
                    "The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
                )

            with gr.Row():
                _ = plot_tools_accuracy_rotated_graph(tools_accuracy_info)

            with gr.Row():
                gr.Markdown("# Weighted accuracy ranking per tool")
            with gr.Row():
                gr.Markdown(
                    "This metric is an approximation to the real metric used by the trader since some parameters are only dynamically generated."
                )
            with gr.Row():
                gr.Markdown(
                    "The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool. The minimum value of this custom metric is 0 and the maximum value is 1. The higher the better is the tool."
                )
            with gr.Row():
                _ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)

        with gr.TabItem("β›” Invalid Markets Dashboard"):
            with gr.Row():
                gr.Markdown("# Daily distribution of invalid trades")
            with gr.Row():
                daily_trades = plot_daily_dist_invalid_trades(invalid_trades)

            with gr.Row():
                gr.Markdown("# Top markets with invalid trades")
            with gr.Row():
                top_invalid_markets = plot_top_invalid_markets(invalid_trades)

            with gr.Row():
                gr.Markdown("# Daily distribution of invalid markets")
            with gr.Row():
                invalid_markets = plotly_daily_nr_invalid_markets(invalid_trades)

        with gr.TabItem("πŸ₯ Tool Error Dashboard"):
            with gr.Row():
                gr.Markdown("# All tools errors")
            with gr.Row():
                error_overall_plot = plot_error_data_by_market(
                    error_all_df=error_overall_by_markets
                )
            with gr.Row():
                gr.Markdown("# Error percentage per tool")
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_error_plot = plot_tool_error_data_by_market(
                    error_df=error_by_markets, tool=INC_TOOLS[0]
                )

            def update_tool_error_plot(tool):
                return plot_tool_error_data_by_market(
                    error_df=error_by_markets, tool=tool
                )

            sel_tool.change(
                update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
            )
            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot

            with gr.Row():
                gr.Markdown("# Tools distribution of errors per week")

            with gr.Row():
                choices = (
                    error_overall_by_markets["request_month_year_week"]
                    .unique()
                    .tolist()
                )
                # sort the choices by the latest week to be on the top
                choices = sorted(choices)
                sel_week = gr.Dropdown(
                    label="Select a week", choices=choices, value=choices[-1]
                )

            with gr.Row():
                week_error_plot = plot_week_error_data_by_market(
                    error_df=error_by_markets, week=choices[-1]
                )

            def update_week_error_plot(selected_week):
                return plot_week_error_data_by_market(
                    error_df=error_by_markets, week=selected_week
                )

            sel_tool.change(
                update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
            )
            sel_week.change(
                update_week_error_plot, inputs=sel_week, outputs=week_error_plot
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot
            with gr.Row():
                sel_week
            with gr.Row():
                week_error_plot

        with gr.TabItem("ℹ️ About"):
            with gr.Accordion("About Olas Predict"):
                gr.Markdown(about_olas_predict)

            with gr.Accordion("About this dashboard"):
                gr.Markdown(about_this_dashboard)

demo.queue(default_concurrency_limit=40).launch()